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Live Speech Driven
Head-and-Eye Motion Generators

Binh H. Le, Xiaohan Ma, and Zhigang Deng, Senior Member, IEEE

Abstract—This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion
simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet inter-related statistical models
for each component (head motion, gaze, or eyelid motion) from a pre-recorded facial motion dataset: i) Gaussian Mixture Models
and gradient descent optimization algorithm are employed to generate head motion from speech features; ii) Nonlinear Dynamic
Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and iii) non-
negative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary
eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion
generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can
significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid
data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

Index Terms—Facial Animation, Head and Eye Motion Coupling, Head Motion Synthesis, Gaze Synthesis, Blinking Model, and
Live Speech Driven
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1 INTRODUCTION more challenging due to the following additional reasons:
i) “Live speech driven” implies the real-time performance
s one of the prominent communicative signals, noref the algorithm; hence, its runtime performance needs to
Averbal facial gestures including (but not limited tope highly efficient. ii) Since only the prior and current
the movement of head, eye gaze and eyelid, play a cenirdbrmation enclosed in live speech is available as the
role to facilitate natural and engaging human-human corusntime input, many widely-used dynamic programming
munication and interaction. Often, humans can easily reaghemes cannot be directly used for the task.

and infer the affective and mental states of a person baﬁgsearchers have conducted various research efforts to

on his/her facial gesture cues. In concert with the v_erb odel lifelike eye motion and natural head movement on a
channel, non-verbal facial gestures can be used to visu

hasi tai d 4 svilabl £i ; ~talking avatar by either using empirical rulEz 3; 4; 5; 6;
emphasize certain words and syliables of Impor ance_|n7f10r learning statistical models from pre-recorded human
conversatiori1]. Despite the clear importance of modelin

d animating h facial uost Hicientl i otion data[8; 9; 10; 11. These methods, however, are
and animating human taclal gesiures, efticiently genega 'Bnly suitable for offline synthesis and cannot be driven by
lifelike and perceptually believable facial gesture sush

head and i the-flv h il b | | fve speech. Furthermore, these methods focus on either
€ad and €ye motion on-the-Tly has still been a 1argely Ufye  tion or head movement; but, none of them can

Lesolved re;e?rch chzll(re]nge n computter ?Tmat'tc.m’ \?rtl nerate the coordinated head and eye movement in an
uman modeling, and human computer interaction Nelggq . connected framework. Recently, Levine et[aR; 13

for decades. developed data-driven, live speech driven body language

Generating speech-driven eye and head movement ofoatrollers that are capable of dynamically synthesizing

talking avatar is challenging, because: 1) The associatitgflistic body and hand gestures based on live speech input.
between speech and facial gestures is essentially a noniéhough realistic head movement was demonstrated in

terministic many-to-many mapping, since numerous factoiféeir method, how to efficiently generate plausible speech-

including personality traits, culture background, corvepynchronized eye motion has not been addressed.

sation contexts, and affective state collectively deteemi|, this paper, we propose a novel, fully automated frame-
the gestures in a conversation. 2) The tie between spegelly 1o generate realistic and synchronized eye and head
and eye motion has been significantly less observed afdyement on-the-fly, based on live or pre-recorded speech
documented in the literature. Besides the above dlfflcsulthnput_ In particular, the synthesized eye motion in our

live speech driven eye and head motion generation is eehimework includes not only the traditional eye gaze but

also the subtle eyelid movement and blink. The central
. Bfing H. Le, Xigchan Ma and Zhiganfg Deng are vgig:)ﬁg:e lﬁepagtmeridea of this framework is to learn separate yet inter-relate
of Computer Science, University of Houston, 4 alhouadRo f ot :
Houston, TX, 77204-3010. statlstu_:al quels for each component (head motlon, gaze,
* This work was accepted by IEEE TVCG on Feb 8th, 2012. or eyelid motion) from a pre-recorded facial motion dataset
E-mails: bhle2xiaoharjzdeng@cs.uh.edu Specifically, it includes: i) Gaussian Mixture Models and

gradient descent optimization algorithm are employed to
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generate head motion from speech features; ii) Nonlindaye gaze generation. Researchers have proposed many
Dynamic Canonical Correlation Analysis model is used tiechniques to model eye gaze of avatars in virtual envi-
synthesize eye gaze from head motion and speech featureesments or in a conversatid@; 43; 8; 4; 9; 6; 7; 44; 45;
and iii) Non-negative linear regression is used to moddb]. For example, Leet al. [8] statistically analyzed the
voluntary eye lid motion and log-normal distribution is dserecorded gaze data and then synthesized saccade movement
to describe involuntary eye blink. using the first-order statistics. Thieébaetxal. [44] proposed
Through comparative user studies, we show that our a%_parametenz_ed gaze controller on top of the open-source
) . martBody virtual human system. Ma and Def¢f]
proach outperforms various state-of-the-art facial gestu . ; :
: : oposed an effective technique to synthesize natural eye
generation algorithms, and the results by our approagh . . .
" aze by modeling the linear coupling between eye and head
are measurably close to the ground-truth. In addition & .
A . . movement. Oyekoyat al. [46] built a rule based system
our contribution in synchronized head and eye motion ) o
. . to, model the gaze from the saliency attract attention in
generation, we also develop a novel mocap+video hybrid . :
- . i - yirtual environments. However, speech content is not taken
data acquisition technique to simultaneously capture-h|g¥| . o :
o . : into consideration in all the above approaches. As pointed
fidelity head movement, eye gaze, and eyelid motion of a . o . ) .
; out in existing literaturel8; 47, humans have different
human subiject. . ! .
gaze patterns depending on their conversational maxdgs (
To the best of our knowledge, our approach is the firlking or listening).
reported system that can dynamically and automaticallé

generate realistic, speech-synchronized eye and head m glid and blink motion generation. Compared with the

ment solely based on arbitrary live speech input. In partic? . . S T
ocused on eyelid motion generation in the animation

lar, we believe that thive speech driveandsynchronized ) . ; .
head movement, eye gaze, and eyelid movement cha&?cmmumty' The simple yet widely used approach for eyelid

teristics of our approach well separate it from existindnOtion generation is to Iinearly interpolate two key eyelid
similar techniques. Our approach can be widely used fgpapes (one for the open eyelid and the other for the close

a broad variety of interactive avatars, computer-mediatgae“d) [48]: It et-al. [49) |n(.:orpo.rated bl'nk. mto their
communication, and virtual world applications. avatar engine by implementing simple heuristic rules to
' determine the frequency of blink. Peter and O’Sulliyadl

modeled eyelid motion correlated with gaze shifts by pa-
2 PREVIOUS AND RELATED WORK rameterizing the vertical angle of a gaze as an input to
determine the magnitude of a blink. Recently, Steptbal.
During the past several decades, many researchers hi@® proposed a parametric model for lid saccades and blink
studied various aspects of facial animation including fadgased on the documented insights from ophthalmology
modeling[14; 15; 16; 17; 18; 1B speech synthesiR0; and psychology. However, in their method, whether the
21; 23, deformation[23; 24; 25; 2§, and expression parameterized eyelid motion can be soundly incorporated
transferring[27; 28; 29; 30. Comprehensively reviewing with gaze and head movement has not been established and
these efforts is beyond the scope of this paper (interesigglidated yet.
readers are referred {81]). We only briefly review recent
efforts that are most related to this work.

