
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, FEBRUARY 2012 1
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Head-and-Eye Motion Generators
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Abstract—This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion
simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet inter-related statistical models
for each component (head motion, gaze, or eyelid motion) from a pre-recorded facial motion dataset: i) Gaussian Mixture Models
and gradient descent optimization algorithm are employed to generate head motion from speech features; ii) Nonlinear Dynamic
Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and iii) non-
negative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary
eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion
generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can
significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid
data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

Index Terms—Facial Animation, Head and Eye Motion Coupling, Head Motion Synthesis, Gaze Synthesis, Blinking Model, and
Live Speech Driven

✦

1 INTRODUCTION

A S one of the prominent communicative signals, non-
verbal facial gestures including (but not limited to)

the movement of head, eye gaze and eyelid, play a central
role to facilitate natural and engaging human-human com-
munication and interaction. Often, humans can easily read
and infer the affective and mental states of a person based
on his/her facial gesture cues. In concert with the verbal
channel, non-verbal facial gestures can be used to visually
emphasize certain words and syllables of importance in a
conversation[1]. Despite the clear importance of modeling
and animating human facial gestures, efficiently generating
lifelike and perceptually believable facial gesture such as
head and eye motion on-the-fly has still been a largely un-
resolved research challenge in computer animation, virtual
human modeling, and human computer interaction fields
for decades.

Generating speech-driven eye and head movement on a
talking avatar is challenging, because: 1) The association
between speech and facial gestures is essentially a nonde-
terministic many-to-many mapping, since numerous factors
including personality traits, culture background, conver-
sation contexts, and affective state collectively determine
the gestures in a conversation. 2) The tie between speech
and eye motion has been significantly less observed and
documented in the literature. Besides the above difficulties,
live speech driven eye and head motion generation is even
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more challenging due to the following additional reasons:
i) “Live speech driven” implies the real-time performance
of the algorithm; hence, its runtime performance needs to
be highly efficient. ii) Since only the prior and current
information enclosed in live speech is available as the
runtime input, many widely-used dynamic programming
schemes cannot be directly used for the task.

Researchers have conducted various research efforts to
model lifelike eye motion and natural head movement on a
talking avatar by either using empirical rules[2; 3; 4; 5; 6;
7] or learning statistical models from pre-recorded human
motion data[8; 9; 10; 11]. These methods, however, are
only suitable for offline synthesis and cannot be driven by
live speech. Furthermore, these methods focus on either
eye motion or head movement; but, none of them can
generate the coordinated head and eye movement in an
inter-connected framework. Recently, Levine et al.[12; 13]
developed data-driven, live speech driven body language
controllers that are capable of dynamically synthesizing
realistic body and hand gestures based on live speech input.
Although realistic head movement was demonstrated in
their method, how to efficiently generate plausible speech-
synchronized eye motion has not been addressed.

In this paper, we propose a novel, fully automated frame-
work to generate realistic and synchronized eye and head
movement on-the-fly, based on live or pre-recorded speech
input. In particular, the synthesized eye motion in our
framework includes not only the traditional eye gaze but
also the subtle eyelid movement and blink. The central
idea of this framework is to learn separate yet inter-related
statistical models for each component (head motion, gaze,
or eyelid motion) from a pre-recorded facial motion dataset.
Specifically, it includes: i) Gaussian Mixture Models and
gradient descent optimization algorithm are employed to
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generate head motion from speech features; ii) Nonlinear
Dynamic Canonical Correlation Analysis model is used to
synthesize eye gaze from head motion and speech features,
and iii) Non-negative linear regression is used to model
voluntary eye lid motion and log-normal distribution is used
to describe involuntary eye blink.

Through comparative user studies, we show that our ap-
proach outperforms various state-of-the-art facial gesture
generation algorithms, and the results by our approach
are measurably close to the ground-truth. In addition to
our contribution in synchronized head and eye motion
generation, we also develop a novel mocap+video hybrid
data acquisition technique to simultaneously capture high-
fidelity head movement, eye gaze, and eyelid motion of a
human subject.

To the best of our knowledge, our approach is the first
reported system that can dynamically and automatically
generate realistic, speech-synchronized eye and head move-
ment solely based on arbitrary live speech input. In particu-
lar, we believe that thelive speech drivenandsynchronized
head movement, eye gaze, and eyelid movement charac-
teristics of our approach well separate it from existing
similar techniques. Our approach can be widely used for
a broad variety of interactive avatars, computer-mediated
communication, and virtual world applications.

2 PREVIOUS AND RELATED WORK

During the past several decades, many researchers have
studied various aspects of facial animation including face
modeling [14; 15; 16; 17; 18; 19], speech synthesis[20;
21; 22], deformation [23; 24; 25; 26], and expression
transferring[27; 28; 29; 30]. Comprehensively reviewing
these efforts is beyond the scope of this paper (interested
readers are referred to[31]). We only briefly review recent
efforts that are most related to this work.

Head motion synthesis: Some of the early work crafted
a number of empirical rules to govern the correspon-
dence between input texts and head movement[32; 33;
34]. An increasing amount of interest has been drawn to
speech-driven head motion synthesis in recent years[5;
35]. For example, Grafet al. [3] studied the conditional
probabilities of pitch accents accompanied by primitive
head movement (e.g., nodding, nodding with overshoot, and
abrupt swinging in one direction). Chuang and Bregler[11]
built a database of head motion sequences indexed by pitch
features. Then, new head motion can be synthesized by
searching for a globally optimal path that maximizes the
match of pitch features. Researchers also trained various
forms of HMMs for novel head motion synthesis based
on a collected audio-head motion dataset[10; 36; 37;
38; 39]. In addition, Gratch and his colleagues have re-
ported statistical models that learn empirical rules from
annotated conversation datasets to generate head move-
ment (in particular, nodding) on listening agents[40; 41;
42].

Eye gaze generation. Researchers have proposed many
techniques to model eye gaze of avatars in virtual envi-
ronments or in a conversation[2; 43; 8; 4; 9; 6; 7; 44; 45;
46]. For example, Leeet al. [8] statistically analyzed the
recorded gaze data and then synthesized saccade movement
using the first-order statistics. Thiébauxet al. [44] proposed
a parameterized gaze controller on top of the open-source
SmartBody virtual human system. Ma and Deng[45]
proposed an effective technique to synthesize natural eye
gaze by modeling the linear coupling between eye and head
movement. Oyekoyaet al. [46] built a rule based system
to model the gaze from the saliency attract attention in
virtual environments. However, speech content is not taken
into consideration in all the above approaches. As pointed
out in existing literature[8; 47], humans have different
gaze patterns depending on their conversational modes (e.g.,
talking or listening).

Eyelid and blink motion generation. Compared with the
above gaze synthesis, fewer research efforts have been
focused on eyelid motion generation in the animation
community. The simple yet widely used approach for eyelid
motion generation is to linearly interpolate two key eyelid
shapes (one for the open eyelid and the other for the close
eyelid) [48]. Itti et al. [49] incorporated blink into their
avatar engine by implementing simple heuristic rules to
determine the frequency of blink. Peter and O’Sullivan[50]
modeled eyelid motion correlated with gaze shifts by pa-
rameterizing the vertical angle of a gaze as an input to
determine the magnitude of a blink. Recently, Steptoeet al.
[51] proposed a parametric model for lid saccades and blink
based on the documented insights from ophthalmology
and psychology. However, in their method, whether the
parameterized eyelid motion can be soundly incorporated
with gaze and head movement has not been established and
validated yet.

