
Smooth Skinning Decomposition with Rigid Bones

Binh Huy Le∗ Zhigang Deng†

University of Houston

Figure 1: A set of example poses are decomposed into rigid bone transformations B and a sparse, convex bone-vertex weight map W (left
hand side) by our block coordinate descent algorithm (right hand side). During the process, the example poses (indicated as blue dots) can
be reconstructed more accurately by alternatively updating W and B while the other is kept fixed.

Abstract

This paper introduces the Smooth Skinning Decomposition with
Rigid Bones (SSDR), an automated algorithm to extract the lin-
ear blend skinning (LBS) from a set of example poses. The SSDR
model can effectively approximate the skin deformation of nearly
articulated models as well as highly deformable models by a low
number of rigid bones and a sparse, convex bone-vertex weight
map. Formulated as a constrained optimization problem where the
least squared error of the reconstructed vertices by LBS is min-
imized, the SSDR model can be solved by a block coordinate
descent-based algorithm to iteratively update the weight map and
the bone transformations. By employing the sparseness and convex
constraints on the weight map, the SSDR model can be used for
traditional skinning decomposition tasks such as animation com-
pression and hardware-accelerated rendering. Moreover, by impos-
ing the orthogonal constraints on the bone rotation matrices (rigid
bones), the SSDR model can also be applied in motion editing,
skeleton extraction, and collision detection tasks. Through quali-
tative and quantitative evaluations, we show the SSDR model can
measurably outperform the state-of-the-art skinning decomposition
schemes in terms of accuracy and applicability.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: Skinning Decomposition, Linear Blend Skinning, Ge-
ometric Deformation, Block Coordinate Descent

Links: DL PDF WEB VIDEO

∗e-mail: bhle2@cs.uh.edu
†e-mail:zdeng@cs.uh.edu

1 Introduction

Numerous research efforts have been focused on efficiently skin-
ning mesh animations. Among many proposed techniques, linear
blend skinning (LBS) is widely known to be the most popular skin-
ning computational model due to its effectiveness, simplicity, and
efficiency [Lewis et al. 2000; Gain and Bechmann 2008]. It has
many different names over the years including skeleton subspace
deformation, enveloping, vertex blending, smooth skinning (Au-
todesk Maya), bones skinning (Autodesk 3D Studio Max), or linear
blend skinning (the open-source Blender).

In the LBS model, skin deformation is driven by a set of bones.
Every vertex is associated with the bones via a bone-vertex weight
map which quantifies the influence of each bone to the vertices. The
skin is deformed by transforming each vertex through a weighted
combination of bone transformations from the rest pose. Assuming
wij is the influence of j-th bone to the i-th vertex, pi is the position
of the i-th vertex at the rest pose, |B| is the number of bones, and
Rt

j and T t
j are the rotation matrix and translation vector of the j-th

bone at the t-th configuration, respectively, then the deformed i-th
vertex, vt

i , can be computed as follows:

vt
i =

|B|X
j=1

wij(Rt
jpi + T t

j) (1)

Depending on specific applications, the above LBS model may im-
pose certain constraints. The weight map wij is normally required
to be convex, i.e., wij ≥ 0 and

P|B|
j=1 wij = 1. The first non-

negativity constraint makes the transformation blending additive.
The second affinity constraint normalizes the influences/weights to
prevent over-fitting and deformation artifacts. The two constraints
are critical for certain applications such as animation editing. In
addition, the sparseness constraint on the weight map, which limits
the number of non-zero bone weights per vertex, may be applied to
take advantage of graphic hardware capabilities. Many applications
also requireRt

j matrix to be orthogonal, e.g. animation editing, col-
lision detection, and skeleton extraction (please refer to Section 6
for more details). The orthogonal constraint avoids any shearing or
scaling effect on the bone transformations, thus put the transforma-
tions into the rigid group. For this reason, the bone transformation
with orthogonal rotation matrix is also called the “rigid bone”.

In this work, we propose a novel example-based method (called

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf
http://graphics.cs.uh.edu/
http://graphics.cs.uh.edu/

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

Smooth Skinning Decomposition with Rigid Bones (SSDR)) to ex-
tract both rigid bone transformations and a sparse, convex bone-
vertex weight map from a set of example poses (refer to Figure
1). Specifically, the skinning decomposition is formulated as a con-
strained optimization problem in which the sum-of-squared error
of vertices reconstructed by the LBS model is minimized. The term
skinning decomposition is borrowed from [Kavan et al. 2010] to
refer to the inverse problem of linear blend skinning.

Compared with the state-of-the-art algorithms [James and Twigg
2005; Hasler et al. 2010] that typically treat both the orthogonal
constraint for the bone transformations and the convex constraint
for the bone-vertex weight map as soft constraints, the main con-
tribution of this work is that our algorithm exactly enforces the two
constraints as hard constraints. As such, our algorithm does not
need to deal with the trade-off between exactly satisfying the con-
straints and sacrificing the reconstruction error. Specifically, our
exact solution for the orthogonal bone constraint is linear, simple,
and effective. Through extensive qualitative and quantitative com-
parisons, we show that the proposed SSDR algorithm can produce
more accurate and meaningful skinning decompositions than the
state of the art algorithms.

2 Related Work

Skinning Mesh Animations: Despite its wide uses, the LBS model
has certain limitations such as collapsing elbow and candy-wrapper
effects [Gain and Bechmann 2008] and failure of secondary defor-
mation. Over the years, researchers proposed various techniques
to overcome these limitations [Kry et al. 2002; Merry et al. 2006;
Miller et al. 2010; Huang et al. 2011a]. For example, Lewis et
al. [2000] pioneered the pose space deformation that treats the de-
formation problem as a shape interpolation problem from a set of
example poses, and it allows animators intuitively add or manip-
ulate the set of control poses to correct the deformation artifacts.
Along with those skinning models, several user interfaces were pro-
posed for interactive skinning tasks [Sloan et al. 2001; Mohr et al.
2003]. Skinning weights can also be calculated automatically by
first extracting the skeleton from a static character mesh [Baran and
Popović 2007] or from a set of example poses [Schaefer and Yuksel
2007; de Aguiar et al. 2008].

The intrinsic limitation of the LBS model can also be tackled
by manipulating the transformation or weight matrices, including
multi-weight enveloping [Wang and Phillips 2002] that modifies the
transformation matrix (or called the enveloping matrix) by adding
a weight to each of its entries, modifying the weight matrix by
adding a scalar weight function to each bone in order to support
bone stretching and twisting [Jacobson and Sorkine 2011], and
non-linear skinning techniques by transforming matrices to a form
of quaternion [Kavan and Žára 2005] or dual quaternion [Kavan
et al. 2008]. In addition, the mesh skinning problem can also be re-
formulated as a regression problem, in which a regressor is learnt
from examples to predict the deformation from a skeleton configu-
ration [Wang et al. 2007; Feng et al. 2008; Kim and James 2011].
Also, physically based methods have been exploited for skinning
applications [Capell et al. 2005; Kim and James 2011].