Head motion synthesis: Some of the early work crafted3 SYSTEM OVERVIEW
a number of empirical rules to govern the correspon-
dence between input texts and head movenid@at 33; @

ove gaze synthesis, fewer research efforts have been

34]. An increasing amount of interest has been drawn et ¥ ¥ ¥

. . . . Head Motion Eye Gaze Eye Lid Motion
speech-driven head motion synthesis in recent ygars synthesis by GMMs synthesis by Synthesis Frequency
35]. For example, Grakt al. [3] studied the conditional oy a"dgfadi;"‘desce"‘ r Nocch Distibution

probabilities of pitch accents accompanied by primitivi Facialg;m're [ s vioior |—'| | Eye-'Ga-z;- |J i === |~=
head movement(g, nodding, nodding with overshoot, andi — — el -
abrupt swinging in one direction). Chuang and Bregli
built a database of head motion sequences indexed by pi
features. Then, new head motion can be synthesized
searching for a globally optimal path that maximizes the

match of pitch features. Researchers also trained varidtigure 1 shows the schematic overview of our proposed live
forms of HMMs for novel head motion synthesis basedpeech driven head-and-eye motion generator. Basically, i
on a collected audio-head motion data$®0; 36; 37; consists of three inter-connected modules: a head motion
38; 39. In addition, Gratch and his colleagues have resynthesis module (Section 5), an eye gaze synthesis mod-
ported statistical models that learn empirical rules fromle (Section 6), and an eyelid motion synthesis module
annotated conversation datasets to generate head md®ection 7). As illustrated in Figure 1, the live speech
ment (in particular, nodding) on listening agef®; 41; signal isthe shared inpuamong the three modules, and
42]. thus it functions as the natural moti@ynchronizeiin our

Fg. 1: Schematic overview of the proposed live speech
c&lyen head-and-eye motion generator.
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approach. Also, the three modules are sequentially inteecond setup (called the “Single-Dataset”). In this work,
connected in an elegant way, that is, the output of the helaoth the datasets are used for head motion synthesis, and
motion synthesis module serves as one of the inputs to thely the Dyad-Dataset is used for eye gaze and eyelid
eye gaze synthesis module whose output serves as onenotion synthesis.

the inputs to the eyelid motion synthesis module. . . .
P 4 y Head motion extraction. To extract head motion, we put

Another important employed component (but not illustratefdur markers on the head of the captured subject (the top-

in Figure 1) is thedata acquisition and processigodule. right panel in Figure 3). After the motion data is recorded,

Traditionally, a human subject has to wear a cumbersonttgee Euler angles of the head rotation in each frame are

eye tracker (like the one used|i@]) to record accurate eye calculated based on the four head markers. We denote the

gaze movement. In this work, to overcome this limitatiorthree Euler angles at timeas o;, ;, and~; , which are

we develop a novel mocap+video hybrid data acquisitiche yaw, pitch, and roll angles, respectively.

system to record accurate head movement, eye gaze, an
.

d : .
eyelid movement simultaneously (detailed in Section 4 eech feature extraction. We use the OpenSmile

Hence, the subtle and tight coupling among the thr olkit [52] to extract pitph and Ioudr_less featgres from_ the
channels of facial gestures are well captured in ourrea:brdreecorded spegch. In th.'s Process, .'tS sampling rate is set
dataset. to 24Hz, and its sampling window is set to 0.025 second.

Finally, we apply a contour smoothing filter with a window

size of 3 frames (0.125 second) to obtain the final pitch and
4 DATA ACQUISITION AND PROCESSING loudness contours. The pitch and loudness features attime
is denoted ap; andl,, respectively. Note that which speech
features are optimal to drive facial animation has been a
widely open research question for decades, as pointed out
by Brand[21]. In this work, we choose empirically the
combination of pitch and loudness to drive head-and-eye
motion.

Primary Subject

8 «
mdk Microphone lbm
5SS R DY/
MoCap 8 \ 6 oCap
5

cameras cameras

Auxiliary Subject

Camcorder 4.1 Eye Movement Data Acquisition

Fig. 2: L eft: lllustration of the hybrid data acquisition setup

Right: A snapshot of the data acquisition process. To accurately track gaze and eyelid motion in this work,

we use a Canon EOS t2i with a 50mm /1.8 lens to record
HD video from the face region of the subject. Synchronized

System setup. We use two data acquisition setups t ith the used optical motion capture system, this camcorder

record our needed training data. The first setup is a dyal 'ﬁtputs FullHD video at a resolution of 1920280 pixels

conversation scenario. As shown in Figure 2, in this SeWUPith a frame rate of 29.97 fps. The aperture is set to f/4 to

two h_uman sul?jects (ope Is .the primary sul_)ject gnd tr&%hieve enough depth of field, and the shutter speed is set
other is the auxiliary subject) sit face to face, with a dis&a

to 1/60s to remove motion blur. It is put at an approximate

of 1.5 meters, to have a natural dyad during the mocap - :
. : ~distance of 2 meters to the primary mocap subject, as
procedure. A VICON optical motion capture system Wlﬂi'\ primary b subl

¢ : o . : . cIJ.lstrated in Figure 2.

en cameras (forming a semi-circle configuration) is use

to capture head motion of the primary subject. A higur eye movement tracking algorithm is based on the
definition camcorder is used to record the eye movementagsumption that human skull is a rigid object and the center
the primary subject (refer to Section 4.1). And, a wirelessf each eyeball is located on the orbit. Thus, the centers
microphone is used to record the voice from the primagf both the eyeballs can be calculated based on the 3D
subject. We only capture the primary subject's motiolocation and orientation of the head, which can guide our
(i.e., head movement, eye gaze, and eyelid movement). &Ye tracking algorithm to identify the exact locations of
the cameras and microphone are synchronized and all the pupils. Our eye movement tracking process consists of
recorded data are resampled to 24 fps. Such multi-chanttglee main steps: camera calibration (build a mapping from
data synchronization is intrinsically supported by thedusd¢he motion capture coordinate system to the camcorder co-
commercial motion capture system and its software kit. Thigdinate system), subject calibration (determine theerent
second setup is a single subject’'s speaking scenario. Itoisthe eyeballs and the straight direction of view), and eye
designed to record a variety of high-fidelity head motiotracking (employ image processing algorithms to extraet th
while the captured human subject speaks with differeithage regions containing the pupils and compute gaze and
emotions. The subject is asked to speak a custom, phonegyelid openness).