3 SYSTEM OVERVIEW

Fig. 1: Schematic overview of the proposed live speech
driven head-and-eye motion generator.

Figure 1 shows the schematic overview of our proposed live
speech driven head-and-eye motion generator. Basically, it
consists of three inter-connected modules: a head motion
synthesis module (Section 5), an eye gaze synthesis mod-
ule (Section 6), and an eyelid motion synthesis module
(Section 7). As illustrated in Figure 1, the live speech
signal is the shared inputamong the three modules, and
thus it functions as the natural motionsynchronizerin our
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approach. Also, the three modules are sequentially inter-
connected in an elegant way, that is, the output of the head
motion synthesis module serves as one of the inputs to the
eye gaze synthesis module whose output serves as one of
the inputs to the eyelid motion synthesis module.

Another important employed component (but not illustrated
in Figure 1) is thedata acquisition and processingmodule.
Traditionally, a human subject has to wear a cumbersome
eye tracker (like the one used in[8]) to record accurate eye
gaze movement. In this work, to overcome this limitation,
we develop a novel mocap+video hybrid data acquisition
system to record accurate head movement, eye gaze, and
eyelid movement simultaneously (detailed in Section 4).
Hence, the subtle and tight coupling among the three
channels of facial gestures are well captured in our recorded
dataset.

4 DATA ACQUISITION AND PROCESSING

Fig. 2:Left: Illustration of the hybrid data acquisition setup.
Right: A snapshot of the data acquisition process.

System setup. We use two data acquisition setups to
record our needed training data. The first setup is a dyadic
conversation scenario. As shown in Figure 2, in this setup,
two human subjects (one is the primary subject and the
other is the auxiliary subject) sit face to face, with a distance
of 1.5 meters, to have a natural dyad during the mocap
procedure. A VICON optical motion capture system with
ten cameras (forming a semi-circle configuration) is used
to capture head motion of the primary subject. A high
definition camcorder is used to record the eye movement of
the primary subject (refer to Section 4.1). And, a wireless
microphone is used to record the voice from the primary
subject. We only capture the primary subject’s motion
(i.e., head movement, eye gaze, and eyelid movement). All
the cameras and microphone are synchronized and all the
recorded data are resampled to 24 fps. Such multi-channel
data synchronization is intrinsically supported by the used
commercial motion capture system and its software kit. The
second setup is a single subject’s speaking scenario. It is
designed to record a variety of high-fidelity head motion
while the captured human subject speaks with different
emotions. The subject is asked to speak a custom, phoneme-
balanced corpus while keeping his/her head movement as
naturally as possible.

In total, we captured 7 minutes data using the first setup
(called the “Dyad-Dataset”) and 40 minutes data using the

second setup (called the “Single-Dataset”). In this work,
both the datasets are used for head motion synthesis, and
only the Dyad-Dataset is used for eye gaze and eyelid
motion synthesis.

Head motion extraction. To extract head motion, we put
four markers on the head of the captured subject (the top-
right panel in Figure 3). After the motion data is recorded,
three Euler angles of the head rotation in each frame are
calculated based on the four head markers. We denote the
three Euler angles at timet as αt, βt, andγt , which are
the yaw, pitch, and roll angles, respectively.

Speech feature extraction. We use the OpenSmile
toolkit [52] to extract pitch and loudness features from the
recorded speech. In this process, its sampling rate is set
to 24Hz, and its sampling window is set to 0.025 second.
Finally, we apply a contour smoothing filter with a window
size of 3 frames (0.125 second) to obtain the final pitch and
loudness contours. The pitch and loudness features at timet

is denoted aspt andlt, respectively. Note that which speech
features are optimal to drive facial animation has been a
widely open research question for decades, as pointed out
by Brand [21]. In this work, we choose empirically the
combination of pitch and loudness to drive head-and-eye
motion.

4.1 Eye Movement Data Acquisition

To accurately track gaze and eyelid motion in this work,
we use a Canon EOS t2i with a 50mm f/1.8 lens to record
HD video from the face region of the subject. Synchronized
with the used optical motion capture system, this camcorder
outputs FullHD video at a resolution of 1920×1280 pixels
with a frame rate of 29.97 fps. The aperture is set to f/4 to
achieve enough depth of field, and the shutter speed is set
to 1/60s to remove motion blur. It is put at an approximate
distance of 2 meters to the primary mocap subject, as
illustrated in Figure 2.

Our eye movement tracking algorithm is based on the
assumption that human skull is a rigid object and the center
of each eyeball is located on the orbit. Thus, the centers
of both the eyeballs can be calculated based on the 3D
location and orientation of the head, which can guide our
eye tracking algorithm to identify the exact locations of
the pupils. Our eye movement tracking process consists of
three main steps: camera calibration (build a mapping from
the motion capture coordinate system to the camcorder co-
ordinate system), subject calibration (determine the centers
of the eyeballs and the straight direction of view), and eye
tracking (employ image processing algorithms to extract the
image regions containing the pupils and compute gaze and
eyelid openness).

Camera calibration. We use the Direct Linear Transforma-
tion (DLT) algorithm[53] to build a mapping from the 3D
space of the motion capture system to the 2D space of the
video camcorder. A L-shape like pattern attached with 16
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Fig. 3: Eye tracking process.Top left: The used camera
calibration pattern.Top right: The used marker layout
in the subject calibration step.Bottom: Examples of eye
tracking results. Green dots indicate the eye probe regions
and blue dots indicate the pupils.

markers (shown in the top-left panel of Figure 3) is captured
by both the camera systems. The 3D coordinate of theith
marker in the motion capture coordinate system is denoted
as (xi, yi, zi), and its corresponding 2D coordinate (in the
video camcorder coordinate system), denoted as(ui, vi), is
manually annotated in the synchronized video frame. Then,
this coordinate system mapping can be modeled by a 3 by
4 matrix M, and the lens distortion is modeled using the
second order Brown’s distortion model[54]. Finally, by
solving a system of linear equations where the unknowns
are elements of matrixM and distortion coefficients, we
essentially build a mapping from any 3D point in the motion
capture coordinate system to its corresponding 2D point in
the camcorder coordinate system.

Subject calibration. In this step, we ask the subject to have
a straight look at the camcorder so that we can determine
the exact 3D head transformation that corresponds to the
straight direction of view. We also put 3 markers on the
face to determine the centers of the eyeballs (the top-
right panel of Figure 3). The 3 facial markers are carefully
configured so that the centers of the eyeballs are at the
mid points between two of them. However, due to the
unavoidable human errors, the facial markers cannot be
placed precisely; thus, we still need to do a correction
to achieve the exact locations. We manually rectify the
2D positions of the eyeballs’ centers in the first video
frame by selecting their correct positions and computing
the deviations. The obtained deviations are stored and used
for other consecutive frames.