Skinning Decomposition: Several early related efforts were pur-
sued to partially address the skinning decomposition problem. For
example, Mohr and Gleicher [2003] employ linear least squares to
calculate the weights for the LBS, given a set of examples poses and
their corresponding bone transformations. Later, researchers [Ka-
van et al. 2007] proposed an efficient solution to compute the bone
transformations in the dual quaternion form based on given example
poses and weights. Kavan et al. [2010] officially coined the term
skinning decomposition, and it refers to the problem of extracting

both the bone transformations (or the control points) and the bone-
vertex influences (or the weights) from a set of example poses. In
their model, the vertices of example poses, denoted as a matrix A,
are decomposed to A = TX , where T represents the transforma-
tion and X represents the combination of the weight matrix and
the rest pose. Their approach does not enforce any constraints on
the transformations T and thus their approach is suitable (and of-
ten limited) to compression and GPU-accelerated high performance
rendering applications.

The first reported solution to compute both bone rigid transforma-
tions and bone-vertex weights from example poses is the skinning
mesh animations (SMA) method [James and Twigg 2005]. Al-
though the SMA model provides a complete solution to the skin-
ning decomposition problem; essentially, it is still a combination
of two separate solutions of sub-problems rather than a unified
framework. SMA is more effective for near-rigid (e.g., articulated)
objects than non-rigid models since the triangle rotations can be
clearly observed in the near-rigid objects. The SMA model is able
to enforce hard constraints on bone rotation matrices; however, it
can only enforce soft constraints on the bone-vertex weights (i.e.,
the affinity constraint). Due to this reason, it has to face a trade-
off between guaranteeing the affinity constraint on the weights and
sacrificing the reconstruction error.

Later, following this direction, Hasler et al. [2010] first segment
the meshes of example poses into rigid parts by applying spectral
clustering to the triangle rotations. Then, the bone transformations
and bone-vertex weights are refined via an iterative process, where
the bone transformations are optimized by linear least squares with
soft orthogonal constraints enforced on rotation matrices, followed
by a Levenberg-Marquardt optimization. The bone-vertex weights
are solved by non-negative linear least squares with L1-norm min-
imization to achieve sparse solutions, followed by L1-norm nor-
malization in order to enforce the affinity constraint. Since all the
employed constraints are soft, the iterative process cannot guaran-
tee its convergence in theory. In Section 5, we will compare our
proposed SSDR model with both the [James and Twigg 2005] and
[Hasler et al. 2010] methods.

3 Smooth Skinning Decomposition with
Rigid Bones

The introduced Smooth Skinning Decomposition with Rigid Bones
(SSDR) model of animated meshes aims to solve the inverse prob-
lem of the LBS model. Suppose we have |t| example poses of a
|V |-vertices model, where the coordinate of the i-th vertex in the
t-th example pose is denoted as vt

i . Our SSDR takes the positions
of vertices, {vt

i : t = 1..|t|, i = 1..|V |}, as the input, and decom-
poses them to the bone transformations and the bone-vertex weight
map, i.e. wij , Rt

j , and T t
j in the right hand side of Eq. (1).

The example poses V can be considered as a |V |×|t|matrix, where
each element is a 3 × 1 vector represents the 3D coordinate of a
vertex in an example pose. Similarly, the rest pose P can be con-
sidered as a vector of |V | vertices. The output of the algorithm is
the bone-vertex influences W = {wij} and the bone transforma-
tions B = {Rt

j , T
t
j }. The bone-vertex influences W is a sparse,

non-negative |V |× |B|matrix with the sum of elements in any row
equal to 1, where wij denotes the influence of the j-th bone on the
i-th vertex. The transformation matrix of the j-th bone in the t-th
example pose is

ˆ
Rt

j |T t
j

˜
, where Rt

j denotes the 3 × 3 orthogonal
rotation matrix and T t

j denotes the 3× 1 translation vector.

We reformulate our SSDR as a constrained least squares optimiza-
tion problem of the example poses reconstruction error as follows:

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

min
w,R,T

E = min
w,R,T

|t|X
t=1

|V |X
i=1

‚‚‚‚‚‚vt
i −

|B|X
j=1

wij(Rt
jpi + T t

j)

‚‚‚‚‚‚
2

(2a)

Subject to: wij ≥ 0, ∀i, j (2b)
|B|X
j=1

wij = 1, ∀i (2c)

|{wij |wij 6= 0}| ≤ |K|, ∀i (2d)

Rt
j
T
Rt

j = I, detRt
j = 1,∀t, j (2e)

The objective function E in Eq. (2a) is the squared sum of the
reconstruction errors for all the vertices for all the example poses.
E is minimized subject to four hard constraints. The non-negativity
constraint, Eq. (2b), the affinity constraint, Eq. (2c), and the sparse-
ness constraint, Eq. (2d) are imposed on the bone-vertex influences.
The orthogonal constraint Eq. (2e) ensures all the matrices, {Rt

j},
in the rotation group (i.e. the special orthogonal group SO(3,R)
in the 3D Euclidean space).

To solve our constrained least squares problem, we design a block
coordinate descent algorithm [Bertsekas 1999; Huang et al. 2011b]
with |B| + 1 blocks where one block is the bone-vertex influences
W and the remaining blocks are |B| bone transformations. In
this method, a feasible solution is initialized at the first step and,
for each iteration, the objective function is optimized with respect
to one block while the other blocks are fixed. For convenience,
we do the optimization of all the bone transformations optimiza-
tion sequentially and we group them as one big block update step.
Through iterations the two blocks are alternatively updated until the
objective function converges to a local minimum. Finally, we cor-
rect the rest pose by the linear least squares solver [Kavan et al.
2010]. Note that we do not put the rest pose correction in the iter-
ations as done by Kavan et al. [2010] since vertex displacements
in the correction are not well captured by rigid rotations. This rea-
son may deviate the bone transformations from the true solution.
The whole process is illustrated in the right hand side of Fig. 1 and
detailed in Algorithm 1.

Algorithm 1 Smooth Skinning Decomposition with Rigid Bones

Input: V = {vt
i}, P = {pi}, |B|, |K|

Output: W = {wij}, B = {Rt
j |T t

j } s.t. Eq. (2)
1: Initialize bone transformations B
2: repeat
3: Update bone-vertex weight map W
4: Update bone transformations B
5: until Convergent OR Maximum iterations are reached
6: Correct the rest pose P
7: return W , B, and P

In the above block coordinate descent algorithm 1, each updating
step must decrease the objective function in order to guarantee the
algorithmic convergence. In fact, this is the main challenge for
these updating steps, where approximate solutions are not suitable
and closed-form solutions are required. Our proposed updating so-
lutions will be detailed in Sections 3.2 and 3.3.

3.1 Initialization

Inspired by the work of [Alexa et al. 2000; Igarashi et al. 2005] that
deformations should be as-rigid-as-possible in order to achieve re-
alistic visual results, we assumes no bone-vertex weight blending

in the initialization step. With this assumption, each vertex is in-
fluenced by exactly one bone and its bone-vertex weight is exactly
1. Then, the initialization problem becomes clustering |V | vertices
into |B| clusters, and all the vertices in one cluster follows the same
rigid transformation.

We employ the K-means clustering algorithm for the initialization
purpose, where each cluster is represented as a sequence of |t| bone
transformations (corresponding to the |t| example poses). We first
randomly initialize the clusters. Then, in the assignment step, we
associate each vertex to the bone which has the smallest squared
reconstruction error. In the updating step, we calculate the bone
transformation based on all the associated vertices by the Kabsch
algorithm [Kabsch 1978]. In this way, we find the best transforma-
tion for pose t to relate the set of the associated vertices in pose t
and the rest pose. This assignment and updating process is repeated
for several times (e.g., 5 times in our experiments) to achieve a
sound skinning initialization.

