
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 1

A Surface-based 3D Dendritic Spine Detection
Approach from Confocal Microscopy Images

Qing Li and Zhigang Deng*

Abstract—Determining the relationship between the dendritic
spine morphology and its functional properties is a funda-
mental challenge in neurobiology research. In particular, how
to accurately and automatically analyze meaningful structural
information from a large microscopy image dataset is far away
from being resolved. As pointed out in existing literature, one
remaining challenge in spine detection and segmentation ishow
to automatically separate touching spines. In this paper, based
on various global and local geometric features of the dendrite
structure, we propose a novel approach to detect and segment
neuronal spines, in particular, a breaking-down and stitching-
up algorithm to accurately separate touching spines. Extensive
performance comparisons show that our approach is more
accurate and robust than two state-of-the-art spine detection and
segmentation algorithms.

Index Terms—Spine detection, surface-based segmentation,
normalized cut, microscopy images, and touching spines

I. I NTRODUCTION

In neurobiology research, 3D neuron reconstruction and
dendritic spine identification on a large data set of microscopy
images is essential for understanding the relationship between
morphology and functions of dendritic spines [21]. Dendrites
are the tree-like structures of neuronal cells, and spines are
small protrusions on the surface of dendrites. Spines have
various visual shapes (e.g., mushroom, thin, and stubby) and
can appear or disappear over time. Existing neurobiology
literature shows that the morphological changes of spines
and the dendritic spine structures are highly correlated with
their underlying cognitive functions [21]. Therefore, howto
efficiently and accurately detect and extract spines is crucial
yet challenging problem.

Existing dendritic spine detection methods can be roughly
divided into the following two categories: 2D MIP (maximum
intensity projection) image-based algorithms [1] and 3D data-
based algorithms [16], [5], [22]. The major drawbacks of
the 2D MIP methods are: (1) 3D microscopy images are
projected to a 2D plane; a significant amount of information
such as spines that are orthogonal to the imaging plane will
be inevitably lost. (2) Dendritic structures that overlap along
the projection direction are difficult to extract. 3D data based
algorithms either use voxel clustering [16] or extract the
dendritic skeleton structure of neurons using a medial geodesic

* denotes the corresponding author, and the correspondenceEmail:
zdeng@cs.uh.edu. Manuscript initially received on February 9th, 2011, revised
on August 1st, 2011, and accepted on August 18th, 2011.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-ermissions@ieee.org.

Qing Li and Zhigang Deng are with Computer Science Department,
University of Houston, Houston, TX.

function [5]. Some existing commercial software tools (e.g.,
Imaris) perform semi-automated dendrite and spine detection.
However, such a semi-automated process is typically costly,
time-consuming, and subject to human bias.

Fig. 1. Pipeline of the proposed spine detection and segmentation approach.

In this paper, we propose a novel 3D surface based dendritic
spine detection and segmentation approach (its pipeline is
illustrated in Fig. 1). Basically, we first extract the backbones
and reconstruct the 3D neuron surface from the noise-reduced
neuronal images. Then, by analyzing three geometric features
on the 3D surface, spines are separated from the dendrite. After
that, based on the spine classification outcomes (i.e., single or
touching spines) from our shape analysis module, a normalized
cut algorithm [20] is adapted to separate the touching spines in
the following two-phase protocol: i) The touching spines are
decomposed into small patches, and then ii) the patches are
stitched together through maximization of an energy function.
Through comprehensive performance comparisons, we show
that our approach is more accurate and robust than two chosen
state-of-the-art spine detection and segmentation algorithms
[13], [16]. As pointed out in existing literature [13], [16], the
real challenge of spine detection and segmentation is how to
automatically separate touching spines. Our approach provides
a novel automated solution to this challenging problem. Also,
our method is fully automatic, without requiring any prior
training dataset.

II. RELATED WORK

Microscopy Image Processing:Nowadays, microscopy
image processing techniques have been widely used in diverse
fields such as medicine, biological and cancer research, drug
testing, and metallurgy. These techniques aim to enhance,
extract, analyze information from digital images acquiredby
microscope systems [4], [11], [9], [23], [12]. Microscopy
images could be 2D, 3D, and in time series. Typical tasks
of microscopy image processing include detecting and seg-
menting boundary of objects [4], [9], classifying objects into

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 2

multiple categories [23], recovering the motion of moving
object in multiple time points [11], [12], etc. Currently, mi-
croscopy image processing faces significant challenges dueto
the following reasons: (1) objects of interest are often touch-
ing/overlapping each other or irregularly arranged, with no
definite shapes. (2) Illumination variations are not distinctive
in thick specimens. Absorption, scattering, and diffraction of
the light by structures located above and below the focal plane
cause image intensity fall off in deep specimens. (3) The
background of microscopy images is usually very noisy.