Eye tracking. We put an ellipse-shaped sampling grid
on the sphere centered at each eyeball. Since the average
eyeball diameter of an adult is about 25mm and the size
of the eye is 20×10mm on average[55], we set the
radius of the sphere as 25mm and the size of the grid as
20×10mm accordingly. Then, each 3D point in this grid is
mapped to its corresponding 2D point in the camcorder
video frame, and its color is extracted and thresholded.
After that, we assign 1 to the grid points whose pixel

colors are close to black and brown (i.e., belonging to
the pupils); otherwise, assign 0 to them. Then, an open-
close operation is performed in the obtained binary result
to remove the hole within the pupil region. Example results
are shown in the bottom panel of Figure 3. Finally, in
each tracked frame, two eye gaze rotational angles are
calculated through a spherical coordinate transformationby
assuming the tracked pupil center is located on the surface
of the 3D eyeball, and thus the two rotation angles in one
frame represent a gaze in this work. The eyelid openness
is calculated based on the highest point in the pupil region
and further normalized to 0∼1 (0 for “fully closed”, 1 for
“fully open”). Lastly, we average the tracking results of the
two eyes.

5 SPEECH-DRIVEN HEAD MOTION SYN-
THESIS

A proven scheme for live speech driven gesture motion
synthesis is to build optimal selection policies that choose
suitable motion units from a motion library at runtime[13].
However, it cannot be applied directly to real-time head
motion synthesis since a syntactic motion unit needs to
have a minimally effective length (i.e., number of frames).
In the case of real-time head motion synthesis, this will
cause a noticeable delay in synchronization (i.e., out of
sync) between the live speech and synthesized head motion.
The alternative would be to predict head motion way ahead
of the live speech, which is even more technically difficult
if not impossible.

In this work, we synthesize speech-driven head motion by
modeling the distribution between head motion and prosody
features. Theoretically, we can learn statistical models (e.g.,
HMMs or Gaussian Mixtures) to model the distribution and
inter-correlation among multiple high dimensional obser-
vation datasets such as head motion features and prosody
features. However, in reality the training dataset is often
limited, so training such a model would suffer from the
curse of dimensionality. To tackle this problem, we em-
ploy a divide-and-conquer learning strategy to model the
correlation between head motion and speech features[56].
Specifically, in this work, we construct a simple Gaussian
Mixture model to learn the distribution probabilities be-
tween each kinematic feature of head motion (e.g., Euler
angles, angular velocities, etc) and prosody features of
speech and then combine these models during the runtime
synthesis.

Our speech-driven head motion synthesis algorithm consists
of two main steps, as shown in Figure 4: (1) At the
model training step, Gaussian Mixture Models (GMMs) are
trained to capture the cross-channel correlations between
the speech features and the kinematic features of the
head motion at every frame of the training data. (2) At
the runtime synthesis step, an efficient gradient descent
search is employed to solve a constraint based optimization
problem, which finds the optimal head pose for the current
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time frame to maximize the posterior joint distribution
probability. It is noteworthy that, our head motion synthesis
algorithm does not depend on a motion library at runtime.
Instead, it works at frame level, which means the algorithm
directly generates the head pose for the current time frame
from the live speech.

Fig. 4: Schematic view of the speech-driven head motion
synthesis module. At the learning stage, the joint prob-
ability density functions (PDFs) of kinematic parameters
and prosody features are modeled as Gaussian Mixture
Models (GMMs). Then, at the runtime prediction step,
head motion is dynamically synthesized using the gradient
descent optimization method to maximize the likelihood of
the joint PDFs, given the inputted prosody features.

5.1 Model Training

Some basic kinematic features of head motion are used
in our model. In particular, for every time framet in the
training data, we extract its corresponding five kinematic
motion features: three Euler anglesαt, βt, and γt, the
angular velocityvt, and the angular accelerationat. The
first three parameters (αt, βt, andγt) are directly extracted
from the recorded head motion (refer to Section 4), and
the other two parameters are derived from the three Euler
angles (Eq. 1).
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Then, for each kinematic parameterκ ∈ {α, β, γ, v, a},
we obtain a training set of tuples{(κt, pt, lt)}

n
t=1, where

pt and lt are the pitch and loudness of the speech at
time frame t in the training data, andn is the total
number of frames in the training data. After that, based on
the {(κt, pt, lt)}n

t=1, we train a Gaussian Mixture Model
GMMκ to model the cross-channel probabilistic associ-
ation between the kinematic parameterκ and the speech
features. Since the three features are continuous, the cross-
channel probabilistic distributions are modeled using the
following function:

P (X) =
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∑
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1
√
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2
(X−µi)

T
Σ
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Here X = (κ, p, l)T, m is the number of mixtures,ci,
µi, and Σi are the weight, mean, and covariance ma-
trix of the ith mixture, respectively. We use the widely-
used Expectation-Maximization (EM) algorithm to train the
above GMMs model. Figure 5 shows the log-likelihoods of
the GMMs with different numbers of mixtures. Based on
this figure, the number of mixtures for all the GMMs is
experimentally set to 10 in this work.

Fig. 5: The log-likelihoods of the trained GMMs with
different numbers of mixtures. Note that all the training data
are used to determine the number of mixture components.

5.2 Synthesis by Gradient Descent Search

After the above five GMMs models (GMMκ, κ ∈
{α, β, γ, v, a}) are trained, the problem of real-time head
motion synthesis can be formulated as finding an optimal
head pose for the current time stept, given the previous and
current speech features (1 tot) and previous head poses (1
to t − 1). Given the speech feature(pt, lt) at time stept,
we can solve for its optimal head motion kinematic features
by maximizing the following posterior probability via the
Bayesian inference:

(α∗
t , β

∗
t , γ∗

t ) = arg max
αt,βt,γt

∏

κ∈{α,β,γ,v,a}

P (κt|pt, lt) =
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αt,βt,γt

∏

κ∈{α,β,γ,v,a}

P (κt, pt, lt)

P (pt, lt)

Subject to Eq. (1)
(3)

Note that, in the above Eq. 3,P (pt, lt) is a constant for the
current time stept, and thus, this term can be ignored.
However, computing the angular velocityv and angular
accelerationa at time stept depends on (i.e., constrained
to) the Euler angles at time stepst−2, t−1, andt (see Eq.
1). We can remove these constraints by plugging Eq. 1 into
Eq. 3 and yield the non-constrained optimization as follow:
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Then, we adapt the Gradient Descent search technique to
find the optimal tuple(α∗

t , β
∗
t , γ∗

t ) by maximizing the above
Eq. 4, assuming(α∗

t−1, β
∗
t−1, γ

∗
t−1) and(α∗

t−2, β
∗
t−2, γ

∗
t−2)

are given (i.e., synthesized in previous time steps). Note
that, theP (.) function in Eq. 4 is not always continuous
and differentiable with respect to[αt βt γt]

T ; however, it
is only non-differentiable at one particular point, and even
this happens, in practice, the gradient descent search would
immediately bring the solution to a differentiable position
at the next step.

Since natural head motion is continuous, the head pose at
t is expected to be reasonably close to the head pose at
t − 1. We randomly generate an initial (starting) solution
for the Gradient Descent search from the following normal
distribution (Eq. 5), where the standard deviation parameter
σ is computed from the feature distribution in the training
data.