Since the initialization step is modeled as a clustering problem,
users can choose more advanced clustering algorithms such as
mean shift clustering [Georgescu et al. 2003] and self-tuning spec-
tral clustering [Zelnik-manor and Perona 2004]. Beside robustness
improvement, the number of bones |B| can even be automatically
determined by employing these clustering algorithms. However,
these solutions are more costly in terms of both time complexity and
memory usage. For example, compared with K-means initialization
that takes less than 3 seconds to complete, initialization by spectral
clusterings could take up to an hour [James and Twigg 2005; Hasler
et al. 2010].

3.2 Update Bone-Vertex Weight Map

We update the bone-vertex weight mapW by fixing the bone trans-
formations B and finding the optimized W subject to the non-
negatively constraint, Eq. (2b), the affinity constraint, Eq. (2c),
and the sparseness constraint, Eq. (2d). The weight map is opti-
mized per vertex by solving the constrained least squares for each
line Wi of the matrix W :

Wi
T = arg min

x
‖Ax− b‖2 (3)

Subject to: x ≥ 0

‖x‖1 = 1

‖x‖0 ≤ |K|

The problem is often solved by first addressing the sparseness con-
straint through associating a subset of bones (typically no more than
|K| = 4 bones) with each vertex. A simple solution for the bone-
vertex association is to select the bone prior to its approximation er-
ror [Mohr and Gleicher 2003; James and Twigg 2005; Kavan et al.
2010]. This greedy method only works well for nearly articulated
models since the bone-vertex association only considers the effect
of one bone transformation on the vertex. Additional information
can also be used, for example, Schaefer and Yuksel [2007] select
the associated bones from the shape and topology of the rest pose
mesh or the skeleton of the subject. The sparseness constraint can
also be traded off with the approximation error as a soft constraint
in a sparse solver [Hasler et al. 2010].

In this work, we associate |K| out of |B| bones for each vertex by
first solving the linear least squares with non-negativity constraint
(x ≥ 0) and affinity constraint (‖x‖1 = 1), and then removing
|B| − |K| bone weights with least effect to the solution. Finally,
the linear solver is performed one more time with the remaining
|K| bone weights.

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

The effect of the bone j on the solution Wi, eij , is calculated as
the displacement caused by setting the corresponding weight wij

to 0, that is, the contribution of the bone transformation j to the
approximation of the vertex i:

eij =
‚‚wij(Rt

jpi + T t
j)
‚‚2

(4)

To solve the linear least squares problem with non-negativity and
affinity constraints, we employ the Lawson and Hanson’s active set
method (ASM) with bound constraints, as proposed by Schaefer
and Yuksel [2007]. In contrast with several solutions for calculating
the skinning weights, the ASM solver does not impose any soft
constraints (as used in [James and Twigg 2005] to treat the affinity
constraint) and does not take exponential computational time with
respect to the number of bones [Kavan et al. 2010].

We also accelerate the performance of the ASM solver by taking
advantage of certain properties of our problem. Specifically, we
do three modifications: (1) using the weight map in the previous
iteration to initialize the ASM solver, (2) pre-computing the cross
products ATA and ATb with the corresponding LU decomposition
[Bro and De Jong 1997], and (3) pre-computing the QR decom-
position of the matrix

ˆ
1 1 · · · 1

˜T. Modification (1) takes
the fact that during the iterative update process, the weight map
converges to a local optimum solution; thus, the solution in each
ASM solver step does not substantially change the weight map, es-
pecially the active set (zero bone weights). Modification (3) com-
putes and stores the QR decomposition of the left hand side matrixˆ
1 1 · · · 1

˜T in the equality constraint.

3.3 Update Bone Transformations

In this step, we need to fix the bone-vertex influences and minimize
the objective function, Eq. (2a), with respect to the bone rotations
R and the bone translations T over the set of example poses. Since
the bone transformations for every pose are independent, we can
solve the minimization for each pose individually. For the pose t,
the problem then becomes finding the set of bone transformations
to associate the vertices in the rest pose {pi} to the vertices {vt

i} in
pose t through minimization of the following objective function:

min
Rt,T t

Et = min
Rt,T t

|V |X
i=1

‚‚‚‚‚‚vt
i −

|B|X
j=1

wij(Rt
jpi + T t

j)

‚‚‚‚‚‚
2

(5)

Eq. (5) can be solved by the Levenberg-Marquardt algorithm [Mar-
quardt 1963] as proposed in [Hasler et al. 2010]. However, this
algorithm is inefficient since it requires many iterations as well as
an initial guess that is sufficiently close to the solution. Many other
approaches have been proposed to approximate the result or tackle
similar problems. For example, researchers proposed closed-form
solutions to the Absolute Orientation problem [Horn 1987; Kabsch
1978], which is a particular case of Eq. (5) with only one bone
transformation to be solved. Multiple bone transformations can be
solved approximately in a similar way by adding the bone weights
for each vertex [Müller et al. 2005; Zhu and Gortler 2007; Schaefer
and Yuksel 2007]. However, this Weighted Absolute Orientation
solution cannot provide the exact solution to the original problem
(Eq. (5)) as illustrated in the left hand side of Fig. 2. For this rea-
son, employing Weighted Absolute Orientation cannot guarantee
for the convergence of our main algorithm 1. Recently, Kavan et
al. [2007] proposed a closed-form solution by transforming Eq. (5)
to the Dual Quaternion space. Unfortunately, due to the non-linear
nature of this transformation, it cannot preserve the error metric in
the original space.

Figure 2: Comparison of the Weighted Absolute Orientation solu-
tion [Horn 1987; Kabsch 1978] on the left and our iterative bone
transformations update on the right. The blue dots indicate vertices
in the example pose. The red plus signs (+) indicate the target po-
sitions for the red bone transformation fitting. While the Weighted
Absolute Orientation only provides an approximate solution due to
the deformation of the target positions in the example pose, our it-
erative converges to the true optimum solution by calculating the
target positions as the residual of the deformation caused by the
remaining bones (the green bone).

To guarantee the non-increasing of the global objective function,
Eq. (2a), we update the bone transformations one by one instead
of updating all of them at once. For the example pose t, updating
transformation of bone ĵ while keeping the remaining |B|−1 bones
can be solved by minimizing the following equation:

Et
ĵ =

|V |X
i=1

‚‚‚‚‚‚vt
i −

|B|X
j=1,j 6=ĵ

wij(Rt
jpi + T t

j)− wiĵ(Rt
ĵpi + T t

ĵ)

‚‚‚‚‚‚
2

Let qt
i be the deformation residual of vertex i in example pose t

caused by the remaining |B| − 1 bones,

qt
i = vt

i −
|B|X

j=1,j 6=ĵ

wij(Rt
jpi + T t

j) (6)

The problem of finding the optimal transformation then becomes:

{Rt
ĵ , T

t
ĵ }
∗ = arg min

Rt
ĵ
,T t

ĵ

|V |X
i=1

‚‚‚qt
i − wiĵ(Rt

ĵpi + T t
ĵ)
‚‚‚2

(7)