balanced corpus while keeping his/her head movementélg

. mer a calibration. We use the Direct Linear Transforma-
naturally as possible.

tion (DLT) algorithm[53] to build a mapping from the 3D
In total, we captured 7 minutes data using the first setgpace of the motion capture system to the 2D space of the
(called the “Dyad-Dataset”) and 40 minutes data using tivédeo camcorder. A L-shape like pattern attached with 16
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colors are close to black and browne(, belonging to

the pupils); otherwise, assign 0 to them. Then, an open-
close operation is performed in the obtained binary result
to remove the hole within the pupil region. Example results
are shown in the bottom panel of Figure 3. Finally, in
each tracked frame, two eye gaze rotational angles are
calculated through a spherical coordinate transformdtion
assuming the tracked pupil center is located on the surface
of the 3D eyeball, and thus the two rotation angles in one
frame represent a gaze in this work. The eyelid openness
is calculated based on the highest point in the pupil region
Fig. 3: Eye tracking procesdop left: The used camera and further normalized to~01 (O for “fully f:losed”, 1 for
calibration pattern.Top right: The used marker layout Tully open”). Lastly, we average the tracking results oéth

in the subject calibration stefBottom: Examples of eye WO €YeS.

tracking results. Green dots indicate the eye probe regions

and blue dots indicate the pupils.

5 SPpPEecH-DRIVEN HEAD MOTION SYN-
THESIS

markers (shown in the top-left panel of Figure_ 3)is cqptur% proven scheme for live speech driven gesture motion
by both_the camera systems. The 3D Coordmate_ Otthe synthesis is to build optimal selection policies that cleos
marker in the motion capture coordinate system is denotgiGiiapje motion units from a motion library at runtirfes].

as (zi,yi, 2), and its corresponding 2D coordinate (in the;, vever, it cannot be applied directly to real-time head
video camcorder coqrdlnate system_), denpted;a,&i), 'S motion synthesis since a syntactic motion unit needs to
manually annotated in the synchronized video frame. Th ve a minimally effective length.¢., number of frames)
this co_ordlnate system mapping _can_be modeled by a 3 the case of real-time head motion synthesis, this will
4 matrix M, and the lens distortion is modeled using th&_ .o o noticeable delay in synchronizatiae.{out of

second order Brown's distortion mods4]. Finally, by sync) between the live speech and synthesized head motion.

solvmlg a systerfn of Ilgslar egu;tlons_ where f;he unknow e alternative would be to predict head motion way ahead
are elements of matridv and distortion coefficients, We ¢ i e speech, which is even more technically difficult

essentially build a mapping from any 3D pointin the motio“ not impossible.
capture coordinate system to its corresponding 2D point in
the camcorder coordinate system. In this work, we synthesize speech-driven head motion by
modeling the distribution between head motion and prosody
Subject calibration. In this step, we ask the subject to haveeatures. Theoretically, we can learn statistical models.
a straight look at the camcorder so that we can determinims or Gaussian Mixtures) to model the distribution and
the exact 3D head transformation that Corresponds to %r-corre|ation among mu|t|p|e h|gh dimensional obser-
straight direction of view. We also put 3 markers on thgation datasets such as head motion features and prosody
face to determine the centers of the eyeballs (the togmtures. However, in reality the training dataset is often
right panel of Figure 3). The 3 facial markers are carefullymited, so training such a model would suffer from the
configured so that the centers of the eyeballs are at thgrse of dimensionality. To tackle this problem, we em-
mid points between two of them. However, due to thgloy a divide-and-conquer learning strategy to model the
unavoidable human errors, the facial markers cannot Bgrrelation between head motion and speech feaf@@ls
placed precisely; thus, we still need to do a correctiogpecifically, in this work, we construct a simple Gaussian
to achieve the exact locations. We manually rectify th@ixture model to learn the distribution probabilities be-
2D positions of the eyeballs’ centers in the first vide@yeen each kinematic feature of head motion (e.g., Euler
frame by selecting their correct positions and computinghgles, angular velocities, etc) and prosody features of

the deviations. The obtained deviations are stored and usgfdech and then combine these models during the runtime
for other consecutive frames. synthesis.

Eye tracking. We put an ellipse-shaped sampling gridDur speech-driven head motion synthesis algorithm cansist
on the sphere centered at each eyeball. Since the averafgwo main steps, as shown in Figure 4: (1) At the
eyeball diameter of an adult is about 25mm and the sineodel training step, Gaussian Mixture Models (GMMs) are
of the eye is 2&10mm on averagd55], we set the trained to capture the cross-channel correlations between
radius of the sphere as 25mm and the size of the grid the speech features and the kinematic features of the
20x10mm accordingly. Then, each 3D point in this grid ihead motion at every frame of the training data. (2) At
mapped to its corresponding 2D point in the camcordére runtime synthesis step, an efficient gradient descent
video frame, and its color is extracted and thresholdesearch is employed to solve a constraint based optimization
After that, we assign 1 to the grid points whose pixgroblem, which finds the optimal head pose for the current
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time frame to maximize the posterior joint distribution
probability. It is noteworthy that, our head motion synikes

m
algorithm does not depend on a motion library at runtime. P(X) Z G o B (Xp) T2 (X i) )
Instead, it works at frame level, which means the algorithm V(2 |E |
directly generates the head pose for the current time frame
from the live speech. Here X = (k,p,1)T, m is the number of mixturesg;,
u;, and 3; are the weight, mean, and covariance ma-
trix of the ith mixture, respectively. We use the widely-

used Expectation-Maximization (EM) algorithm to train the
| A”E'e“ [ A”E'eﬁ [ A"E'ev | |Ve'°°'tV| fcceleration| | Prosodyfeatures | ahove GMMs model. Figure 5 shows the log-likelihoods of

é"' : ¥ the GMMs with different numbers of mixtures. Based on
M, @ * ’ MM, Jqmmgf Gradlient Descent | thjs figyre, the number of mixtures for all the GMMs is
Head | Motion [Synthesis| Model

[
=

_——————

H Optimization
l experimentally set to 10 in this work.
—| Prosody features (pitch + loudness) I
Learning Prediction -5
-10 ———————————————=— —Alpha
Fig. 4: Schematic view of the speech-driven head m0t|(1, 45 —Beta
synthesis module. At the learning stage, the joint prol 20 Gamma
ability density functions (PDFs) of kinematic parameter s Z= —Velocity
and prosody features are modeled as Gaussian MixtiS -0 7 Acceleration
Models (GMMs). Then, at the runtime prediction step -35
head motion is dynamically synthesized using the gradie 40—~ Numberof
descent optimization method to maximize the likelihood c. 123 45678 95101112131415

the joint PDFs, given the inputted prosody features.  rig 5; The log-likelihoods of the trained GMMs with

different numbers of mixtures. Note that all the trainingeda
are used to determine the number of mixture components.

