Statistical Power Consumption Analysis and Modeling
for GPU-based Computing

Xiaohan Ma
University of Houston

Mian Dong
Rice University

ABSTRACT

In recent years, more and more transistors have
been integrated within the GPU, which has resulted
in steadily rising power consumption requirements.
In this paper we present a preliminary scheme to
statistically analyze and model the power consump-
tion of a mainstream GPU (NVidia GeForce 8800gt)
by exploiting the innate coupling among power con-
sumption characteristics, runtime performance, and
dynamic workloads. Based on the recorded run-
time GPU workload signals, our trained statistical
model is capable of robustly and accurately predict-
ing power consumption of the target GPU. To the
best of our knowledge, this study is the first work
that applies statistical analysis to model the power
consumption of a mainstream GPU, and its results
provide useful insights for future endeavors of build-
ing energy-efficient GPU computing paradigms.

1. INTRODUCTION

Modern GPUs are integrating more and more tran-
sistors on their chips (e.g., NVidia GeForce GTX
280 contains 1.4 billion transistors), and thus suf-
fer from increasingly higher power consumption re-
quirements. The direct consequences of its higher
power consumptions are growing dissipation of heat,
more complex cooling solutions, and noisier fans.
From the perspective of GPU programmers, how
to develop energy-efficient GPU codes (i.e., perfor-
mance per watt ratio) becomes a challenging and
open ended issue. Before this research issue can be
fully resolved, analyzing and modeling the power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Lin Zhong
Rice University

Zhigang Deng
University of Houston

consumption of runtime GPUs is clearly a priority.

Real-time power modeling on CPU typically uses
detailed analytical power models [3, 2] or high-level,
black-box models [1, 5] based on CPU performance
counters. Our work employs a similar high-level
methodology to model GPU power consumption.
Earlier studies related to GPU power modeling have
different focuses. Sheaffer et al. [7, 8] proposed a
power consumption model based on a hypothetical
GPU architectural simulation framework by extend-
ing existing well-studied CPU power models. Ra-
mani et al. [4] proposed a modular power estima-
tion framework at an architectural level primarily
for GPU designers. Takizawa et al. [9] proposed the
SPRAT programming framework that dynamically
selects an appropriate processor (CPU or GPUs) so
as to improve the overall energy efficiency; however,
it ignores GPU runtime workloads.

In this work, we present a novel scheme for ana-
lyzing and modeling the power consumption of GPU.
Based on the recorded power consumption, run-
time workload signals, and performance data, we
build a statistical regression model capable of dy-
namically estimating the power consumption of a
runtime GPU based on a selected subset of GPU
workload signals. Our statistical model bridges the
dynamic workloads of runtime GPUs and their es-
timated power consumptions. To the best of our
knowledge, our work is the first-of-a-kind effort that
applies statistical analysis and modeling to the power
consumption of a commercial mainstream GPU (our
work uses the NVidia GeForce 8800gt graphics card),
and its results provide useful insights for future en-
deavors to construct energy-aware GPU computing
paradigms.

2. DATA ACQUISITION

Power Consumption Data Acquisition: We
recorded power consumption data for the chosen
graphics card (we define its power as GPU power
consumption in this paper) using a customized data

acquisition setup. The test computer ran programs
designed to test the GPU (e.g., benchmarks), the
host computer ran specialized data recording soft-
ware, and a FLUKE 2680A power acquisition sys-
tem was used to record power readings. In our ex-
periment, the test computer was equipped with a
NVidia GeForce 8800gt graphics card with a 200
Watt power specification, AMD Athlon 64x2 3.0GHz
Dual-Core Processor, 2GB memory, and a Corsair
TX 750W power supply. The FLUKE 2680A power
acquisition device with two fast-analog-input mod-
ules is able to perform 1000 readings per second.

The chosen graphics card has two separate power
planes. One is supplied by the 12V power plane of
the PCI-E bus and the other is directly connected to
a 12V output of the ATX power supply. Therefore,
we sought to measure the power supplied by each
power plane separately and use the sum of the two
as the total power consumption of the graphics card.
To obtain the power supplied by the PCI-E bus, we
choose to use a riser card in-between the graphics
card and the PCI-E slot on the motherboard. Then,
we placed a 0.1 ohm resistor at the power pin of the
riser card to enable current sensing. We calculated
the power supplied by the PCI-E bus by multiplying
the current and voltage at the power pin of the riser
card. To get the power supplied by the ATX power
supply, similarly, we placed a 0.1 ohm resistor in the
power cable that connects the graphics card and the
ATX power supply. Again, we calculated the power
supplied by the ATX power supply by multiplying
the current and voltage of the power cable.