Subject to: Rt
ĵ

T
Rt

ĵ = I, detRt
ĵ = 1

The problem, Eq. (7), is similar to the Weighted Absolute Orienta-
tion problem except the difference in the scope of the weights term,
i.e. the weights only affect pi but not qt

i . Inspired by the work of
[Horn 1987; Kabsch 1978], we can first remove the translation T t

ĵ

and then solve for the optimum rotation. This is done by translating
all the vertices to bring the center of rotation (CoR) to the origin
for each set of vertices as computed in Eq. (8). Note that our CoR
is different from the CoR computed in [Horn 1987; Kabsch 1978],
since the latter is simply the centroid of the two sets of vertices.

pi = pi − p∗ , qt
i = qt

i − wiĵq
t
∗ (8a)

Where: p∗ =

P|V |
i=1 w

2
iĵ
piP|V |

i=1 w
2
iĵ

, qt
∗ =

P|V |
i=1 wiĵq

t
iP|V |

i=1 w
2
iĵ

(8b)

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

The above translation removes T t
ĵ

from the optimization prob-
lem and leaves only the rotation Rt

ĵ
to be minimized. Similar

to [Kabsch 1978], we find the optimal rotation using Singular
Value Decomposition (SVD). First, we construct two matrices P =

[w1ĵp
t
1 . . . w|V |ĵp|V |] and Q = [qt

1 . . . q
t
|V |] (P,Q ∈ R3×|V |).

Then, SVD is performed on PQT as follows:

PQT =

|V |X
i=1

wiĵpiqi
T = µΣϑT (9)

Finally, we obtain the optimal rotation and translation as follows:

Rt
ĵ = ϑµT , T t

ĵ = qt
∗ −Rt

ĵp∗ (10)

The proof for the optimal CoR in Eq. (8) and the optimal transfor-
mation in Eq. (10) are detailed in Appendices A & B, respectively.
The summary of our bone transformation updating process is de-
scribed in Algorithm 2.

3.3.1 Bone Transformation Re-Initialization

At the bone-vertex influence update step, some bones maybe do not
have major influence on any vertices (called “insignificant bones”
in this writing). In such a case, their bone transformations cannot
be accurately estimated. This is similar to the case of having less
than 3 points in the Absolute Orientation problem, where the rota-
tion cannot be uniquely determined. In addition, having those in-
significant bones does not have major impact on the reconstruction
error; thus, it is unnecessary to keep them. For this reason, instead
of estimating its rotation and translation, we randomly re-initialize
its bone transformation if a bone is determined as an insignificant
bone. Moreover, the re-initialization can also prevent the iteration
process to get stuck at a local minimum.

Specifically, we determine the ĵ-th bone is an insignificant bone
if
P|V |

i=1 w
2
iĵ
< ε. Here, the sum

P|V |
i=1 w

2
iĵ

is the denominator
in equation (8b). If this sum is small, estimation of rotation cen-
ter p∗ and qt

∗ and estimation of PQT in equation (9) will be non-
robust. We empirically set the threshold ε = 3 since this is the
minimum number of vertices required in the Absolute Orientation
problem. If the j-th bone needs to be re-initialized, we assign it to
the vertex ι with the largest reconstruction error. Then, we find 20
nearest vertices of ι in the rest pose, denoted as N(ι). Finally, we
use N(ι) to re-initialize the bone transformation {Rt

j |T t
j } for all

the example poses t by using the Kabsch algorihtm [Kabsch 1978].
Re-initialization does not guarantee strict decreasing of the objec-
tive function so it could create a loop. We avoid this by limiting
the maximum number of re-initializations. In our experiments, the
maximum number of re-initializations is empirically set to 10.

4 Results

The test datasets: To demonstrate and evaluate our SSDR model,
we used publicly available triangle mesh datasets, including 12
datasets from the “Deformation Transfer” [Sumner and Popović
2004], 2 datasets from the “Geometry Videos” [Briceño et al.
2003], 1 dataset (chickenCrossing) from the “Skinning Mesh Ani-
mations” [James and Twigg 2005], and 1 dataset (pjump) from the
“Wavelet Compression” [Guskov and Khodakovsky 2004]. Based
on properties of these datasets, we roughly divide the datasets into
two categories: articulated (near-rigid) models and elastic (highly-
deformable) models. Details of the used 16 datasets are described
in Table 1.

Algorithm 2 Update bone transformations B

Input: V = {vt
i}, P = {pi}, W = {wij}

Output: B = {Rt
j |T t

j } s.t. Eq. (2e)
1: for t = 1→ |t| do
2: for ĵ = 1→ |B| do
3: if

P|V |
i=1 w

2
iĵ
≥ ε then

4: Calculate qi, ∀i by equation (6)
5: Calculate p∗, q∗, pi and qi ∀i, by equation (8)
6: Perform SVD by equations (9)
7: Calculate rotation Rt

ĵ
and by equations (10)

8: else
9: Re-initialize the bone transformation

10: end if
11: end for
12: end for

Name |V | |t| Category
camel-collapse 21887 53 Elastic
camel-gallop 21887 48 Articulated
camel-poses 21887 10 Articulated

cat-poses 7207 9 Articulated
chickenCrossing 3030 400 Articulated
elephant-gallop 42321 48 Articulated
elephant-poses 42321 10 Articulated

face-poses 29299 9 Elastic

Name |V | |t| Category
flamingo-poses 26907 10 Articulated
horse-collapse 8431 53 Elastic
horse-gallop 8431 48 Articulated
horse-poses 8431 10 Articulated
lion-poses 5000 9 Articulated

pcow 2904 204 Elastic
pdance 7061 201 Articulated
pjump 15830 222 Articulated

Table 1: The test datasets used in this work. |V | denotes the num-
ber of vertices and |t| denotes the number of example poses.

Error metric: To quantitatively evaluate our SSDR model we
choose the error metric proposed in [Kavan et al. 2010] over the
one in [James and Twigg 2005], because the former is less sensitive
to global motions of the models and thus more robust than the lat-
ter, as reported in [Kavan et al. 2010]. Specifically, we first resize
all the datasets so that the rest poses are tightly enclosed by a unit
sphere. Then, the error metric is calculated from the value E of the
objective function in Eq. (2a) as follows:

ERMS = 1000

s
E

3.|V |.|t|

Configurations: For each dataset obtained from the “Deformation
Transfer” [Sumner and Popović 2004], the rest pose P is set to be
the provided reference pose. For each of the other datasets, the
rest pose P is chosen to be the first example pose. The number of
bones, |B|, is manually determined for experiments. The maximum
number of non-zero weights per vertex |K| is set to 4 as commonly
used in [James and Twigg 2005]. In the experiments, we denote this
number |B| as a subscript of the dataset name. In our implementa-
tion, we stop the algorithm if within one iteration the the objective
function E is not improved by 1% and the bone transformation re-
initialization is not performed.

Figure 3 shows our results on four articulated models and two elas-
tic models. We use the skin colors to illustrate the bone-vertex in-
fluence map. At the rest pose, we also draw a coordinate system for
each bone to illustrate its bone transformation, and the origin of the
coordinate system is put at the vertex that is most influenced by the
bone. In each example pose, the coordinate system for each bone is
deformed in accordance with its bone transformation.