(αt, βt, γt) = (α∗
t−1, β

∗
t−1, γ

∗
t−1) + w

w ≈ N (0, σ2)
(5)

Note that the above gradient descent search is performed
in a low, three dimensional space and the generated initial
solution (guess) is reasonably close to the optimal one;
thus, the optimization process can converge to the local
maximum very quickly. In our experiments, we found
that the optimization process typically took on average 17
iterations to reach the local maximum.

6 EYE GAZE SYNTHESIS

It has been well documented that eye gaze has a measurable
correlation with head motion and speech[2; 8]. Therefore,
in order to capture the intrinsic gaze dynamics and the sub-
tle coupling among gaze, head motion, and speech features,
we design a Nonlinear Dynamic Canonical Correlation
Analysis (NDCCA) scheme for the gaze synthesis task in
our model.

Specifically, we first nonlinearly transform the recorded
gaze, speech features, and head motion (i.e., three Euler
angles) to a high-dimensional feature space. Then, we
perform linear Dynamic Canonical Correlation Analysis
(DCCA) to model the intrinsic dynamic coupling between
the different signals, inspired by the work of[45]. Since
the first transformation is nonlinear, any linear operationin
the transformed feature space corresponds to a nonlinear

operation in the original space of gaze and head motion.
Thus, our gaze synthesis model is essentially nonlinear.
Note that although our gaze synthesis method is inspired
by the work of [45], their approach can only model the
linear coupling between gaze and head movement and the
speech channel is completely ignored, which is insufficient
to model the sophisticated cross-channel association among
the gaze, head motion, and speech.

In follow-up sections, we first briefly review the back-
ground of nonlinear canonical correlation analysis (NCCA)
(Section 6.1), and then describe our NDCCA-based gaze
synthesis algorithm (Section 6.2).

6.1 Nonlinear Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is traditionally
used to model the underlying correlation between two
datasets[57]. Assumingh ∈ R

p and e ∈ R
q are two

multi-dimensional observations, in traditional CCA, we try
to find the basis pairsu ∈ R

p and v ∈ R
q so that

the correlation between the projectionsyh = uTh and
ye = vTe is maximized. Using the Lagrange multipliers, we
can reformulate this problem to a constrained optimization
[58].

max
u,v

E{(yhye) +
1

2
λh(1 − y2

h) +
1

2
λe(1 − y2

e)} (6)

s.t. yh = uTh andye = vTe

WhereE{.} denotes the expected value operator.

In order to bound the bases, the term12λh(1 − y2
h) +

1
2λe(1 − y2

e) is added to limit the variances ofyh andye,
i.e. E(y2

h = 1) and E(y2
e = 1). Here, the two Lagrange

multipliers λh and λe are used to control the strength of
those soft constraints on the variances ofyh andye. Then,
the constrained optimization problem (Eq. 6) can be solved
by a linear neural network as proposed by Lai and Fyfe
[58]. This linear neural network is trained by the following
joint learning rules:

∆u = ηh(ye − λhyh), ∆λh = η0(1 − y2
h)

∆v = ηe(yh − λeye), ∆λe = η0(1 − y2
e)

Whereη andη0 are the learning rates.

Using the above training process, we can find a set ofr =
min(p, q) uncorrelated base pairs where thei-th pair can
be denoted as(ui, vi). For convenience, we can put those
base vectors together to form matricesU ∈ R

p×r andV ∈
R

q×r, whereui is the i-th column ofU andvi is the i-th
column of V . Using the set of base pairs, we can project
the observationsh and e into the reduced coordinates as
follow:
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ĥ = UTh (7)

ê = V Te

Since our final goal is synthesis, we also need to build a
back mapping from the projection̂e to the original datae.
This back mapping can be modeled as a linear regression
as suggested in[26], in which the back mapping matrix
V ∗ ∈ R

r×q is solved by linear least squares as follow:

V ∗ = argmin
V

n
∑

t=1

||V Têt − et||
2 , V ∈ R

r×q (8)

Wheren is the total number of training examples.

However, the obtained linear correlation may not be able to
capture the complex nonlinear association between the two
datasets. As such, we use the kernel mapping method[26]
to construct a nonlinear CCA in order to establish a
nonlinear coupling between the two datasets. Thus, Eq. 7
can be reformulated as follows (Eq. 9):

ĥ = UTk(h) (9)

Wherek is a non-linear kernel function. Note that to avoid
solving the backward mapping at the runtime, we only
apply the non-linear mapping function toh. The kernel
function in this work is experimentally set to the following:

k : R
p → R

p (10)

h 7→ φ s.t. φi = h2
i + hi, ∀i = 1..p

After the original dataset is transformed to the nonlinear
space, the objective function (Eq. 6) can be used again
to solve the desiredU and V . Then, we project the
dataset into the reduced coordinates(ĥ, ê) and perform the
following linear regression (Eq. 11) to solveCe ∈ R

q×p,
the numerical coupling matrix between̂h and ê.

Ce = arg min
C

n
∑

t=1

||Cĥt − êt||
2 , C ∈ R

q×p (11)

Where (ĥt, êt) denotes thet-th example in the training
dataset ofn examples.

6.2 NDCCA-based Eye Gaze Synthesis

Now we describe how to use the above NCCA to further
build a dynamic coupling model for eye gaze synthesis. As
mentioned in Section 4, a head motion frame is represented
as three Euler angles, and an eye gaze is represented as two
rotation angles. We also use the speech loudness feature as

one of the inputs to our gaze synthesis model, since the
correlation between eye gaze patterns and speech loudness
features has been previously reported[47].

Specifically,n denotes the total number of frames in our
training data set. Both the head motion and speech loudness
features in the training data are combined frame by frame
to a head-speech dataset{ht : t = 1..n} (whereht ∈ R

4 is
the head-speech frame at time stept), and the extracted eye
gaze dataset is denoted as{et : t = 1..n} (whereet ∈ R

2

is the eye gaze at time stept). Then, the NCCA-based
coupling model (Section 6.1) is trained to build an eye gaze
synthesis model that connects the eye gaze patterns with the
head-speech characteristics. As such, the projection matrix
U , the back projectionV ∗, and the coupling matrixCe can
be determined (refer to Section 6.1).

Expanding NCCA to NDCCA. The above trained
NCCA model captures the cross-channel association among
speech, gaze, and head movement, but the intrinsic gaze dy-
namics are not modeled. In this work, we choose to further
add the gaze dynamic model proposed in the work of[45]
to tackle this limitation. In particular, the gaze dynamics
are modeled by a linear regression matrixA∗ ∈ R

2×2.
This gaze dynamic model can be solved by the linear least
squares in Eq. 12, which minimizes the sum of squared
errors between the gaze of two consecutive time framest

and t − 1 projected into the reduced coordinate system.

A∗ = argmin
A

n−1
∑

t=1

||êt − Aêt−1||
2 , A ∈ R

2×2 (12)

WhereA∗ is the dynamic transition matrix to be estimated.
Given {êt : t = 1..n}, A∗ can be efficiently solved[45].
To the end, we construct a NDCCA model for our eye gaze
synthesis.

Gaze synthesis. Given the live speech input and the synthe-
sized head motion at the time framet from the head motion
synthesis module (the combined input is denoted asht), we
can synthesize the accompanying eye gaze using the above
trained NDCCA model, described as follows.