We ran several benchmark programs to stress test
different stages of the GPU pipeline on the test
computer and also measured GPU power consump-
tion during runtime. We chose to use four different
GPU benchmarks: OpenGL Geometry Benchmark
1.0, Furmark, Jorik, and Parboil. The OpenGL Ge-
ometry Benchmark 1.0 fully exploits the traditional
graphics pipeline, especially its geometry transform
& lighting units. The Furmark benchmark mainly
focuses on the GPU shader units. The Jorik and the
Parboil benchmarks were selected to exhaustively
test the general-purpose computation capabilities of
GPUs including parallel sorting and dynamic PDE
solvers. In our initial data acquisition stage, we ran
the OpenGL Geometry Benchmark 1.0 for 6730 sec-
onds, the Furmark for 240 seconds, the Jorik for 185
seconds, and the Parboil for 384 seconds.

To increase the efficiency and stability of follow-
up analysis and modeling algorithms, we processed
the original power consumption data (1000 frames
per second) through an averaging and downsam-
pling operation. Essentially, the operation gener-

—— vertex_shader_busy
- - -pixel_shader_busy
texture_busy

—— vertex_shader_busy
- - - pixel_shader_busy
texture_busy

Value
Value

i N 1 n ol
0 500 1000 1500 2000 2500 2989 5
Frame(N) Time(s)

A L
1

Figure 1: The original recorded GPU workload
signals while the GPU ran the OpenGL Geome-
try Benchmark 1.0 (left), and the corresponding
aligned /resampled GPU workload signals (right).
For the sake of clear illustration, here we only plot
three GPU workload variables: vertex shader_busy,

pixel_shader_busy, and texture_busy.

ates a new frame in the processed data by averaging
corresponding M (a preset averaging window size)
frames in the original data. M =25 was experimen-
tally determined in this work.

GPU Workload Signal Recording: In the above
data acquisition step, we also recorded the work-
load signals of the runtime GPU using the NVidia
PerfKit performance analysis tool simultaneously.
The NVidia PerfKit tool which employs an abstract
GPU programming model is capable of dynamically
extracting 39 GPU workload variables. Inspired
by the previous study on GPU workload charac-
terization [6], in our work we choose to use 5 ma-
jor variables from the recorded 39 GPU workload
signals: vertez_shader_busy (the percentage of time
when the vertex shader is busy), pizel_shader_busy
(the percentage of time when the pixel shader is
busy), texture_busy (the percentage of time when
the texture unit is busy), goem_busy (the percent-
age of time when the geometry shader is busy), and
rop_busy (the percentage of time when the ROP unit
is active). These 5 signals (variables) represent the
runtime utilizations of major pipeline stages on the
GPU, which together profile GPU workloads in a
compact and robust manner. For a complete de-
scription of the above 5 chosen GPU workload sig-
nals, refer to the NVidia PerfKit user guide.

The NVidia PerfKit tool records the GPU work-
load signals whenever a front frame is generated.
The number of generated frames per second is dy-
namically acquired through the FPS counter. Hence,
we aligned the recorded GPU workload data with
the above processed power consumption data using
a linear interpolation based resampling scheme. In
this way, the GPU workload signals were resam-
pled (supersampled or downsampled, depending on
the varying FPS) to 40 frames/second, making their

Power Consumption(Watt)

w
®

w
=3

w
b

SLR

w
N

Power Consumption(Watt)

i -
i
@
<
e

w
=

—— Original

N
3
o

20 40 60 80
Time(s)

Figure 2: (Top panel) A part (200 seconds) of the
cross-validation comparison results when the GPU
ran graphics programs (OpenGL Geometry Bench-
mark 1.0). (Bottom panel) A part (80 seconds) of the
cross-validation comparison results when the GPU
ran the GPGPU Jorik benchmark.

sampling rate the same as the processed power con-
sumption data. Figure 1 shows an example of the
recorded and resampled GPU workload signals.