5.1 Model Training

Some basic kinematic features of head motion are used ) )

in our model. In particular, for every time frantein the -2 Synthesis by Gradient Descent Search

training data, we extract its corresponding five kinematic

motion features: three Euler angles, 3;, and v;, the After the above five GMMs modelsGM M., ~ €
angular velocityv;, and the angular acceleratian. The {o,f3,7,v,a}) are trained, the problem of real-time head
first three parameters, 3;, and~;) are directly extracted Motion synthesis can be formulated as finding an optimal
from the recorded head motion (refer to Section 4), aftgad pose for the current time steiven the previous and

the other two parameters are derived from the three Euféftent speech features (1#pand previous head poses (1
angles (Eg. 1). to ¢ — 1). Given the speech featufe,,!;) at time stept,

we can solve for its optimal head motion kinematic features
by maximizing the following posterior probability via the

[ oy ] 1 Bayesian inference:
Ut = Bt - Br—1
L 7t | V-1 1)
[ ] Qr—1 Q2 (af, Bf,7() = arg mﬁax H P(kilpe, 1) =
at = Br | =2 Be—1 | +| B2 H O e o, Biv,a)
L Yi-1 Ve—2 arg max Pk, pt, lt)
. . ot Peye ke{a,B,v,v,a} P(pt’lt)
Then, for each kinematic parametere {«,3,v,v,a}, Subiect to Ed. (1
we obtain a training set of tupleS«:, p+,l:)}7,, where ubject to Eq. (()3)

p; and [, are the pitch and loudness of the speech at
time framet in the training data, anch is the total
number of frames in the training data. After that, based dyote that, in the above Eq. &(p:, ;) is a constant for the
the {(k¢, pt, 1) }}—,, we train a Gaussian Mixture Modelcurrent time stept, and thus, this term can be ignored.
GM M, to model the cross-channel probabilistic assocHowever, computing the angular velocity and angular
ation between the kinematic parameterand the speech acceleratior: at time stept depends on (i.e., constrained
features. Since the three features are continuous, the-crade) the Euler angles at time steps 2, t — 1, andt (see Eq.
channel probabilistic distributions are modeled using thB. We can remove these constraints by plugging Eq. 1 into
following function: Eq. 3 and yield the non-constrained optimization as follow:
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operation in the original space of gaze and head motion.

v e Thus, our gaze synthesis model is essentially nonlinear.

(az, B, 7) = arg max. [  Plsepli)x Note that although our gaze synthesis method is inspired

r€{af7} by the work of[45], their approach can only model the

P (H[ 5t } _ [ ;gi } ,pt,lt> % linear coupling b_etween gaze gnd head njovgm.ent a_nq the

vt T speech channel is completely ignored, which is insufficient
P(H[ i —2[ 5 }+ [ 5 ]

7t Vi1 R

Then, we adapt the Gradient Descent search techniquelqofon((]l)w;up sl_ect|ons, we f|r|st brle;fly rewevxll the Nbg(él:(A
find the optimal tupldaz, 32, ~¥) by maximizing the above ground of nonlinear canonical correlation analysis ( )

) Section 6.1), and then describe our NDCCA-based gaze
Eq. 4, assuminda;_,, 51,7 1) and (a7_o, Gf0,77a) ¢ ) g

are given (i.e., synthesized in previous time steps). No?gntheas algorithm (Section 6.2).
that, the P(.) function in Eqg. 4 is not always continuous
and differentiable with respect tev; 3; v:]7'; however, it
is only non-differentiable at one particular point, andreve
this happens, in practice, the gradient descent searchjwoe
immediately bring the solution to a differentiable positio
at the next step.

] 4 to model the sophisticated cross-channel association gmon
1Pty bt @ the gaze, head motion, and speech.

.1 Nonlinear Canonical Correlation Analysis

Ianonical Correlation Analysis (CCA) is traditionally
used to model the underlying correlation between two
datasets[57]. Assumingh € R? ande € R? are two
Since natural head motion is continuous, the head posenailti-dimensional observations, in traditional CCA, we tr

t is expected to be reasonably close to the head posdaitfind the basis pairas € RP andv € R? so that

t — 1. We randomly generate an initial (starting) solutiothe correlation between the projectiops = «'h and

for the Gradient Descent search from the following normagl. = v'e is maximized. Using the Lagrange multipliers, we
distribution (Eg. 5), where the standard deviation par@ametan reformulate this problem to a constrained optimization
o is computed from the feature distribution in the training58].

data.

1 1
Ir&B;}XE{(yhye) + 5/\}1(1 - y}%) + §A6(1 - yg)} (6)

sty,=u"handy. =v'e

(ataﬁta/yt) = (a:—laﬁt*—la/yt*—l) +w (5)
w ~ N(0,0?)

Note that the above gradient descent search is performgfiere £{.} denotes the expected value operator.
in a low, three dimensional space and the generated initial

solution (guess) is reasonably close to the optimal on|ié'; order t20 bound the bases, the .ter%v\h(l —yi) +
thus, the optimization process can converge to the locahe(1 — y¢) is added to limit the variances gf, andy.,
maximum very quickly. In our experiments, we found-€. E(y; = 1) and E(y? = 1). Here, the two Lagrange

that the optimization process typically took on average Imultipliers A, and \. are used to control the strength of
iterations to reach the local maximum. those soft constraints on the variancegypfandy.. Then,

the constrained optimization problem (Eqg. 6) can be solved
by a linear neural network as proposed by Lai and Fyfe
6 EYE GAZE SYNTHESIS [58]. This linear neural network is trained by the following
joint learning rules:
It has been well documented that eye gaze has a measurable
correlation with head motion and spedéh §]. Therefore,
in order to capture the intrinsic gaze dynamics and the sub-

) ; Au = nh(ye — M\yn), A = no(1 — 43
tle coupling among gaze, head motion, and speech features, = nhly nYn) n =01 = yh)

— _ 2
we design a Nonlinear Dynamic Canonical Correlation Av =ne(yn = Aeye)s AAe = mo(1 = y)
Analysis (NDCCA) scheme for the gaze synthesis task in
our model. Wheren andng are the learning rates.