The synthesis procedure is straightforward after the training
process, where we determine the projection matrixU (Eq.
6), the back projection matrixV ∗ (Eq. 8), the coupling
matrix Ce (Eq. 11), and the dynamic transition matrixA∗

(Eq. 12). Basically, we first computêet using Eq. 13.

êt = CeU
Tk(ht) (13)

Then, the dynamic transition matrixA∗ is used to further
smoothêt (Eq. 14).

êt = λ1êt + λ2(A
∗êt−1) (14)
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In the above Eq. 14, we empirically set two weight coef-
ficientsλ1 andλ2 to 0.7 and 0.3, respectively. Finally, the
outputted eye gaze can be reconstructed using the following
Eq. 15.

et = V ∗T
êt (15)

7 EYELID MOTION SYNTHESIS

Fig. 6: Pipeline of the eyelid motion synthesis module.

There are two major categories of eyelid motion:invol-
untary blinkandvoluntary eyelid motion[51]. Involuntary
eye blink is for the protection of the eyes and it is usually
fully close, while voluntary eyelid motion is entwined in
human psychology and gesture,e.g., gaze-evoked blink[59;
50]. Inspired by this eyelid motion classification, we de-
compose eyelid motion into two components: involuntary
eye blink and voluntary eyelid motion, and model them sep-
arately. Basically, the voluntary eyelid motion is modeled
through a non-negative linear regression model, and the
involuntary eye blink is explicitly described as two Log-
normal distributions, constructed via data fitting. Figure6
shows the pipeline of the eyelid motion synthesis.

7.1 Involuntary Blink Model

As reported in the literature[60], eye blink rate patterns
of normal subjects follow a certain frequency distribution.
Also, the blink pattern of a person generally has a strong
correlation with his/her conversational role, in particular,
speakers exhibit higher-frequency blink than listeners[1].

In this work, we introduce a simple yet effective eye blink
generation algorithm by constructing a probabilistic distri-
bution model as follows. First, we analyze the recorded
eye blink data and construct two blink rate distribution
models (one for the talking mode and the other for the
listening mode). Then, in the blink synthesis process, we
first determine the mode (talking or listening) based on
the live speech input and then compute eye blink using
its corresponding blink rate distribution model.

We experimentally found that two different Log-normal
distributions (Eq. 16) can be used to soundly fit the recorded
blink data in the talking and listening modes, respectively.
Our empirical finding is also consistent with the previous
reports by other researchers that blink distributions for both

the talking and listening modes are close to the normal
distribution[60].

lnL ≈ N (µ, σ2) (16)

In Eq. 16,L represents the blink pattern. The two parame-
ters,µ andσ, in the above Eq. 16 are determined through
data fitting:µ=21.1 andσ=3.6 for the talking mode, and
µ=15.4 andσ=3.9 for the listening mode.

7.2 Gaze-Evoked Eyelid Motion Model

In the psychology literature[59], the relationship between
eyelid motion and eye gaze is typically referred to as
gaze-evoked eyelid motion. The gaze-evoked eyelid motion
usually starts simultaneously with the eye gaze, and its
magnitude often increases in accordance with the amplitude
of the eye gaze[50]. We propose a non-negative linear
regression coupling model to build the connection between
eyelid motion and gaze. We choose the non-negative linear
regression model since it can reduce overfitting in the
learning process.

Assuming the extracted eye gaze dataset is{et : t = 1..n}
(et ∈ R

2 is the the eye gaze in time framet0) and the
gaze-evoked eyelid motion dataset is{bt : t = 1..n}; here
bt ∈ R is the acquired eyelid motion minus fully closed eye
blink in time framet. Specifically,bt is a normalized value
between 0 (closed) and 1 (open), as described in the data
acquisition Section 4. We use the non-negative least-square
technique[57] to learn the linear regression matrixCb ∈
R

1×2. This learning is done by minimizing the following
Eq. 17.

Cb = arg min
C

n
∑

t=1

||C.et − bt||
2 (17)

Subject to:C ∈ R
1×2 andC ≥ ~0

7.3 Eyelid Motion Synthesis

Given a synthesized eye gazeet at the time framet, we
can use the above constructed non-negative linear coupling
model to predict the voluntary (i.e., gaze-evoked) eyelid
motion bt, by computing the following linear equation
(Eq. 18).

bt = Cbet (18)

Also, we can use the above constructed Log-normal proba-
bility distribution models to generate the involuntary blink
lt by sampling blink rates according to the speech loudness
feature (i.e., determine the talking or listening mode). The
sampling equation for the Log-normal probability distribu-
tion is as follows (Eq. 19):
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P (lt ≡ blink) = eµ+σN (0,1) (19)

The final synthesized eyelid motion is the sum of both the
voluntary eyelid motionbt and the involuntary blinklt.

8 RESULTS AND EVALUATIONS

We tested our head-and-eye motion generator by inputting
various audio clips including live speech and pre-recorded
speech. We found that most of the synthesized results are
realistic and perceptually believable (example snapshotsare
shown in Figure 7).

Fig. 7: Example snapshots of synthetic avatar head and eye
movement based on live (or pre-recorded) speech input by
our approach.

Runtime performance. Our live speech driven head-and-
eye motion generator is highly efficient in terms of runtime
performance. We measured the average running time of our
system (implemented in C++ without GPU-acceleration)
on an off-the-shelf desktop computer (configuration: Intel
Quad Core 2.8GHz, 4GB RAM, Windows 7 OS). The used
3D avatar model has 30K triangles. The average running
time for each frame synthesis in our system is about 21 ms,
which is competent to ensure the whole system to run at
24 fps (the minimum real-time frame rate). We also found
that within the measured 21 ms (one cycle), our motion
synthesis module took significantly less computing time
than other supporting modules (e.g.,mesh deformation and
rendering).

8.1 Comparative User Studies

In order to evaluate the effectiveness of our approach, we
conducted three comparative user studies: i) a head motion
comparative study, ii) an eye motion comparative study, and
iii) a facial gesture comparative study. We employed the
well-established paired comparison methodology[61] for
the three user studies. Basically, we used various methods
(include ours) to synthesize animation clips and then asked
participants to compare them in a paired way. Although
our proposed method can perform online, we still used
pre-recorded speech clips for the user studies due to their
repeatability (so the same pre-recorded speech clips can be
inputted to various synthesis methods for result compari-
son). And, instead of asking the participants to explicitly
rate the naturalness of individual facial animation clips,
the participants were only asked to select the more natural

one between the two clips (forming a comparison pair),
which makes the decision much easier and thus increases
the accuracy and robustness of the subjective evaluation
outcomes.

In all the user studies, the same 3D avatar model and the
same resolution of 320*320 pixels were used in all the clips.
A total of 20 student volunteers participate in all the three
comparative studies. Each comparison pair was displayed
on a 1280x1024 LCD monitor with a 0.6m distance away
from the participants. Between the two animation clips
in each pair, the participants were asked to select the
one which appeared to be more natural and perceptually
realistic for them. They were allowed to leave undecided
choices if they cannot decide which clip is perceptually
better (that is, perceptually indistinguishable for them).
To counter balance the order of the visual stimuli, the
comparison pairs were displayed in a random order for
each participant. The participants can choose to play the
two animation clips in a pair one after another (do not need
to play them simultaneously) and they can view the clips
for unlimited times before made their decisions. Figure 8
shows a snapshot of a side-by-side comparison pair used
in the evaluation.