3. STATISTICAL GPU POWER MODEL

Now we describe how to construct a statistical
model for GPU power consumption estimation, ba-
sed on the above power consumption and GPU work-
load dataset. Assuming the processed power con-
sumption datais Y = {Y;,, Ys,, ..., Y3, } (¢; denotes a
time index), and the aligned GPU workload data is
X7 ={X],X],.,X] } (1 <j<N, X represents
the j'* GPU workload variable), we want to con-
struct a statistical multivariable function (model)
Y, = F(X},X?,..., X)) that can robustly and ac-
curately predict the GPU power consumption, Y%,
given any GPU workload variables (X}, X2, ..., X}V).

As mentioned in Section 2, a total of 5 major
GPU workload variables were selected in this study.
Therefore, in the remaining sections, we use (X1,
X2 ... , XP%) to represent the five chosen GPU
workload variables. We first split the above dataset
< {X7_,},Y > into a training subset (80%, 6031
seconds) and a test or cross-validation subset (the
remaining 20%, 1508 seconds). Then, we use the
training subset to learn a Support Vector Regres-

sion (SVR) model. Mathematically, the basic idea
of SVR is to predict result y from input = by opti-
mizing the Eq. 1 where w and b are used to describe
the SVR regression model. The LIBSVM is used
for SVR implementation. We compared the cross-
validation results of the chosen SVR model with a
simple least square based linear regression (SLR)
model. Figure 2 shows the cross-validation com-
parison results between SLR and SVR. Here the
sum of square errors is used as a metric to mea-
sure the prediction quality (i.e., the discrepancy
between the predicted and the original power con-
sumption data). The top panel of Figure 2 shows a
part (200 seconds) of the cross validation compar-
ison results when the GPU ran graphics programs
(OpenGL Geometry Benchmark 1.0). In this case,
the sum-square-error metrics of SLR and SVR are
656.83 and 589.78, respectively. Its bottom panel
shows a part (80 seconds) of the cross-validation
comparison results when the GPU ran the GPGPU
Jorik benchmark, and the sum-square-error metrics
of SLR and SVR are 44.523 and 39.427, respec-
tively. As clearly shown in this figure, regardless
of whether we used graphics computing or GPGPU
applications, the chosen Support Vector Regression
(SVR) model measurably outperformed the tradi-
tional SLR on the retained cross-validation dataset.

| 2
minimize o [lwl]

subject to ||y — (w-x —b)|| < e (1)

4. EVALUATION AND VALIDATION

In this section, we further look into the generality
and robustness of our statistical power consumption
model, such as, what are the accuracy and robust-
ness of our statistical model if the GPU runs non-
benchmark programs? The chosen eight test pro-
grams can be divided into two categories: graph-
ics programs and GPGPU computing applications.
An open-source, first-person shooter game - Nezuiz,
and three widely-used program samples enclosed in
the NVidia OpenGL SDK (“XMas Tree”, “HDR”,
and “Dual Depth Peeling”) are used to evaluate the
accuracy of our model for graphics programs. Par-
tial graphics settings of the above three SDK pro-
gram samples are: 1046x768 as the resolution of
rendering scene, and 2x as Multisample anti-aliasing
(MSAA) level. The Nexuiz game ran under a full-
screen resolution with disabled MSAA. In our ex-
periment, each of the above four programs ran for
100 seconds.

The selected GPGPU programs include a GPGPU-

OpenGL Geom. | Jorik | X Mas | HDR | Dual Depth | Nexuiz N-body Option | Fast Walsh | “GNN”
Benchmark Tree Peeling Simulation | Pricing | Transform

SVR 3.3% 13.0% 9.0% 29.4% 6.5% 27.7% 3.5% 1.7% 12.0% 20.8%

SLR 5.1% 11.1% 9.8% 39.0% 6.4% 29.1% 8.9% 2.0% 18.9% 33.7%

Table 1: Summary of power prediction errors as a percentage of the mean GPU power consumption in our

evaluation experiment.