Specifically, we first nonlinearly transform the recordetdsing the above training process, we can find a set of
gaze, speech features, and head motian, three Euler min(p, ¢) uncorrelated base pairs where thtéh pair can
angles) to a high-dimensional feature space. Then, Wwe denoted a¢u’,v*). For convenience, we can put those
perform linear Dynamic Canonical Correlation Analysibase vectors together to form matridéss RP*" andV €
(DCCA) to model the intrinsic dynamic coupling betweei®?*", whereu® is thei-th column ofU andv? is thei-th
the different signals, inspired by the work pf5]. Since column of V. Using the set of base pairs, we can project
the first transformation is nonlinear, any linear operation the observationg and e into the reduced coordinates as
the transformed feature space corresponds to a nonlinésiow:
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one of the inputs to our gaze synthesis model, since the
correlation between eye gaze patterns and speech loudness
features has been previously reporfdd].

paybl

=U"h (7)
Ve

é

Specifically,n denotes the total number of frames in our
Since our final goal is synthesis, we also need to builgt&ining data set. Both the head motion and speech loudness
back mapping from the projectionto the original datz. features in the training data are combined frame by frame
This back mapping can be modeled as a linear regressirt head-speech datagéi, : ¢ = 1..n} (whereh, € R* is
as suggested ifi26], in which the back mapping matrix the head-speech frame at time stgpand the extracted eye

V* € R™ is solved by linear least squares as follow: 9aZe dataset is denoted fs : ¢ = 1.n} (wheree, € R?
is the eye gaze at time step. Then, the NCCA-based

coupling model (Section 6.1) is trained to build an eye gaze

. & T ) rxa synthesis model that connects the eye gaze patterns with the
V= arg m‘}nz IV er—ell” ,VeR (8) head-speech characteristics. As such, the projectiorixnatr
t=1 U, the back projectioV*, and the coupling matrix’. can

Wheren is the total number of training examples. be determined (refer to Section 6.1).

However, the obtained linear correlation may not be able fgPanding NCCA to NDCCA. The above trained
capture the complex nonlinear association between the tNGCA model captures the cross-channel association among
datasets. As such, we use the kernel mapping mei2@d spee_ch, gaze, and head movement, but the intrinsic gaze dy-
to construct a nonlinear CCA in order to establish 4amics are not modeled. In this work, we choose to further
nonlinear coupling between the two datasets. Thus, Eq2§d the gaze dynamic model proposed in the worfdf -
can be reformulated as follows (Eq. 9): to tackle this Ilmltatl_on. In partlcu_lar, the gaze dynamics
are modeled by a linear regression matdx € R2x2,
This gaze dynamic model can be solved by the linear least
i — UTk(h) 9) squares in Eqg. 12, which minimizes the sum of squared
errors between the gaze of two consecutive time fratnes

Wherek is a non-linear kernel function. Note that to avoiaandt — 1 projected into the reduced coordinate system.

solving the backward mapping at the runtime, we only
apply the non-linear mapping function to. The kernel -
function in this work is experimentally set to the following A — argmmz lée — Ae,1])? ,AeR>?  (12)
A - )
t=1

L:RP _ RP (10) Where A* is the dynamic transition matrix to be estimated.
o s Given {¢; : t = 1..n}, A* can be efficiently solved45)].
h= @ Stgi=hi+hiVi=1.p To the end, we construct a NDCCA model for our eye gaze

- . .__synthesis.
After the original dataset is transformed to the nonhneay

space, the objective function (Eq. 6) can be used agabaze synthesis. Given the live speech input and the synthe-
to solve the desired/ and V. Then, we project the sized head motion at the time frarth&om the head motion
dataset into the reduced coordinatésé) and perform the synthesis module (the combined input is denotef,3swe
following linear regression (Eq. 11) to solveé. € R?*?, can synthesize the accompanying eye gaze using the above
the numerical coupling matrix betweénandé. trained NDCCA model, described as follows.

The synthesis procedure is straightforward after theitrgin
& . s process, where we determine the projection mdaifixeq.

Ce = arngmZHCht —&l* ,CeRY? (11) ), the back projection matri¥* (Eq. 8), the coupling
t=1 matrix C. (Eqg. 11), and the dynamic transition matk

R Eqg. 12). Basically, we first computg using Eq. 13.
Where (h, é;) denotes thel-th example in the training (Eq ) y P 9=

dataset of» examples.

ér = C.U k(hy) (13)
6.2 NDCCA-based Eye Gaze Synthesis

Now we describe how to use the above NCCA to furthérrhen’ the dynamic transition matriA* is used to further

build a dynamic coupling model for eye gaze synthesis. &gnoothet (Eq. 14).

mentioned in Section 4, a head motion frame is represented

as three Euler angles, and an eye gaze is represented as two

rotation angles. We also use the speech loudness feature as €t = Mér+ Aa(A%é-1) (24)
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In the above Eg. 14, we empirically set two weight coethe talking and listening modes are close to the normal
ficients \; and )2 to 0.7 and 0.3, respectively. Finally, thedistribution[60].
outputted eye gaze can be reconstructed using the following

Eq. 15 InL =~ N(p,o?)

(16)

In Eq. 16, L represents the blink pattern. The two parame-
ters, ando, in the above Eq. 16 are determined through
data fitting: ©=21.1 ando=3.6 for the talking mode, and
1=15.4 ando=3.9 for the listening mode.

* 1 A

[ Vv €t (15)

7 EYELID MOTION SYNTHESIS

7.2 Gaze-Evoked Eyelid Motion Model

|Head I\/Iotionl | Loudness I : Pattern Filter |
v v

Log-normal
Distribution

) 4

!

Non-negative Linear
Regression

Non-linear
Dynamic CCA

In the psychology literaturs9], the relationship between
eyelid motion and eye gaze is typically referred to as
gaze-evoked eyelid motiohhe gaze-evoked eyelid motion
usually starts simultaneously with the eye gaze, and its
magnitude often increases in accordance with the amplitude
of the eye gazd50]. We propose a non-negative linear
regression coupling model to build the connection between
eyelid motion and gaze. We choose the non-negative linear
regression model since it can reduce overfitting in the
learning process.

|
iVquntary Eye Lid Motion i+i Involuntary Eye Blink :

Fig. 6: Pipeline of the eyelid motion synthesis module.

Eye Gaze Eye Lid Motion

There are two major categories of eyelid motionvol-
untary blinkandvoluntary eyelid motiod51]. Involuntary
eye blink is for the protection of the eyes and it is usuall
fully close, while voluntary eyelid motion is entwined in
human psychology and gestueeg, gaze-evoked blinks9;
50]. Inspired by this eyelid motion classification, we d
compose eyelid motion into two components: involunta
eye blink and voluntary eyelid motion, and model them se
arately. Basically, the voluntary eyelid motion is modele

X\ssuming the extracted eye gaze datasdkjs: t = 1..n}
(e; € R? is the the eye gaze in time fram@) and the
cgaze-evoked eyelid motion dataset{is : ¢ = 1..n}; here

€ R is the acquired eyelid motion minus fully closed eye
link in time framet. Specifically,b; is a normalized value
etween 0 (closed) and 1 (open), as described in the data

through a non-negative linear regression model, and t
involuntary eye blink is explicitly described as two Log
normal distributions, constructed via data fitting. Figére
shows the pipeline of the eyelid motion synthesis.

7.1 Involuntary Blink Model

ﬂ(équisition Section 4. We use the non-negative least-squar

technique[57] to learn the linear regression matr¥, <

R'*2, This learning is done by minimizing the following

Eq. 17.

(17)

Cy = argmgn; [|C.er — by||?