3D Spine Detection: Previous efforts on dendritic spine
detection can be roughly divided into two categories:
classification-based approaches[16], [13] and centerline
extraction-based approaches[8], [5], [24], [22]. Classification-
based approaches separate points into different groups using a
trained classifier. For example, Rodriguez et al. [16] proposed
an automated three-dimensional spine detection approach us-
ing voxel clustering. Li et al. [13] proposed a 3D surface-based
classification algorithm. In their work, 3D neuron surface is
reconstructed through the marching cubes algorithm [14]. Each
vertex on the surface is classified into vertex on the spines
or vertex on the dendrite based on three geometric features.
Then, touching spines are separated by adopting surface-based
watershed algorithm.

Centerline extraction-based approaches detect all the pos-
sible centerlines of certain objects in the image (e.g., using
a curvilinear structure detector [22] or local binary fitting
model of level sets [24]) and treat dendritic spines as small
protrusions attached to the dendrites. However, these methods
often require empirically designed post-processing procedures
and limited to processing relatively simple neuron structures.
Later, Koh et al. [8] adopt a thinning method to extract
centerlines and apply the grassfire propagation technique to
assign each dendritic point a distance to the medial axis of the
dendritic structure. Since segmentation is achieved by global
thresholding and limited geometric information is considered
for spine detection, this method may detect pseudo spines.
Janoos et al. [5] present a method for dendritic skeleton
structure extraction using a curve-skeletons approach based
on the medial geodesic function which is defined on the
reconstructed isosurfaces.

Geometry-based Segmentation: Many approaches [10],
[2], [19] employ simple, interpretable geometric featuresfor
3D mesh segmentation, but they are often limited to either a
single generic rule (e.g., concavity, skeleton topology, fitting
shape primitives) or a single feature (e.g., shape diameter,
curvature tensor, geodesic distances) to partition an inputted
mesh. Recently, researchers either match points between
meshes based on rigid mesh alignments [3] or simultaneously
segment and label parts in 3D meshes using a data-driven
scheme [6]. One common limitation of these approaches is
that they often require a consistently labeled training setfor
different types of meshes.

III. I MAGE ACQUISITION AND PREPROCESSING

In the image acquisition stage, mice brain slices were
labeled by ballistic delivery of fluorescent dye DiI (Molec-
ular Probes). Confocal microscope (Zeiss LSM510) with

an oil immersion lens (EC Plan-Neofluar100×, 1.4N.A.)
was used for imaging. DiI was excited using a Helium/Neon
543nm laser line. The resolution of the image stack was
0.064µm× 0.064µm× 0.12µm (with over-sampling). Please
refer to [7] for more details.

In the data preprocessing stage, a 3D median filter with
a 3 × 3 × 3 kernel size was first applied to the images to
remove noise. The median filter is a commonly used nonlinear
operator that replaces the original gray level of a pixel by
the median of the gray levels of the pixels in a specified
neighborhood. As a type of ranking filters, the median filter
is based on the statistics derived from rank-ordering a set of
elements. It is often useful because it can reduce noise without
blurring edges in the image. The noise-reducing effect of the
median filter depends on two factors: (1) the spatial extent of
its neighborhood and (2) the number of pixels involved in the
median calculation.

We chose the median filter since it is able to remove certain
noise that cannot be removed by conventional convolution
filtering. Then, to correct uneven illumination degradation, a
top-hat filter was adopted. After that, fuzzy C-mean clustering
[15] was used to cluster the image into 3 clusters: back-
ground, weak spines, and dendrite with strong spines. Weak
spines and the dendrite represent the neuron. Subsequently, we
employed the marching cubes algorithm [14] to reconstruct
the 3D surface of the neuron. Then, a low-pass filter and
mesh decimation were used to remove noise and reduce the
tessellation density. The number of iterations in the low-pass
filter and the decimation factor control the smoothness of the
resultant 3D neuron surface.

Fig. 2. Illustration of Rayburst sampling. (a) Rayburst sampling in XY plane.
Blue lines show the rays casting out in all the directions from the predicted
center point. The red line is the ray with the shortest length(diameter) while
the green line has the longest length (local orientation). (b) Extracted backbone
of the neuron and the estimated radiuses are illustrated in the maximum
intensity projection image.

IV. N EURON BACKBONE EXTRACTION

After the above data preprocessing, the dendrite backbone
and the approximated radiuses along the backbone are gen-
erated by extending the Rayburst sampling algorithm [17].
The Rayburst sampling core can be 2D or 3D with a variable
number of rays that are uniformly spaced within a unit sphere.
Compared with 3D Rayburst sampling, 2D Rayburst in the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 3

XY and XZ (or YZ) planes is less computationally expensive,
while it reliably yields comparable results [17].