Figure 4 shows the changes of the error metric during the iteration
process. We can see that the error does not increase, except af-
ter each bone transformation re-initialization; however, it is quickly
converged back to the optimum solution. We also notice that the

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

Figure 3: Results of our Smooth Skinning Decomposition with
Rigid Bones (SSDR) on articulated models (the top four models)
and elastic models (the bottom two models).

bone transformation re-initialization happens more frequently if the
number of bones is set to an overlarge value. For example, since the
human model in the pdance dataset has much fewer than 24 rigid
components, i.e. much less than 24 rotational joints in the input
sequence, re-initialization happened 3 times in pdance24. Mean-
while, there is no re-initialization in the other 5 test cases. We also
compare the rate of convergence (RoC) of our bone transformation
update with the well-known Levenberg-Marquardt (LM) algorithm
[Marquardt 1963]. Specifically, we use the Levmar open-source
package [Lourakis 2004] as the implementation of the LM opti-
mization. For each transformation update step with LM, we ini-
tialize the solution using the result from the previous step and then
perform 20 iterations. From the error curves (Fig. 4), we can see
that our algorithm can reduce the error as good as the LM optimiza-
tion. However, since our algorithm takes much less execution time
(shown in Fig. 4), the RoC of our algorithm is much higher than
the RoC of LM. In addition, the similarity in changes of the error
shows that a single-pass bone transformation update can provide a
sufficient RoC.

5 Comparisons

We compared our proposed SSDR model with two state-of-the-
art skinning decomposition approaches: the Skinning Mesh An-
imations (SMA) with rigid bones [James and Twigg 2005] and
the Learning Skeletons for Shape and Pose (LSSP) [Hasler et al.
2010]. Both of them impose orthogonal constraints on the bone
rotation matrices (rigid bones), convex constraints and sparseness
constraints on the bone-vertex weight map. To ensure a fair com-
parison, all the three methods ran on a single thread, without GPU-

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25 ERMS

Iterations

Bone-vertex Weight Map Update
Bone Transformations Update
Bone Transformations Re-Initialization

horse-gallop20
pdance24

chickenCrossing20

cat-pose20

pcow24

horse-collapse10

horse-gallop20
pdance24

chickenCrossing20

cat-pose20

pcow24

horse-collapse10

Ours
4.5
19.1
9.5
0.8
7.5
2.1

LM
313
1066
537
75
547
135

Exec. Time (min)

Figure 4: Changes of the error metric in the first 15 iterations of
our algorithm (solid lines) versus Levenberg-Marquardt (LM) al-
gorithm (dashed lines). While the changes of the error are almost
the same for the two methods, the execution time of our algorithm
is much less than that of LM. Thus, the convergence rate of our
algorithm is much higher.

based acceleration. We also used all the parameter settings pub-
lished by the original authors in our implementations. It is note-
worthy that the work of [Kavan et al. 2010] was not included in
this comparison because it can only handle the case of non-rigid
bones, while the focus of this comparison experiment is skinning
decomposition with rigid bones.

The SMA was implemented in C++. We used the open source li-
brary Mean Shift Clustering with locality sensitive hashing (LSH)
[Georgescu et al. 2003]. The two parameters for LSH, i.e., K and
L, were set to 70 and 200, respectively. The bandwidth h was set to
h = 9|t|ε, where |t| is the number of example poses and ε = 0.05.
To estimate the bone-vertex weights, we used non-negative least
squares.

The LSSP was implemented in MATLAB. We used the Self-Tuning
Spectral Clustering [Zelnik-manor and Perona 2004] for the initial-
ization step with automatic local scaling on distance matrix. On
the weight matrix optimization step, we employed the L1/L2+ min-
imizer [Zhang 2009], where the parameter ρ was set to 0.1 and the
A matrix was normalized. At the factorization step, we performed
10 iterations.

Figure 5 shows the comparison results on three models generated
by SSDR, SMA, and LSSP. Due to the high deformability of the
models, SMA fails to associate vertices into rigid bones and hefty
distortion can be observed on the reconstructed poses, especially
on the camel-collapse11 model. Although LSSP can estimate the
global deformation well, certain details are not correctly recon-
structed, e.g., on the horse-collapse10 model.

We also evaluated the accuracy and performance of the three meth-
ods (SSDR, SMA, and LSSP) in a quantitative way including the
error metric, the number of required bones, execution time, etc.
(shown in Table 2). In Table 2, the number of bones is denoted
by the subscript of the dataset name. The error ERMS as well as
the error after rank-5 EigenSkin corrections [Kry et al. 2002] are
reported where the numbers in the parentheses are the EigenSkin
correction errors. All the running times were measured on the same
computer with a 2GHz single core CPU. Note that the number of
bones is automatically estimated in SMA, thus its results are not
available for many specific numbers of bones. The results of LSSP
are also not available for models with more than 10K vertices due
to the large memory requirement in the Self-Tuning Spectral Clus-
tering algorithm at the initialization step.

From Table 2, we can see that SSDR clearly outperforms SMA

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

Figure 5: Comparisons of the skinning decomposition results
among the proposed SSDR, SMA [James and Twigg 2005], and
LSSP [Hasler et al. 2010]. LSSP is unable to run on the camel-
collapse due to the large size of this dataset and SMA is unable
to configure with 10 bones for the horse-collapse dataset. The ex-
ample poses are rendered in blue. Significant distortion areas are
indicated in red circles.

Dataset[# of bones]
Approximation error ERMS Execution time (minutes)
SMA LSSP SSDR SMA LSSP SSDR

camel-collapse11 125.3 (4) - 5.4(1.7) 13.8 - 7.4
camel-collapse20 - - 4(1.4) - - 15.1
camel-gallop20 - - 3.7(1.5) - - 13.9
camel-gallop29 17.6 (1.9) - 3(1.3) 25.2 - 21.9
camel-poses10 - - 10.1(3.9) - - 1
camel-poses25 8.3 (1.8) - 2.7(1.2) 9.4 - 4.6
cat-poses15 - 10.7(6.1) 6.5(2.7) - 302.8 0.7
cat-poses20 - - 4.7(2) - - 1
cat-poses25 8.5 (3.1) 6.2(3.3) 3.4(1.4) 0.7 371.7 1.5
chickenCrossing20 - 10.1(9.7) 8.7(5.7) - 1128.9 14.8
chickenCrossing28 12.5 (4.2) 6.2(5.1) 8.1(5.4) 14.1 1165.4 24
elephant-gallop20 - - 4.3(2.3) - - 27.5
elephant-gallop27 5.6 (1.9) - 2.7(1.3) 56.1 - 53.6
elephant-poses10 - - 8.2(4.2) - - 3.2
elephant-poses21 5.8 (2.2) - 3.2(1.5) 29.4 - 8.1
face-poses27 - - 7(3.6) - - 7
face-poses36 37.6 (8.5) - - 3.6 - -
flamingo-poses10 - - 4.8(2.2) - - 2
flamingo-poses23 5.7 (1.7) - 1.7(0.8) 16.3 - 5.1
horse-collapse3 139.5 (5.1) 51(3.1) 26.5(4.1) 3.3 856.6 0.8
horse-collapse10 - 15.5(2.6) 7.4(2.1) - 802 2.6
horse-collapse20 - 6(2) 5(1.6) - 1088.5 5.7
horse-gallop20 - 15.7(5.3) 3.6(1.8) - 859.9 5.4
horse-gallop33 9.5 (1.5) 12.5(4.6) 2.2(1.1) 3.8 911 9.8
horse-poses20 - 20.6(7.8) 3.8(1.8) - 461.8 1.4
horse-poses42 4.7 (1.4) 2.2(1.2) - 2.1 475.1 -
lion-poses10 - 22.1(11) 11.3(5) - 201.3 0.2
lion-poses21 62.8 (5.7) 7.7(3.9) 4.4(2.2) 0.6 360.2 0.8
pcow10 - 16.5(13.2) 14.4(11.9) - 549.2 2.4
pcow24 24.8 (13.2) 7.2(6.7) 5.7(4.8) 3.8 564.5 8.9
pdance10 - 8(4.9) 6.3(3.4) - 2177.7 5.8
pdance24 3.8 (1.6) 3.4(2.3) 1.3(0.8) 22 2446.8 28.3
pjump20 - - 6.7(4.7) - - 42.7
pjump40 15.3 (6.7) - 4.5(3.4) 30.5 - 104.1