As reported in the literaturgsQ], eye blink rate patterns
of normal subjects follow a certain frequency distribution
Also, the blink pattern of a person generally has a strong
correlation with his/her conversational role, in partail 7.3 Eyelid Motion Synthesis
speakers exhibit higher-frequency blink than lister{dis

Subject to:C' € R'*? andC > 0

_ _ ) ) . Given a synthesized eye gaze at the time frame, we
In this vyork, we _mtroduce a S|mpl_e yet effectw_e_ eye _b_l'nléan use the above constructed non-negative linear coupling
generation algorithm by constructing a probabilistic st ., J4a| to predict the voluntaryi.¢., gaze-evoked) eyelid

bution model as follows. First, we analyze the recordedqyion 5, by computing the following linear equation
eye blink data and construct two blink rate d|str|but|or(\Eq' 18).

models (one for the talking mode and the other for the
listening mode). Then, in the blink synthesis process, we
first determine the mode (talking or listening) based on
the live speech input and then compute eye blink using
its corresponding blink rate distribution model.

bt = Cbet (18)
Also, we can use the above constructed Log-normal proba-
We experimentally found that two different Log-normability distribution models to generate the involuntaryriidi
distributions (Eq. 16) can be used to soundly fit the recordédby sampling blink rates according to the speech loudness
blink data in the talking and listening modes, respectivelfeature (i.e., determine the talking or listening mode)e Th
Our empirical finding is also consistent with the previousampling equation for the Log-normal probability distrbu
reports by other researchers that blink distributions fithb tion is as follows (Eq. 19):
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one between the two clips (forming a comparison pair),
which makes the decision much easier and thus increases

— 17 _ _ut+oN(0,1) . i .
P(l; = blink) = e* (19)  the accuracy and robustness of the subjective evaluation
i . . o outcomes.
The final synthesized eyelid motion is the sum of both the
voluntary eyelid motiorb; and the involuntary blink,. In all the user studies, the same 3D avatar model and the

same resolution of 320*320 pixels were used in all the clips.

A total of 20 student volunteers participate in all the three
8 RESULTS AND EVALUATIONS comparative studies. Each comparison pair was displayed

on a 1280x1024 LCD monitor with a 0.6m distance away
We tested our head-and-eye motion generator by inputtiffgm the participants. Between the two animation clips
various audio clips including live speech and pre-recordg§l each pair, the participants were asked to select the
SpeeCh. We found that most of the SyntheSized results e which appeared to be more natural and perceptua”y
realistic and perceptually believable (example snapsdrets realistic for them. They were allowed to leave undecided
shown in Figure 7). choices if they cannot decide which clip is perceptually
better (that is, perceptually indistinguishable for them)
To counter balance the order of the visual stimuli, the
comparison pairs were displayed in a random order for
each participant. The participants can choose to play the
two animation clips in a pair one after another (do not need
to play them simultaneously) and they can view the clips
for unlimited times before made their decisions. Figure 8

Fig. 7: Example snapshots of synthetic avatar head and &yws a snapshot of a side-by-side comparison pair used
movement based on live (or pre-recorded) speech input fayihe evaluation.

our approach.

Runtime performance. Our live speech driven head-and-
eye motion generator is highly efficient in terms of runtime
performance. We measured the average running time of our
system (implemented in C++ without GPU-acceleration)
on an off-the-shelf desktop computer (configuration: Intel
Quad Core 2.8GHz, 4GB RAM, Windows 7 OS). The used. )
3D avatar model has 30K triangles. The average runnifigd- 8: A snapshot of the user study interface. The com-
time for each frame synthesis in our system is about 21 nféand buttons and the mosaiced avatar mouth region are
which is competent to ensure the whole system to run B@gnified.

24 fps (the minimum real-time frame rate). We also found

that within the measured 21 ms (one cycle), our motion

synthesis module took significantly less computing tim&.1.1 Head Motion Comparative Study

than other supporting modules.§.,mesh deformation and
rendering).

In this study, we first manually segmented the first minute
of the test speech dataset published by Lewheal. [12]
to 10 short audio clips. The duration of each audio clip
8.1 Comparative User Studies was 5-10 seconds. Then, based on the 10 test audio clips,
we generated a total of 50 head animation clips (with
In order to evaluate the effectiveness of our approach, \wadio) using five different approaches: 10 by the prosody-
conducted three comparative user studies: i) a head motaniven body language synthesis algorithm by Levine et al.
comparative study, ii) an eye motion comparative study, ar@d [12], 10 by the Mood-Swings approach by Chuang et
iii) a facial gesture comparative study. We employed tha. '05 [11], 10 by the HMMs-based approach by Busso
well-established paired comparison methodoldg$] for et al. 05 [10], 10 by using the captured (ground-truth)
the three user studies. Basically, we used various methdasad motion, and 10 by our approach (this work). The
(include ours) to synthesize animation clips and then asksyhthesized animations h¢2] were directly extracted from
participants to compare them in a paired way. Althougtheir published results. In our implementation of the Mood-
our proposed method can perform online, we still useswings framewor11], we first manually segmented the
pre-recorded speech clips for the user studies due to theaining data to 643 sentences and then further segmented
repeatability (so the same pre-recorded speech clips cartle sentences to 8135 pitch segments. The path search in
inputted to various synthesis methods for result compatie Mood-Swings framework was implemented by retaining
son). And, instead of asking the participants to explicitlthe top 10 pitch matches only. In our implementation of the
rate the naturalness of individual facial animation clipsiMMs-based approadi 0], we quantized the head motion
the participants were only asked to select the more natuEaller angles to 16 clusters and used them to train the same
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number of HMMs. Based on the 50 head animation clipsptes in our user study; otherwise, if there’s no such censis
we produced 40 side-by-side comparison pairs: 10 pairs fency, we can interpret that the obtained user study results
each comparison case, that is, 10 pairs for the comparissme somehow contaminated (e.g., voting randomness) and
between our approach and each of the other four approactiass invalid. In this case, we cannot perform further analys
(i.e.,[11; 10; 12 and the ground-truth). on such study results. Also, we further use the Chi-Square
test statistics {?) to compute the statistical significance of

5 Motion | Levine| Busso [Chuang] the COA[63).
w X p value Capture|et al. '09 et al. '05| et al. '05 o ) .
0382 496971<0.0010 9/10 | 810 | 1177 | 137 Here we take #1 pair in the head motion comparative study

0.305/ 40.799]<0.001] 5/2 1177 | 12/7 | 11/8 as an example: As shown in the first row of Table 1, among
0.347| 45.599][<0.001] 5/11 o/7 | 14/6 | 11/8 the total 20 participants, 9 participants rated our apgroac
48.799]<0.001 8/10 97 | 12/7 | 12/6 better than the original motion capture data, 8 rated ours
0.536) 67.197)<0.001) 10/9 | 8/10 | 14/6 | 11/9 | petter tharf12], 11 rated ours better thdh0], and 13 rated
0.543 64.199]<0.005 7/10 [ 8/10 | 15/4 | 1277 ours better tha11]. Following the test method proposed
0.431] 55.197|<0.001] 8/9 11/9 | 12/6 11/8 by Kendall and Babington-Smitt62], the COA of |
0.619 76.000{<0.001 8/ | 1077 | 12/7 | 14/5 | oY hendaland babinglon-smilibzl, the LOA of sampie
0.880/106.400 <0.001 1078 | 1277 | 12/3 | 1455 | #1 for "head motion realism comparison”is= 0.382, its