Fig. 8: A snapshot of the user study interface. The com-
mand buttons and the mosaiced avatar mouth region are
magnified.

8.1.1 Head Motion Comparative Study

In this study, we first manually segmented the first minute
of the test speech dataset published by Levineet al. [12]
to 10 short audio clips. The duration of each audio clip
was 5-10 seconds. Then, based on the 10 test audio clips,
we generated a total of 50 head animation clips (with
audio) using five different approaches: 10 by the prosody-
driven body language synthesis algorithm by Levine et al.
’09 [12], 10 by the Mood-Swings approach by Chuang et
al. ’05 [11], 10 by the HMMs-based approach by Busso
et al. ’05 [10], 10 by using the captured (ground-truth)
head motion, and 10 by our approach (this work). The
synthesized animations by[12] were directly extracted from
their published results. In our implementation of the Mood-
Swings framework[11], we first manually segmented the
training data to 643 sentences and then further segmented
the sentences to 8135 pitch segments. The path search in
the Mood-Swings framework was implemented by retaining
the top 10 pitch matches only. In our implementation of the
HMMs-based approach[10], we quantized the head motion
Euler angles to 16 clusters and used them to train the same



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, FEBRUARY 2012 10

number of HMMs. Based on the 50 head animation clips,
we produced 40 side-by-side comparison pairs: 10 pairs for
each comparison case, that is, 10 pairs for the comparison
between our approach and each of the other four approaches
(i.e., [11; 10; 12] and the ground-truth).

# u χ
2

p value
Motion Levine Busso Chuang
Capture et al. ’09 et al. ’05 et al. ’05

1 0.382 49.697 <0.001 9/10 8/10 11/7 13/7
2 0.305 40.799 <0.001 5/2 11/7 12/7 11/8
3 0.347 45.599 <0.001 5/11 9/7 14/6 11/8
4 0.375 48.799 <0.001 8/10 9/7 12/7 12/6
5 0.536 67.197 <0.001 10/9 8/10 14/6 11/9
6 0.543 64.199 <0.001 7/10 8/10 15/4 12/7
7 0.431 55.197 <0.001 8/9 11/9 12/6 11/8
8 0.619 76.000 <0.001 8/9 10/7 12/7 14/5
9 0.880 106.400 <0.001 10/8 12/7 12/3 14/5

10 0.108 26.419 <0.01 4/11 8/4 8/10 8/11

TABLE 1: Consistency and agreement test statistics for
the head motion comparative evaluations. The number pair
(e.g., X/Y) shown in each cell of the right part of the
table denotes that the total number of the participants who
voted for our approach is X and the total number of the
participants who voted for the other comparative approach
is Y. The four comparative approaches are: transferring
original motion capture data, Levine et al. ’09[12], Busso
et al. ’05 [10], and Chuang et al. ’05[11].

To eliminate any potential perceptual influence of eye
motion, we did not add eye motion to any of the animation
clips (i.e., the eyes stayed still, looking straight ahead).
Also, for each test audio clip, we generated its lip-sync
motion using an ad hoc approach, and the same lip-sync
approach was used by all the above five different head
motion generation approaches. Moreover, we intentionally
applied a strong mosaic filter to the mouth region in all
the clips in order to reduce potential perceptual distractions
from the non-perfect, synthesized lip-sync quality (referto
Figure 8). It is noteworthy that in this comparison, we chose
to compare our approach with the Levine et al. 09’s work
[12], not their latest work[13] due to the following reasons.
First, the work of[13] primarily focuses on hand gesture
synthesis and its algorithm even does not consider any head
motion features, while the work of[12] explicitly includes
head motion kinematic features. Second, the dataset used
in [13] is not publicly accessible at this point, while the
dataset of[12] is publicly accessible, which makes a fair
comparison possible.

Agreement test of the subjective evaluation outcomes:
We carried out a statistical test,agreement test[61], to
see whether the participants rated all the pairs in a con-
sistent way in our comparative user studies. Basically, the
agreement test is used to indicate the overall agreement
among all the votes in paired comparisons, which has been
widely used in paired comparison studies as an appropriate
measure[61; 45]. Specifically, in this work, we choose
to calculate the Coefficient of Agreement (COA)[62] to
demonstrate that there is certain consistency among users

votes in our user study; otherwise, if there’s no such consis-
tency, we can interpret that the obtained user study results
are somehow contaminated (e.g., voting randomness) and
thus invalid. In this case, we cannot perform further analysis
on such study results. Also, we further use the Chi-Square
test statistics (χ2) to compute the statistical significance of
the COA[63].

Here we take #1 pair in the head motion comparative study
as an example: As shown in the first row of Table 1, among
the total 20 participants, 9 participants rated our approach
better than the original motion capture data, 8 rated ours
better than[12], 11 rated ours better than[10], and 13 rated
ours better than[11]. Following the test method proposed
by Kendall and Babington-Smith[62], the COA of sample
#1 for “head motion realism comparison” isu = 0.382, its
χ2 is 49.697, and its correspondingp-value is 0.001 (1% χ2

is 29.59) given DOF = 10 (C5
2 ). Thus, our Chi-Square test

statistics results indicate that for the used head animation
#1 pair there was a statistically strong agreement among the
participants. The COA test results of all the head animation
pairs are shown in Table 1. It is noteworthy that in Table
1 (follow-up Tables 2 and 3 have the same problem), the
numbers X and Y in one entry may not always sum to 20
(the total number of the participants in our user studies)
because the participants in our user studies were allowed
to leave undecided choices if they cannot decide which clip
is perceptually better (that is, perceptually indistinguishable
for them).

8.1.2 Eye Motion Comparative Study

We randomly selected 10 test audio clips from the captured
motion dataset (described in Section 4) and the 10 test
clips were not used in the model training stage. Based
on the 10 test audio clips and their corresponding ground-
truth (recorded) head motion, we generated a total of 40
head+eye animation clips (with audio) using the follow-
ing four different approaches: 10 by the linear head-eye
coupling algorithm by Ma and Deng ’09[45], 10 by the
“eyes alive” model by Lee et al. ’02[8], 10 by using the
original captured eye motion, and 10 by our approach. In
our implementation of the “eyes alive” model[8], we used
the empirical rules and parameters presented in their work
to generate the eye gaze. In our implementation of the
linear head-eye coupling algorithm[45], we used the same
dataset as in our approach to train its statistical model. We
produced 30 side-by-side comparison pairs: 10 pairs for
each comparison case, that is, 10 pairs for the comparison
between our eye motion synthesis algorithm and each
of the other three eye motion generation approaches. It
is noteworthy that since our approach is only driven by
intuitive inputs such as speech and head motion, in this
comparative study, we did not compare our approach with
the attention-driven gaze and blink model[50] due to the
difficulty of a fair comparison.