based neural network application “GNN” and three
program samples enclosed in the NVidia CUDA SDK
(“N-body simulation”, “Option Pricing”, and “Fast
Walsh Transform”). The program settings for the
CUDA SDK programs are detailed as follows. The
body number of “N-body simulation” is 16K. The
configurations of the “Option Pricing” include: the
maximum price option number is 4, 000K, the risk-
free rate of return is 0.02, the volatility of the under-
lying stock is 0.30, and the iteration number is 512.
The configurations of the “Fast Walsh Transform”
sample include: 128 as kernel size, and 8, 388, 608 as
data size. Finally, for the “GNN” program we tested
the recognition of 28 handwritten digits. In our ex-
periment, the “N-body simulation” sample ran for
20 seconds and other three programs stopped auto-
matically once they generated outputs.

4.1 Results and Discussion

We recorded the energy consumption (Watt) and
workload signals of the chosen GPU, when each
of the above eight programs was running on the
test computer. The recorded data was used as the
ground truth in our evaluation. We used our GPU
power statistical model (described in Section 3) to
predict the power consumption of all the chosen
eight programs based on the recorded GPU work-
load signals. Figures 3 and 4 show comparisons be-
tween the ground truth and the predicted power
consumption data by our model. We also com-
puted the mean square errors as an objective met-
ric to measure prediction accuracy and obtained
the following results: “XMas Tree” (2.7), “HDR”
(10.3), “Dual Depth Peeling” (2.5), Nexuiz (13.4),
“N-body simulation” (8.4), “Option Pricing” (4.4),
“Fast Walsh Transform” (15.0) and “GNN” (13.9).

As shown in Figures 3 and 4, for most of the time
intervals the power consumption prediction errors
by our model are small and consistent across frames.
However, for certain time intervals the predicted
power consumption errors are measurably larger.
For example, the mean square error of the “XMas
Tree” sample (2.7) is significantly smaller than that
of the “HDR” sample (10.3). Also, the power con-
sumption curve of the “XMas Tree” sample has more
regular shapes than the “HDR” sample in which
peaks frequently occurred during a short time pe-

riod. It is difficult to model these kinds of variations
using our statistical model. One plausible explana-
tion is that our current statistical power consump-
tion estimation model completely depends on the
recorded workload signals of the runtime GPU (as
input), but in certain cases, these GPU workload
signals may fail to indicate the power consumption
of the underlying GPU. For example, at the 5" sec-
ond of the “HDR” sample, the GPU workload keeps
a stable level while the ground-truth GPU power
consumption drops rapidly.

In addition, our approach cannot accurately model
power consumption peaks, e.g., some parts of “HDR”,
“Nexuiz” and “Option Pricing” in Figures 3 and 4.
In these cases, the GPU power consumption rapidly
reached a high level, while our model failed to keep
pace. The resulting prediction errors are non-trivial
(e.g., >20 Watt). One possible explanation is that
certain parts of those GPU power peaks might not
be completely due to the execution of the GPU
graphics pipeline and that the power contribution
of some other factors such as bus communication or
memory access varied dramatically. Thus, our cur-
rent model can not sufficiently model these power
consumption peaks. In the future, workloads on
other components such as memory and I/O activi-
ties should be recorded and incorporated to enhance
the coverage of the utilization units on GPU. Ta-
ble 1 summarizes the power prediction errors as a
percentage of the mean GPU power consumption in
the evaluation experiment.

Another limitation of our model (actually a lim-
itation of statistical models in general) is that it is
hard to predict how much training data is sufficient
and will be needed in advance. Here is a concrete
example: as shown in the Nexuiz sample in Figure 3,
our model has difficulty in predicting a case that in-
volves extremely low power consumptions (e.g., <20
Watt in the ground-truth) due to the lack of similar
extreme cases in our training dataset.

S. CONCLUSIONS

We present a novel statistical power analysis and
modeling scheme for GPU-based computing, by ex-
ploiting the intrinsic coupling among power con-
sumption, runtime performance, and dynamic work-

"XMas Tree" "HDR"

"Dual Depth Peeling" Nexuiz

100

60 - - Predicte

—Recorded | [
- - Predicted

— Recorded

d

55

@
<)

@
=}

Power Consumption(Watt)
FEEN

I
=3

Power Consumption(Watt)

@
==

10
Times(s)

15 20

att)

Power Consumption(W:

—Recorded
- - Predicted

Power Cosumption(Watt)

— Recorded H
- - Predicted |

10
Times(s)

15 20

Figure 3: Comparisons between the ground truth (blue) and the predicted GPU power consumption data
(red) for the chosen four graphics programs. The four panels (from left to right) show “XMas Tree”, “HDR?”,
“Dual Depth Peeling”, and the Nexuiz game, respectively.