10]/0.108 26.419] <0.01| 4/11 8/4 | 8/10 | 8/11 x? is 49.697, and its correspondipgvalue is 0.0011% x>

. —__.is 29.59) given DOF = 10 (3). Thus, our Chi-Square test
TABLE 1: Consistency and agreement test statistics fg{ )9 ) d

he head . X Ut T b atistics results indicate that for the used head animatio
the head motion comparat|ve cva uatlons.. € number p Epair there was a statistically strong agreement among the
(e.g., X/Y) shown in each cell of the right part of theE

©| oo| | o] 01 | w| | | H#
o
w
~
o1

. articipants. The COA test results of all the head animation
table denotes that the total number of the participants w Qirs are shown in Table 1. It is noteworthy that in Table
voted for our approach is X and the total number of th

- . £ (follow-up Tables 2 and 3 have the same problem), the
participants who voted for the other comparative approagh v« % and Y in one entry may not always sum to 20

rﬂfﬁe total number of the participants in our user studies)
because the participants in our user studies were allowed
to leave undecided choices if they cannot decide which clip

is perceptually better (that is, perceptually indistirsiaible
To eliminate any potential perceptual influence of ey®r them).

motion, we did not add eye motion to any of the animation
clips (.e., the eyes stayed still, looking straight ahead;3
Also, for each test audio clip, we generated its lip-sync
motion using an ad hoc approach, and the same lip-sywe randomly selected 10 test audio clips from the captured
approach was used by all the above five different heagbtion dataset (described in Section 4) and the 10 test
motion generation approaches. Moreover, we intentionalljips were not used in the model training stage. Based
applied a strong mosaic filter to the mouth region in alin the 10 test audio clips and their corresponding ground-
the clips in order to reduce potential perceptual disteasti truth (recorded) head motion, we generated a total of 40
from the non-perfect, synthesized lip-sync quality (réter head+eye animation clips (with audio) using the follow-
Figure 8). It is noteworthy that in this comparison, we chosfg four different approaches: 10 by the linear head-eye
to compare our approach with the Levine et al. 09's worgoupling algorithm by Ma and Deng '0Bt5], 10 by the
[12], not their latest work13] due to the following reasons. “eyes alive” model by Lee et al. '08], 10 by using the
First, the work of[13] primarily focuses on hand gesturepriginal captured eye motion, and 10 by our approach. In
synthesis and its algorithm even does not consider any heag implementation of the “eyes alive” modél], we used
motion features, while the work df.2] explicitly includes the empirical rules and parameters presented in their work
head motion kinematic features. Second, the dataset uﬁ@(.benerate the eye gaze. In our implementation of the
in [13] is not publicly accessible at this point, while theinear head-eye coupling algorithf5], we used the same
dataset off12] is publicly accessible, which makes a fairlataset as in our approach to train its statistical model. We
comparison possible. produced 30 side-by-side comparison pairs: 10 pairs for

Agresment test of the subjective evaluation outcomes: each comparison case, that is, 10 pairs for_the comparison
between our eye motion synthesis algorithm and each

We carried out a stafistical tesagreement tesf61], to of the other three eye motion generation approaches. It

see whether the participants rated all the pairs in a Cog_noteworthy that since our approach is only driven by

sistent way in our comparative user studies. Basically, tri]r'latyitive inputs such as speech and head motion, in this

agreement test is used to indicate the overall agreemen . . .
) : . : comparative study, we did not compare our approach with

among all the votes in paired comparisons, which has beén . . ;
: ) ) : . the attention-driven gaze and blink mod&D] due to the
widely used in paired comparison studies as an appropn%tI

measure[61; 45. Specifically, in this work, we choose
to calculate the Coefficient of Agreement (COE92] to For each test audio clip, we essentially had 4 animation
demonstrate that there is certain consistency among usgigs (one for each eye motion generation approaches, see

original motion capture data, Levine et al. '082], Busso
et al. '05[10], and Chuang et al. '0&11].

1.2 Eye Motion Comparative Study

ﬁiculty of a fair comparison.
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above). The 4 animation clips used the same pre-recorded #| u x? |p value (';Aa(p))ttll?rne
(ground-truth) head motion and the same synthesized lip- 710379 5200 <005 979
sync motion. Like in the above head motion comparative 510221 5200 <0:05 =I5
study, we applied the same mosaic filter to the mouth region 370221 5.200] <0.05| 7/10
in all the clips due to the same reason. Note that two chosen 410.2211 5.200] <0.05| 7/11
approache$8; 45 cannot generate eyelid motion or blink; 510.221 5.200| <0.05| 7/5
as such, we kept their original forms and did not add eyelid 60.221] 5.200] <0.05| 7/11
motion to their corresponding 20 (=10x2) clips. We carried 7]0.378 8.200] <0.05] 9/9
out the same COA statistical test as in the above head g 8'%2 1%2(%)0 ig'gi %1/8
motion comparative study. The COA test results of all the 1010157 4.000| <0.05| &/11
pairs in the eye motion comparative study are shown in
Table 2. TABLE 3: Consistency and agreement test statistics for the
facial gesture comparative evaluations. The number pair
#| w 2 |p value Motion Le? Ma anyd (e.g., X/Y) shown in each cell of the right pa_rt of the
Capture|et al. ‘02| Deng 09 table denotes that the total number of the participants who
% 8%3 sgigg igggi 18;‘71 igg iéjg voted for our approach is X and the total number of the
To-1011 44500 <0:001 ST = par‘uupants who voted for the original motion capture data
410.119/49.000 <0.001 4/1 8/0 17/2 Is Y.
510.158/60.197/<0.001] 8/1 16/2 13/5
6 [0.148/57.199 <0.001] 6/14 15/1 14/5
; 8-%(1)2 Zgggg 28-881 gﬁg 187//12 %g two-tailed independent one-sample t-test and reported the
9 |0.065/33.600 <0.001] 5/2 11/7 8/5 p-value for each row in Figure 9.
10]0.080/38.000 <0.001] 7/2 | 8/10 | 12/4 In the head motion comparative study, there were 96 ratings