For each test audio clip, we essentially had 4 animation
clips (one for each eye motion generation approaches, see
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above). The 4 animation clips used the same pre-recorded
(ground-truth) head motion and the same synthesized lip-
sync motion. Like in the above head motion comparative
study, we applied the same mosaic filter to the mouth region
in all the clips due to the same reason. Note that two chosen
approaches[8; 45] cannot generate eyelid motion or blink;
as such, we kept their original forms and did not add eyelid
motion to their corresponding 20 (=10x2) clips. We carried
out the same COA statistical test as in the above head
motion comparative study. The COA test results of all the
pairs in the eye motion comparative study are shown in
Table 2.

# u χ
2 p value Motion Lee Ma and

Capture et al. ’02 Deng ’09

1 0.177 65.599 <0.001 10/4 18/2 11/6
2 0.211 75.199 <0.001 10/7 17/3 16/3
3 0.101 44.000 <0.001 2/17 12/7 13/5
4 0.119 49.000 <0.001 4/1 8/0 17/2
5 0.158 60.197 <0.001 8/1 16/2 13/5
6 0.148 57.199 <0.001 6/14 15/1 14/5
7 0.216 76.599 <0.001 9/10 17/2 17/2
8 0.105 45.200 <0.001 3/16 8/1 16/3
9 0.065 33.600 <0.001 5/2 11/7 8/5

10 0.080 38.000 <0.001 7/2 8/10 12/4

TABLE 2: Consistency and agreement test statistics for
the eye motion comparative evaluations. The number pair
(e.g., X/Y) shown in each cell of the right part of the
table denotes that the total number of the participants who
voted for our approach is X and the total number of the
participants who voted for the other comparative approach
is Y. The three comparative approaches are: transferring
original motion capture data, Lee et al. ’02[8], and Ma
and Deng ’09[45].

8.1.3 Facial Gesture Comparative Study

Based on the same 10 test audio clips (i.e., those used in the
above eye motion comparative study), we generated a total
of 20 facial gesture (head, gaze and eyelid) clips with audio
using two different approaches: 10 by our facial gesture
generator and the other 10 by using the original captured
head and eye motion. Similarly, we applied the same mosaic
filter to the mouth region in all the clips. Based on the
resultant 20 animation clips, we produced 10 side-by-side
facial gesture comparison pairs. The COA test results of all
the pairs in the facial gesture comparative study are shown
in Table 3.

8.2 Analysis of User Study Results

Through the above COA tests, we validated that the rating
results of our paired comparisons were statistically valid.
Thus, based on the obtained user ratings, we summed up the
user selections in each comparative user study. The results
are summarized and illustrated in Figure 9. To quantify the
statistical significance of the results, we also performed a

# u χ
2

p value
Motion
Capture

1 0.378 8.200 <0.05 9/9
2 0.221 5.200 <0.05 7/8
3 0.221 5.200 <0.05 7/10
4 0.221 5.200 <0.05 7/11
5 0.221 5.200 <0.05 7/5
6 0.221 5.200 <0.05 7/11
7 0.378 8.200 <0.05 9/9
8 0.378 8.200 <0.05 9/10
9 0.473 10.000 <0.01 10/9

10 0.157 4.000 <0.05 6/11

TABLE 3: Consistency and agreement test statistics for the
facial gesture comparative evaluations. The number pair
(e.g., X/Y) shown in each cell of the right part of the
table denotes that the total number of the participants who
voted for our approach is X and the total number of the
participants who voted for the original motion capture data
is Y.

two-tailed independent one-sample t-test and reported the
p-value for each row in Figure 9.

In the head motion comparative study, there were 96 ratings
from the participants who voted our approach over[12],
while 78 ratings from them who voted[12] over ours.
As clearly illustrated in Figure 9, our approach gained
more preferred ratings from the participants than the other
three algorithms (excluding the original captured motion).
Meanwhile, our approach had fewer preferred ratings (11
fewer votes) than the original captured head motion, but the
difference is statistically insignificant (p-value is 0.347).

In the eye motion comparative study, the eye animation
results by our approach gained significantly more votes than
the other two algorithms[8; 45]. This is not surprising,
since the two algorithms[8; 45] did not model eyelid
motion, given the fact that eyelid motion is one of the vital
components of realistic avatars[51]. In our experiments, our
proposed eye motion method outperformed the other two
methods[8; 45]; however, it is not completely clear which
factor(s) (i.e., gaze, eyelid, or combined) contribute to the
outcome difference, since our proposed method models two
factors (gaze and eyelid) simultaneously while the other two
only consider one factor (gaze). In addition, our approach
gained slightly fewer votes (6 fewer votes) than the original
captured eye motion, and a significant portion of votes
were “undecided choices” (in other words, difficult to make
a pick for some of the participants), which is additional
evidence to support that the eye motion results by our
approach are reasonably close to the captured (ground-
truth) eye motion.

In the overall facial gesture (head, gaze and eyelid) com-
parative study, our approach gained fewer votes (15 fewer
votes) than the original captured motion (including eye
and head motion). Although the voting difference is still
statistically insignificant (p-value is 0.187), which indicates
that the synthetic facial gestures generated by our approach
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were reasonably close to the captured motion; however,
they cannot completely fool the participants (i.e., cannot
tell the difference between the synthesized motion and the
ground-truth ones), and there are some room to further
improve our algorithms.

Fig. 9: The subjective evaluation results of our three com-
parative user studies. Black boxes at the left side indicate
the total number of times when the participants voted the
results by our algorithm over those by the other approach
(in a pair). White boxes at the right side indicate the
total number of times when the participants voted the
results by the other approach over those by our algorithm.
Gray boxes in the middle indicate “undecided choices”
(i.e., perceptually equivalent). The symbol⋆ indicates the
computed statistical significance according to a two-tailed
independent one-sample t-test with p-value< 0.05.

9 DISCUSSION AND CONCLUSIONS

In this paper, we propose a novel, fully automated frame-
work to generate realistic head motion, eye gaze, and eyelid
motion simultaneously based on live or recorded speech
input. Its core idea is to learn separate yet inter-related
statistical models for each component (head motion, gaze,
or eyelid motion) from a pre-recorded facial motion dataset.
In this way, the synthesized facial gestures are intrinsically
synchronized, that is, the speech signal serves as the shared
control signal across different algorithm modules. In addi-
tion to our contribution in automated head-and-eye motion
generation, we also design a novel mocap+video hybrid
data acquisition system to simultaneously record and auto-
matically extract accurate head movement, gaze, and eyelid
motion. We believe that, not limited to this work, such a
high-fidelity, multi-channel data acquisition approach can
be potentially used in numerous virtual human modeling
and animation, affective computing, virtual reality, and HCI
applications.

Since our framework can synthesize realistic head-and-eye
motion from live speech, it can have numerous potential

applications in entertainment, virtual worlds, HCI, etc. By
dynamically synthesizing facial gestures at frame level, our
approach does not need to use a pre-constructed motion
library (by contrast, a motion library is needed in[13]);
hence, our efficient runtime motion synthesis module has
a very small size, which makes it possible to deploy
our approach to modern smartphones that have an ever-
increasingly powerful computing capability these days.

In the future, we plan to explore the possibility of extending
the current framework for the synthesis of other facial mo-
tion (e.g.,lip-sync) and hand gesture. As the first complete
computational model for the coordinated generation of head
motion, eye gaze, and eyelid motion, several limitations still
exist in the current work.