Table 2: Rigid bone skinning decomposition results of Skinning
Mesh Animation (SMA) with rigid bones [James and Twigg 2005],
Learning Skeletons for Shape and Pose (LSSP) [Hasler et al. 2010],
and our SSDR algorithm. The results after rank-5 EigenSkin cor-
rection [Kry et al. 2002] are also reported in the parentheses.

and LSSP. Especially on the elastic models (i.e., camel-collapse11,
face-poses, horse-collapse3, and pcow24), SSDR generates signifi-
cantly smaller errors than SMA. The reason is that SMA computes
the bone transformations by first clustering the triangle rotation
sequences into rigid transformation groups. Thus, it only works
well if the model can be divided into nearly rigid parts. Our re-
sults also outperform LSSP results due to the following two limita-
tions of LSSP: (1) LSSP employs the soft constraint for sparseness;
and (2) LSSP does not consider the affinity constraint during the
optimization, and the affinity constraint is only enforced through
post-normalization. Also, even LSSP supports for the sparseness
weight map, it does not guarantee the maximum number of non-
zero weights per vertex, which could be an issue for the implemen-
tation of hardware accelerated skinning.

Among the three approaches (SSDR, SMA, and LSSP), LSSP has
the lowest performance due to its MATLAB implementation and
the complexity of its clustering and optimization algorithm. In gen-
eral, SSDR performs slightly slower than SMA. This is one limita-
tion of the current SSDR model. However, SSDR can be efficiently
accelerated via parallel implementations such as exploiting multi-
core CPUs or GPUs. This can be done by parallelizing certain high
computational cost operations such as calculating vertex transfor-
mations or matrix multiplications. Fortunately, most of those cal-
culations are matrix operations, which are relatively easy to be par-
allelized. By contrast, parallelizing SMA and LSSP will be more
challenging since it requires to parallelize spectral clustering and
non-linear optimizers.

6 Discussion

6.1 Rigid Bones versus Flexible Bones

In many skinning decomposition methods, the rotation part of the
bone transformation is not subject to the orthogonal constraint
[James and Twigg 2005; Kavan et al. 2010]. This type of bone
is referred to as a Flexible Bone. In general, solving for the flex-
ible bone transformations is easier than solving for the rigid bone
transformations. The flexible bones can also approximate the de-
formation better than the rigid bones since the rigid bones do not
have shearing and scaling transformations. In Fig. 6, we show an
example of skinning with rigid bones versus flexible bones. In this
example, the skinning decomposition with flexible bones is solved
by replacing the bone transformation update in our SSDR algorithm
(line 4 in Algorithm 1) with the linear least squares solver proposed
in [James and Twigg 2005]. Due to the advantages in accuracy and
simplicity, skinning with flexible bones can be applied for hard-
ware accelerated rendering and animation compression [James and
Twigg 2005; Kavan et al. 2010].

However, rigid bones provide better support for applications of
skinning decomposition such as animation editing, collision detec-
tion, and skeleton extraction, as illustrated in Fig. 7. In animation
editing tasks, the most intuitive way for users is to drag manipu-
lators in a graphical interface. While the rotation manipulator and
the translation manipulator can be used to edit the bone transforma-
tions; it is non-trivial to directly edit the flexible bone transforma-
tions, especially editing the shearing effect. Due to the shearing ef-
fect, bounding spheres embedded with flexible bones are distorted,
which requires more complicated solutions for collision detection.
In addition, since there is no center of rotation for non-rigid trans-
formations, the joint between two bones does not exist. For this
reason, skeleton extraction algorithms [Schaefer and Yuksel 2007;
Hasler et al. 2010] cannot work. In addition, rigid bone transforma-
tions can be represented in more compact forms, e.g. Euler angles
or quaternions, than flexible bone transformations.

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

Figure 6: Skinning decomposition comparisons of camel-
collapse11 with rigid bones versus flexible bones. The skinning
with flexible bones approximates the example poses slightly bet-
ter than the skinning with rigid bones (magnified in red rectangles)
since flexible bones could have shearing and scaling transforma-
tions (shown on the right hand side).

Figure 7: Selected applications that can be better supported by
rigid bone transformations. Editing: Graphical manipulators can
be used to edit rigid bone transformations, while it is non-trivial
and difficult to directly edit flexible bone transformations. Collision
Detection: Additional solutions are needed to handle the distorted
objects within the bounding spheres of the flexible bone transfor-
mations. Joint Extraction: Since there is no center of rotation, the
joint between two bones does not exist.

6.2 Skinning Weight Solver

In Section 3.2, we describe a new method (solver) to solve the bone-
vertex weight map with the convex constraint and the sparseness
constraint (Eq. (3)). Therefore, we also compared the performance
of the proposed skinning weight solver with the solution used by
Kavan et al. [2010]. We use the linear least squares to solve the
flexible bone transformations for both the methods since [Kavan
et al. 2010] only supports flexible bones. We also apply the rest
pose optimization [Kavan et al. 2010] before all the bone-vertex
weight map update steps (line 3 in Algorithm 1). As shown in Ta-
ble 3, our solution is slower since it requires to solve the dense least
squares for associating bones to vertices. However, we can observe
that our proposed weight solver can measurably reduce the estima-
tion error, compared with the solver used in [Kavan et al. 2010].

7 Conclusions

In this paper, we propose a novel smooth skinning decomposition
with rigid bones (SSDR) model to find rigid bone transformations

Dataset[No. of bones]
Approximation error ERMS Execution time (minutes)
[Kavan et al. 2010] Our method [Kavan et al. 2010] Our method