TABLE 2: Consistency and agreement test statistics f§iom the participants who voted our approach of&2],

the eye motion comparative evaluations. The number p#ihile 78 ratings from them who votefil?] over ours.
(e.g., X/Y) shown in each cell of the right part of theAs clearly illustrated in Figure 9, our approach gained
table denotes that the total number of the participants whipre preferred ratings from the participants than the other
voted for our approach is X and the total number of thi@ree algorithms (excluding the original captured motion)
participants who voted for the other comparative approabfganwhile, our approach had fewer preferred ratings (11
is Y. The three comparative approaches are: transferrif@yver votes) than the original captured head motion, but the
original motion capture data, Lee et al. '0g8], and Ma difference is statistically insignificant (p-value is 0734

and Deng '09{435]. In the eye motion comparative study, the eye animation

results by our approach gained significantly more votes than

the other two algorithmg8; 45. This is not surprising,
8.1.3 Facial Gesture Comparative Study since the two algorithmg8; 45 did not model eyelid

o ~ motion, given the fact that eyelid motion is one of the vital

Based on the same 10 test audio clips (i.e., those used in &B%ponents of realistic avatd#sl]. In our experiments, our
above eye motion comparative study), we generated a tg{ghnosed eye motion method outperformed the other two
of 20 facial gesture (head, gaze and eyelid) clips_ with audifethodd8: 45: however, it is not completely clear which
using two different approaches: 10 by our facial gestufgetor(s) (i.e., gaze, eyelid, or combined) contributette t
generator and the other 10 by using the original capturgglicome difference, since our proposed method models two
head and eye motion. Similarly, we applied the same mosgigtors (gaze and eyelid) simultaneously while the other tw
filter to the mouth region in all the clips. Based on thgply consider one factor (gaze). In addition, our approach
resultant 20 animation clips, we produced 10 side-by-sig@ined slightly fewer votes (6 fewer votes) than the origjina
facial gesture comparison pairs. The COA test results of %ﬂ\ptured eye motion, and a significant portion of votes
the pairs in the facial gesture comparative study are shoyare “undecided choices” (in other words, difficult to make
in Table 3. a pick for some of the participants), which is additional

evidence to support that the eye motion results by our

approach are reasonably close to the captured (ground-
8.2 Analysis of User Study Results truth) eye motion.

Through the above COA tests, we validated that the ratimg the overall facial gesture (head, gaze and eyelid) com-
results of our paired comparisons were statistically valigarative study, our approach gained fewer votes (15 fewer
Thus, based on the obtained user ratings, we summed up\tbtes) than the original captured motion (including eye
user selections in each comparative user study. The resaltsl head motion). Although the voting difference is still
are summarized and illustrated in Figure 9. To quantify thstatistically insignificant (p-value is 0.187), which indtes
statistical significance of the results, we also performedtlaat the synthetic facial gestures generated by our approac
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were reasonably close to the captured motion; howevapplications in entertainment, virtual worlds, HCI, ety B
they cannot completely fool the participanise(, cannot dynamically synthesizing facial gestures at frame levet, o
tell the difference between the synthesized motion and thpproach does not need to use a pre-constructed motion
ground-truth ones), and there are some room to furthérary (by contrast, a motion library is needed [ih3]);

improve our algorithms.

Head Motion

o
p:o.o}; e:?n';?’
oo s
p=o.o‘g’5 ecthau"a'n"gs

Eye Motion

hence, our efficient runtime motion synthesis module has
a very small size, which makes it possible to deploy
our approach to modern smartphones that have an ever-
increasingly powerful computing capability these days.

In the future, we plan to explore the possibility of exterglin
the current framework for the synthesis of other facial mo-
tion (e.g.,lip-sync) and hand gesture. As the first complete
computational model for the coordinated generation of head
motion, eye gaze, and eyelid motion, several limitatiois st
exist in the current work.

Motion
p=0.521 A Capture
b [ 35 Jone
132 35
p=0.001

Deng ‘09

Lee
p:0.03:[ 137 etal. ‘02

Facial Gesture
Motion
p=0.187 e 91 Capture

Fig. 9: The subjective evaluation results of our three com-
parative user studies. Black boxes at the left side indicate
the total number of times when the participants voted the
results by our algorithm over those by the other approach
(in a pair). White boxes at the right side indicate the
total number of times when the participants voted the
results by the other approach over those by our algorithm.
Gray boxes in the middle indicate “undecided choices”
(i.e., perceptually equivalent). The symbselindicates the
computed statistical significance according to a two-thile
independent one-sample t-test with p-valkae.05.

9 DISCcUSSION AND CONCLUSIONS

In this paper, we propose a novel, fully automated frame-
work to generate realistic head motion, eye gaze, and eyelid
motion simultaneously based on live or recorded speech
input. Its core idea is to learn separate yet inter-related
statistical models for each component (head motion, gaze,
or eyelid motion) from a pre-recorded facial motion dataset
In this way, the synthesized facial gestures are intrifigica
synchronized, that is, the speech signal serves as thedshare
control signal across different algorithm modules. In addi
tion to our contribution in automated head-and-eye motion
generation, we also design a novel mocap+video hybrid
data acquisition system to simultaneously record and auto-
matically extract accurate head movement, gaze, and eyelid
motion. We believe that, not limited to this work, such a
high-fidelity, multi-channel data acquisition approactn ca
be potentially used in numerous virtual human modeling
and animation, affective computing, virtual reality, an@IH
applications.

Since our framework can synthesize realistic head-and-eye
motion from live speech, it can have numerous potential

First, our current approach does not consider the
semantics enclosed in the input speech; thus, certain
meaningful non-verbal facial gestures may not be
accurately generated. For example, in many cultures,
when people agree to something, they tend to nod
their heads. However, extracting and incorporating
such semantic information from speedhd., certain
recognized keywords), via advanced speech recogni-
tion and language processing techniques, to improve
our current approach may be a feasible solution, since
the feasibility of such a paradigm has been demon-
strated in theoffline synthesis case of the speech-
driven body language controlldd3]. However, this
direction would face many challenges since extracting
contextual information from live speech is a non-trivial
task, and it may need to introduce a certain amount of
delay to the process.

Second, different from various global (with respect to
the whole utterance) optimization schemes extensively
used in previous efforts, our current approach only
considers and utilizes prior and current information
available in the live speech to generate realistic fa-
cial gestures in real-time, and thus it does not take
advantage of forthcoming information in the speech.
However, such a non-global optimization strategy may
not be the optimal solution to offline facial motion
synthesis driven by pre-recorded speech. Also, velocity
and acceleration only add the temporal information in
a short period of time and thus the suprasegmental
relationship between speech and gestures may not
be fully captured in the current model. However,
capturing suprasegmental relationship between speech
and head motion is very challenging and it is definitely
a good direction for future exploration.

» Third, the speaker-independent factor is not investi-

gated in our current work, although we show that our
approach can generate plausible head-and-eye motion
even if the input speeches are from different human
subjects (i.e., not the training/captured subject), such
as the audio clips of different film actors that are
chosen to drive animations in the enclosed demo
video. However, our current work does not have a
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proven methodology basis to conclude its true speakér4]
independence. In the future, we would like to investi-

gate a systematic solution to this issue such as properly
normalizing speech features. [19]
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