"N-body simulation” "Option Pricing"

3
S

120

"Fast Walsh Transform" "GNN"

— Recorded
- - Predicted

o
a

i
'
'

——Recorded
- - Predicted

100

a
S

IS
o

80

S

60

Power Consumption(Watt)

Power Consumption(Watt)

@ W A
&

40|

S

20

Power Consumption(Watt)

@
<}

~
=)

o
=3

a
3

Power Consumption(Watt)

I
=3

=)
N

20 30

Times(s)

4 6
Times(s) 40

50

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6
Times(s)

Times(s)

Figure 4: Comparisons between the ground truth (blue) and the predicted GPU power consumption data
(red) for the four chosen GPGPU programs. The four panels (from left to right) show “N-body simulation”,
“Option Pricing”, “Fast Walsh Transform”, and “GNN”, respectively.

loads of GPUs. The core piece of our scheme is a
statistical model for dynamic power consumption
estimation during the GPU runtime. We showed
that our statistical model is able to accurately and
robustly estimate the power consumption during
the GPU runtime, especially for graphics applica-
tions. Compared with CPU, GPU has a relatively
simpler cache hierarchy, more parallelism, less com-
plex control requirements, and more computation
units, which makes GPU power modeling vary from
general-purpose processing units. In the future, de-
tailed micro architectural knowledge of GPU needs
to be relied on for providing more complex and
accurate modeling approaches. Also, quantitative
analysis of GPU workloads and statistical selection
of the power consumption correlated workloads are
necessary in the data preprocessing step. Despite
these current limitations, we believe this work can
still serve as an intriguing starting point for future
endeavors to develop energy-efficient tools for GPU-
based computing applications.

Acknowledgments

Xiaohan Ma and Zhigang Deng were supported in
part by the Texas Norman Hackerman Advanced
Research Program (NHARP 003652-0058-2007). Lin
Zhong and Mian Dong were supported in part by
NSF CNS-0720825 and I1S-0713249 and by the Texas
Instruments Leadership University program. The

authors would like to thank Michael Jahn for his
proofreading and the anonymous reviewers for their
constructive comments.

B

REFERENCES

F. Bellosa. The benefits of event: driven energy
accounting in power-sensitive systems. In Proc. of 9th
workshop on ACM SIGOPS European workshop, pages
37-42, 2000.

R. Joseph and M. Martonosi. Run-time power
estimation in high performance microprocessors. In
ISLPED 01, pages 135-140, 2001.

T. Li and L. K. John. Run-time modeling and
estimation of operating system power consumption. In
SIGMETRICS ’03, pages 160-171, 2003.

K. Ramani, A. Ibrahim, and D. Shimizu. PowerRed: A
flexible power modeling framework for power efficiency
exploration in GPUs. In Worskshop on GPGPU, 2007.
S. Rivoire, P. Ranganathan, and C. Kozyrakis. A
comparison of high-level full-system power models. In
HotPower’08, 2008.

J. Roca, V. M. D. Barrio, C. Gonzalez, C. Solis,

A. Fernandez, and R. Espasa. Workload characterization
of 3d games. In IISWC, pages 17-26, 2006.

J. W. Sheaffer, D. Luebke, and K. Skadron. A flexible
simulation framework for graphics architectures. In
HWWS 04, pages 85-94, 2004.

J. W. Sheaffer, K. Skadron, and D. Luebke. Studying
thermal management for graphics-processor
architectures. In Proc. of IEEE International
Symposium on Performance Analysis of Systems and
Software, pages 54—65, 2005.

[9] H. Takizawa, K. Sato, and H. Kobayashi. SPRAT:
Runtime processor selection for energy-aware
computing. In 2008 IEEFE International Conference on
Cluster Computing, pages 386-393, Cct 2008.

2

3

(4]

[6]

[7]