camel-collapse11 4.1 (1.6) 3.4(1.5) 1.3 6.5
camel-collapse20 3 (2.8) 2.7(1.2) 2.1 14.2
camel-gallop10 3 (1.7) 2.8(2.6) 1.1 5.5
camel-gallop20 1.7 (1.5) 1.7(1.5) 1.7 15
camel-gallop29 1.3 (1) 1.2(0.8) 1.7 24.2
camel-poses10 4.1 (1.9) 4.1(2.4) 0.7 2.3
camel-poses25 1.9 (0.9) 1.7(0.9) 0.9 8.4
cat-poses10 7.1 (4.2) 6(3.7) 0.2 0.5
cat-poses15 4.7 (2.6) 4.2(2.8) 0.2 0.8
cat-poses20 3.5 (2.1) 3.3(1.9) 0.2 1.3
cat-poses25 2.8 (1.8) 2.5(1.5) 0.3 1.9
chickenCrossing20 6.2 (6.5) 7(9.2) 1 11.8
chickenCrossing28 5.3 (10.3) 4.2(13.4) 1.2 24.6
elephant-gallop10 5.4 (4.2) 3.9(3.4) 2.7 12.6
elephant-gallop20 3 (2.7) 2.2(1.9) 3.1 31.7
elephant-gallop27 2.3 (1.6) 1.6(1.4) 3.4 50.5
elephant-poses10 7.7 (5.1) 6.6(3.3) 1.2 5
elephant-poses21 3 (1.4) 2.8(1.6) 1.7 17
face-poses27 3.9 (2.3) 3.2(2) 1.2 13.9
flamingo-poses10 3.5 (2.5) 3(2) 0.8 2.8
flamingo-poses23 1.7 (0.6) 1.2(0.8) 1 11.2
horse-collapse10 5.7 (2.2) 4.6(1.7) 0.5 2.1
horse-collapse20 3.8 (3.6) 3.1(2.8) 0.6 4.7
horse-gallop10 5.4 (3.4) 4.8(5) 0.4 1.9
horse-gallop20 2.6 (1.5) 2.3(1.6) 0.5 6
horse-gallop33 1.6 (1) 1.6(1.4) 0.8 10.4
horse-poses10 6.2 (3) 5.5(3.4) 0.3 0.6
horse-poses20 2.6 (1.2) 2.6(1.5) 0.3 1.6
lion-poses10 6.9(4) 5.8(3.2) 0.1 0.3
lion-poses21 3.1 (1.4) 3(1.8) 0.2 0.9
pcow10 7.4 (7.6) 7.3(15.6) 0.9 2.5
pcow24 3.4 (3.3) 3.3(3.8) 1.3 7.4
pdance10 3.2 (2) 4.2(4.2) 0.7 6
pdance24 1.1 (0.7) 1.4(1.5) 1 22.8
pjump20 4.5 (4.4) 4.2(3.3) 9.3 36.1
pjump40 2.8 (3.3) 2.6(2.4) 13 94.2

Table 3: Comparisons between our proposed skinning weight
solver and the solver used in [Kavan et al. 2010]. Both the methods
only find the flexible bone transformations. The results after rank-
5 EigenSkin correction [Kry et al. 2002] are also reported in the
parentheses.

and a sparse, convex bone-vertex weight map from a set of example
poses. Specifically, we formulate the problem as a least squares op-
timization with hard constraints. Then, this optimization problem is
further solved by a block coordinate descent method that involves
an iterative process of updating the weight map and the bone trans-
formations alternatively.

The major contribution of this work is to introduce a closed-form
solution to update the bone transformations with orthogonal con-
straint (rigid bones). The bone transformation update step in our
approach is linear, simple, and effective. The orthogonal constraint
on the rotation matrices can play a crucial role in many skinning
decomposition applications such as animation editing, collision de-
tection, and skeleton extraction. We also propose a bone-vertex
weight map solver that is more robust for highly deformable mod-
els. Through qualitative and quantitative comparisons and evalu-
ations, we demonstrate that the introduced SSDR model can sig-
nificantly outperform the state-of-the-art skinning decomposition
algorithms in terms of accuracy and applicability.

However, the current SSDR model still has certain limitations. The
first limitation is its relatively high computational cost, although
it can be alleviated, to a certain extent, via GPUs or multi-core
CPU based parallel implementation. The second limitation is, al-
though in the current SSDR model users can automatically estimate
an initial number of bones using the method proposed in [James
and Twigg 2005]; for some cases, the automatically estimated bone

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

number may not lead to the desired decomposition results. In these
cases, like the previous work [Hasler et al. 2010; Kavan et al. 2010],
users still need to manually specify an appropriate number of bones
as an input parameter, which often depends on the prior knowledge
of the mesh model.

Acknowledgements

This research is supported in part by NSF IIS-0915965 and unre-
stricted research gifts from Google and Nokia. We would like to
thank Robert Sumner, Jovan Popovic, Hugues Hoppe, Doug James,
and Igor Guskov for providing the mesh sequences used in this
work. “The chicken character was created by Andrew Glassner,
Tom McClure, Scott Benza, and Mark Van Langeveld. This short
sequence of connectivity and vertex position data is distributed
solely for the purpose of comparison of geometry compression
techniques.” Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of the agencies.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-
possible shape interpolation. In Proc. of ACM SIGGRAPH’00,
157–164.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3D characters. ACM Trans. Graph. 26 (July).

BERTSEKAS, D. P. 1999. Nonlinear Programming, 2nd ed. Athena
Scientific, Sept.

BRICEÑO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER,
S., AND HOPPE, H. 2003. Geometry videos: a new represen-
tation for 3d animations. In SCA’03: Proc. of Symposium on
Computer Animation, 136–146.

BRO, R., AND DE JONG, S. 1997. A fast non-negativity-
constrained least squares algorithm. Journal of Chemometrics
11, 5, 393–401.

CAPELL, S., BURKHART, M., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2005. Physically based rigging for deformable
characters. In SCA’05: Proc. of Symposium on Computer Ani-
mation 2005, 301–310.

DE AGUIAR, E., THEOBALT, C., THRUN, S., AND SEIDEL, H.-P.
2008. Automatic conversion of mesh animations into skeleton-
based animations. Comput. Graph. Forum 27, 2 (April).

FENG, W.-W., KIM, B.-U., AND YU, Y. 2008. Real-time data
driven deformation using kernel canonical correlation analysis.
ACM Trans. Graph. 27 (August), 91:1–91:9.

GAIN, J., AND BECHMANN, D. 2008. A survey of spatial defor-
mation from a user-centered perspective. ACM Trans. Graph. 27
(November), 107:1–107:21.

GEORGESCU, B., SHIMSHONI, I., AND MEER, P. 2003. Mean
shift based clustering in high dimensions: a texture classification
example. In ICCV’03, 456–463.

GUSKOV, I., AND KHODAKOVSKY, A. 2004. Wavelet compres-
sion of parametrically coherent mesh sequences. In SCA’04:
Proc. of Symposium on Computer Animation, 183–192.

HASLER, N., THORMÄHLEN, T., ROSENHAHN, B., AND SEIDEL,
H.-P. 2010. Learning skeletons for shape and pose. In I3D’10:
Proc. of Symp. on Interactive 3D Graphics and Games, 23–30.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America
A 4, 4, 629–642.

HUANG, H., ZHAO, L., YIN, K., QI, Y., YU, Y., AND TONG,
X. 2011. Controllable hand deformation from sparse examples
with rich details. In SCA’11: Proc. of Symposium on Computer
Animation 2011, 73–82.

HUANG, Q., KOLTUN, V., AND GUIBAS, L. 2011. Joint shape
segmentation with linear programming. ACM Trans. Graph. 30,
125:1–125:12.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. In ACM SIGGRAPH 2005
Papers, 1134–1141.

JACOBSON, A., AND SORKINE, O. 2011. Stretchable and
twistable bones for skeletal shape deformation. ACM Trans.
Graph. 30 (Dec.), 165:1–165:8.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24 (July), 399–407.

KABSCH, W. 1978. A discussion of the solution for the best rota-
tion to relate two sets of vectors. Acta Crystallographica Section
A 34, 827–828.

KAVAN, L., AND ŽÁRA, J. 2005. Spherical blend skinning: a
real-time deformation of articulated models. In I3D’05: Proc. of
Symp. on Interactive 3D Graphics and Games, 9–16.