• First, our current approach does not consider the
semantics enclosed in the input speech; thus, certain
meaningful non-verbal facial gestures may not be
accurately generated. For example, in many cultures,
when people agree to something, they tend to nod
their heads. However, extracting and incorporating
such semantic information from speech (e.g., certain
recognized keywords), via advanced speech recogni-
tion and language processing techniques, to improve
our current approach may be a feasible solution, since
the feasibility of such a paradigm has been demon-
strated in theoffline synthesis case of the speech-
driven body language controller[13]. However, this
direction would face many challenges since extracting
contextual information from live speech is a non-trivial
task, and it may need to introduce a certain amount of
delay to the process.

• Second, different from various global (with respect to
the whole utterance) optimization schemes extensively
used in previous efforts, our current approach only
considers and utilizes prior and current information
available in the live speech to generate realistic fa-
cial gestures in real-time, and thus it does not take
advantage of forthcoming information in the speech.
However, such a non-global optimization strategy may
not be the optimal solution to offline facial motion
synthesis driven by pre-recorded speech. Also, velocity
and acceleration only add the temporal information in
a short period of time and thus the suprasegmental
relationship between speech and gestures may not
be fully captured in the current model. However,
capturing suprasegmental relationship between speech
and head motion is very challenging and it is definitely
a good direction for future exploration.

• Third, the speaker-independent factor is not investi-
gated in our current work, although we show that our
approach can generate plausible head-and-eye motion
even if the input speeches are from different human
subjects (i.e., not the training/captured subject), such
as the audio clips of different film actors that are
chosen to drive animations in the enclosed demo
video. However, our current work does not have a
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proven methodology basis to conclude its true speaker-
independence. In the future, we would like to investi-
gate a systematic solution to this issue such as properly
normalizing speech features.
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[44] M. Thiébaux, B. Lance, and S. Marsella, “Real-time expressive gaze
animation for virtual humans,” inProc. of AAMAS, 2009, pp. 321–
328.

[45] X. Ma and Z. Deng, “Natural eye motion synthesis by modeling
gaze-head coupling,” inProc. of IEEE VR ’09, 2009, pp. 143–150.

[46] O. Oyekoya, W. Steptoe, and A. Steed, “A saliency-based method of
simulating visual attention in virtual scenes,” inProceedings of the
16th ACM Symposium on Virtual Reality Software and Technology.
ACM, 2009, pp. 199–206.

[47] R. Vertegaal, R. Slagter, G. van der Veer, and A. Nijholt, “Eye gaze
patterns in conversations: there is more to conversationalagents than
meets the eyes,” inProc. of CHI ’01, 2001, pp. 301–308.

[48] D. Bitouk and S. K. Nayar, “Creating a speech enabled avatar from
a single photograph,” inProc. of IEEE VR’08, March 2008, pp.
107–110.

[49] L. Itti and N. Dhavale, “Realistic avatar eye and head animation
using a neurobiological model of visual attention,” inProc. SPIE,
2003, pp. 64–78.

[50] C. Peters and C. O’Sullivan, “Attention-driven eye gaze andblinking
for virtual humans,” inACM SIGGRAPH 2003 Sketches & Applica-
tions, 2003, pp. 1–1.

[51] W. Steptoe, O. Oyekoya, and A. Steed, “Eyelid kinematics forvirtual
characters,”Computer Animation and Virtual Worlds, vol. 21, no. 1,
pp. 161–171, 2010.

[52] F. Eyben, M. Wollmer, and B. Schuller, “OpenEAR - introducing
the munich open-source emotion and affect recognition toolkit,” in
3rd International Conference on Affective Computing and Intelligent
Interaction and Workshops, 2009, pp. 1–6.

[53] Y. Abdel-Aziz and H. Karara, “Direct linear transformationfrom
comparator coordinates into object space coordinates in close-range
photogrammetry.” inProceedings of the Symposium on Close-Range
Photogrammetry, 1971, pp. 1–18.

[54] D. Brown, “Decentering distortion of lenses,”Photogrammetric
Engineering, vol. 7, pp. 444–462, 1966.

[55] P. Riordan-Eva, D. Vaughan, and T. Asbury,General Ophthalmology.
Stanford University Press, 2004.

[56] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning. Springer, 2009.

[57] K. V. Mardia, J. T. Kent, and J. M. Bibby,Multivariate Analysis.
Academic Press, 1979.

[58] P. Lai and C. Fyfe, “Kernel and nonlinear canonical correlation
analysis,” in Proc. of IEEE-INNS-ENNS Int’l Conf. on Neural
Networks (IJCNN’00), 2000.

[59] C. Evinger, K. Manning, J. Pellegrini, M. Basso, A. Powers, and
P. Sibony, “Not looking while leaping: the linkage of blinking and
saccadic gaze shifts,”Experimental Brain Research, vol. 100, no. 1,
pp. 337–344, 1994.

[60] A. R. Bentivoglio, S. B. Bressman, E. Cassetta, D. Carretta,P. Tonali,
and A. Albanese, “Analysis of blink rate patterns in normal subjects,”
Movement Disorder, vol. 12, no. 6, pp. 1028–1034, 1997.

[61] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation
of tone mapping operators using a high dynamic range display,” in
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, New York, NY,
USA, 2005, pp. 640–648.

[62] M. G. Kendall and B. Babington-Smith, “On the method of paired
comparisons,”Biometrika, vol. 31, pp. 324–345, 1940.

[63] S. Siegel, Nonparametric statistics for the behavioral sciences.
McGraw-Hill Book Company, Inc., 1956.

Binh H. Le is currently a PhD student at
Department of Computer Science at the Uni-
versity of Houston (UH) under the supervi-
sion of Prof. Zhigang Deng. His research in-
terests include computer graphics, computer
animation, and virtual human modeling and
animation. He received his B.S. in Computer
Science from the Vietnam National Univer-
sity, Vietnam, in 2008. He held a Vietnam Ed-
ucational Foundation Fellowship from 2008
to 2010.

Xiaohan Ma is currently a PhD student at
Department of Computer Science at the Uni-
versity of Houston (UH) under the supervi-
sion of Prof. Zhigang Deng. His research in-
terests include computer graphics, computer
animation, virtual human modeling and an-
imation, HCI, and GPU computing. He re-
ceived his both M.S in Computer Science
and B.S. in Computer Science from Zhejiang
University (China) in 2005 and 2007, respec-
tively.

Zhigang Deng is currently an Assistant Pro-
fessor of Computer Science at the Univer-
sity of Houston (UH). His research interests
include computer graphics, computer ani-
mation, virtual human modeling and anima-
tion, human computer interaction, and visual-
haptic interfacing. He completed his Ph.D.
in Computer Science at the Department of
Computer Science at the University of South-
ern California (Los Angeles, CA) in 2006.
Prior that, he also received B.S. degree in

Mathematics from Xiamen University (China), and M.S. in Computer
Science from Peking University (China). Over the years, he has
worked at the Founder Research and Development Center (China)
and AT&T Shannon Research Lab. He is a senior member of IEEE
and a member of ACM and ACM SIGGRAPH.