KAVAN, L., MCDONNELL, R., DOBBYN, S., ŽÁRA, J., AND
O’SULLIVAN, C. 2007. Skinning arbitrary deformations. In
I3D’07: Proc. of Symp. on Interactive 3D Graphics and Games,
53–60.

KAVAN, L., COLLINS, S., ŽÁRA, J., AND O’SULLIVAN, C. 2008.
Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27 (November), 105:1–105:23.

KAVAN, L., SLOAN, P.-P., AND O’SULLIVAN, C. 2010. Fast and
efficient skinning of animated meshes. Comput. Graph. Forum
29, 2, 327–336.

KIM, T., AND JAMES, D. L. 2011. Physics-based character skin-
ning using multi-domain subspace deformations. In SCA’11:
Proc. of Symposium on Computer Animation, 63–72.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. EigenSkin:
real time large deformation character skinning in hardware. In
SCA’02: Proc. of Symposium on Computer Animation, 153–159.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proc. of SIGGRAPH’00, 165–
172.

LOURAKIS, M., 2004. levmar: Levenberg-marquardt non-
linear least squares algorithms in C/C++. [web page]
http://www.ics.forth.gr/˜lourakis/levmar/,
July. [Accessed on 31 Jan. 2005].

MARQUARDT, D. W. 1963. An Algorithm for Least-Squares Es-
timation of Nonlinear Parameters. SIAM Journal on Applied
Mathematics 11, 2, 431–441.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25 (October), 1400–1423.

To Appear in the Proceedings of ACM SIGGRAPH Asia 2012, Singapore, Dec 2012

MILLER, C., ARIKAN, O., AND FUSSELL, D. 2010. Frankenrigs:
building character rigs from multiple sources. In I3D’10: Proc.
of Symp. on Interactive 3D Graphics and Games, 31–38.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22 (July),
562–568.

MOHR, A., TOKHEIM, L., AND GLEICHER, M. 2003. Direct
manipulation of interactive character skins. In I3D’03: Proc. of
Symp. on Interactive 3D Graphics, 27–30.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24, 3 (July), 471–478.

SCHAEFER, S., AND YUKSEL, C. 2007. Example-based skeleton
extraction. In SGP’07: Proc. of Eurographics Symposium on
Geometry Processing, 153–162.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In I3D’01: Proc. of Symp. on Interactive 3D
Graphics, 135–143.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23 (August), 399–405.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
SCA’02: Proc. of Symposium on Computer Animation, 129–138.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26
(July).

ZELNIK-MANOR, L., AND PERONA, P. 2004. Self-tuning spec-
tral clustering. In Advances in Neural Information Processing
Systems 17, MIT Press, 1601–1608.

ZHANG, Y. 2009. User’s guide for YALL1: Your ALgorithms for
L1 optimization. Tech. rep., Rice University, May.

ZHU, Y., AND GORTLER, S. J. 2007. 3D deformation using mov-
ing least squares. harvard computer science technical report: TR-
10-07. Tech. rep., Cambridge, MA.

Appendices

A Finding the Center of Bone Rotation

In this appendix, we will prove the translation in Eq. (8) can re-
move the translation parameter from the optimization problem (7).
Expanding the objective function (7) and substituting qt

i, pi from
Eq. (8a) yields:

Et
ĵ =

|V |X
i=1

‚‚‚qt
i − wiĵ(Rt

ĵpi + T t
ĵ)
‚‚‚2

=

|V |X
i=1

‚‚‚qt
i − wiĵq

t
∗ + wiĵq

t
∗ − wiĵ [(Rt

ĵ(pi − p∗ + p∗) + T t
ĵ)]
‚‚‚2

=

|V |X
i=1

‚‚‚qt
i + wiĵq

t
∗ − wiĵ [Rt

ĵ(pi + p∗) + T t
ĵ]
‚‚‚2

=

|V |X
i=1

‚‚‚qt
i − wiĵR

t
ĵpi − wiĵ(T t

ĵ − q
t
∗ +Rt

ĵp∗)
‚‚‚2

(11)

Let τ = T t
ĵ
− qt
∗ +Rt

ĵ
p∗, Eq. (11) yields:

Et
ĵ =

|V |X
i=1

‚‚‚qt
i − wiĵR

t
ĵpi − wiĵτ

‚‚‚2

=

|V |X
i=1

‚‚‚qt
i − wiĵR

t
ĵpi

‚‚‚2

− 2τ

|V |X
i=1

(wiĵq
t
i − wiĵ

2Rt
ĵpi) +

|V |X
i=1

‚‚wiĵτ
‚‚2 (12)

From Eq. (8), we have
P|V |

i=1 wiĵq
t
i = 0 and

P|V |
i=1 wiĵ

2Rt
ĵ
pi = 0.

Simplifying equation (12) yields:

Et
ĵ → min⇔

8>>>>><>>>>>:

|V |X
i=1

‚‚‚qt
i − wiĵR

t
ĵpi

‚‚‚2

→ min (13)

|V |X
i=1

‚‚wiĵτ
‚‚2 → min⇔ τ = 0 (14)

We can minimize Et
ĵ

by first solving the optimum rotation Rt
ĵ

in
Eq. (13) without considering the translation (detailed in Appendix
B). Thus, p∗ and qt

∗ are the optimum centers of rotations. After
solving the optimum rotation matrix Rt

ĵ
, the translation T t

ĵ
in Eq.

(10) is obtained by solving Eq. (14):

τ = T t
ĵ − q

t
∗ +Rt

ĵp∗ = 0⇔ T t
ĵ = qt

∗ −Rt
ĵp∗

B Finding the Bone Rotation Matrix

Substituting P = [w1ĵp
t
1 . . . w|V |ĵp

t
|V |] and Q = [qt

1 . . . q
t
|V |]

(P,Q ∈ R3×|V |) to the objective function in Eq. (13) yields:

|V |X
i=1

‚‚‚qt
i − wiĵR

t
ĵpi

‚‚‚2

=

|V |X
i=1

‚‚‚qt
i −R

t
ĵ(wiĵpi)

‚‚‚2

=
‚‚‚Q−Rt

ĵP
‚‚‚

F
= tr((Q−Rt

ĵP)T(Q−Rt
ĵP))

= tr(QTQ)+tr(PTRt
ĵ

T
Rt

ĵP)− 2tr(QTRt
ĵP)

Where ‖.‖F denotes the Frobenius norm and tr(.) denotes the ma-
trix trace. Since P and Q are constant matrices and Rt

ĵ

T
Rt

ĵ
= I ,

this minimization problem then becomes maximizing

ζ = tr(QTRt
ĵP) = tr(PQTRt

ĵ)→ max (15)

Substituting the SVD decomposition PQT = µΣϑT in Eq. (9)
yields:

ζ = tr(µΣϑTRt
ĵ) = tr(ΣϑTRt

ĵµ)

Since ϑ, Rt
ĵ
, and µ are orthogonal matrices, ϑTRt

ĵ
µ is an orthog-

onal matrix as well. In addition, since Σ is a diagonal matrix, we
have tr(ΣϑTRt

ĵ
µ) ≤ tr(Σ). Thus, the rotation in Eq. (10) is ob-

tained by solving:

ζ → max⇔ ϑTRt
ĵµ = I ⇔ Rt

ĵ = ϑµT