Inspired by this idea, our Rayburst sampling algorithm
works as follows: at the beginning, a seed point (an initial
center point) inside of the dendrite is selected by users. Then,
2D Rayburst sampling in both the XY and XZ (or YZ) planes
are adopted. A thresholdφ is used to control the maximally
allowed intensity difference between the center point of a
neuron and its dendritic boundary. The length of the shortest
ray in XY plane is the estimated diameter, and the location
of the center point is updated as the midpoint of the shortest
ray. Then, rays sampled in the XZ (or YZ) plane are used
to adjust the Z coordinate of the center point. The next two
center points toward both the ends of the dendrite are assumed
to follow the local orientation of the current center point:the
orientation of the longest ray in XY plane is the approximated
local orientation of the dendrite. This procedure repeats until
the predicted center point reaches the border of the stack or
it goes into the background. If the dendrite contains a branch
structure, a user-specified seed point is needed for each branch.
In this work, the number of rays andφ are experimentally set
to 36 and 80, respectively. Fig. 2 illustrates this process and
one example result.

Fig. 3. Visualization of the computed score map after regiongrowing. (a)
Visualization of the score map. Each face on the surface has ascore from 0
to 1. (b) A thresholdξ is used in the region growing algorithm to separate
spines with dendrite. Spines are labeled in different colors. Touching spines
are highlighted in black rectangles.

V. SEPARATING NEURONAL SPINES WITH DENDRITE

In our approach, the following three geometric features are
calculated for each 3D face to separate neuronal spines from
the dendrite.

1) Distance to the dendrite backbone:The distance be-
tween a vertexv on the neuron surface and the backbone
is defined asthe shortest distancebetweenv and any
point of the backbone. In this way, the distance between
each facef and the backbone is defined as the average
distance betweenf ’s vertices and the backbone. This
distance feature is chosen based on the observation
that vertices on the spine surface usually have larger
distances (to the backbone) than those on the dendrite.

Fig. 4. Left: Illustration of our spine shape analysis and categorization
principle. When any sampling line is sent from one side of a spine to the
other side, if it intersects with at most two faces, then it isa single spine;
otherwise, it is a touching spine.Right: Visualization of how we separate
touching spines: (a) initial touching spines, (b) the results after the touching
spines are broken into small patches using a normalized cut algorithm, and
(c) the final results after the patches are stitched togetherto form spines.

2) Mean curvature on the surface: The mean curvature of
each face on the 3D neuron surface is computed as the
average curvature of its surrounding vertices.

3) Normal variance:Normal variance of each facef is
defined as the average angle between the face normal
and the vector that is perpendicular to the backbone and
passes each off ’s surrounding vertices.

We normalize the above features and add them together
to generate a score map. Then, we use a surface-based region
growing algorithm to separate spines from the dendrite. In this
process, faces whose values in the score map are greater than
ξ (a user-specified threshold) are randomly selected as seed
points. If the score value of a neighbor of each seed point is
larger thanξ and it has not been visited previously, then it will
be chosen as a new seed point. This process repeats until all the
faces have been visited. In this work,ξ is experimentally set to
0.28. One example result after the region growing is shown in
Fig. 3. From this figure, we can see that although most spines
are detected and separated from the dendrite, some spines are
still touching together. As such, the next step of our approach
is to automatically detect and separate touching spines.

Spine shape analysis and categorization:After spines are
separated from the dendrite, we perform 3D shape analysis
on all the spines in order to automatically categorize them
into single spines or touching spines. The core idea of our
shape analysis algorithm is illustrated in the left of Fig. 4.
Basically, if any sampling line is sent from one side of the
spine to the other side, a single spine will have at most two
faces intersecting with the sampling line. By contrast, in this
case a touching spine will have at least four faces intersecting
with the sampling line. Based on this key observation, for
each spine segment outputted from the above region growing
algorithm, we first randomly selectκ sampling vertices on
the spine surface. Then,κ sampling lines are sent out from
the sample vertices and their directions are in parallel to the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 4

normals of the sampling vertices. In our experiments, we found
κ=15 worked sufficiently well. To ensure the sampling vertices
are from one side of the spine, they are only chosen from the
vertices whose normal variance features are high (Section V).
If more than two sampling lines intersect with four or more
faces on the spine segment, we categorize the spine segment
as a touching spine segment; otherwise, we categorize it as a
single spine segment.

Breaking a touching spine into patches:We propose a
normalized cuts based algorithm to break a touching spine
into patches based on its local geometric features. The nor-
malized cuts is an unsupervised segmentation technique first
proposed by Shi and Malik [20]. Generally, the normalized
cuts algorithm works on a graph which consists of nodes and
edges. A measure of dissimilarity can be established based on
distinctive features [20]. The strengths of the edges between
nodes are weighted with an exponential factor as shown in Eq.
1.

Wi,j = e
d(i,j)

σd (1)

Hered(i, j) is the measure of dissimilarity between nodes
vi andvj , andσd controls the scale of this measure.

If we have a geometryG with N elements, and we assume a
bipartition ofG into A andB, whereA∪B = G,A∩B = ∅,
andW ∈ R

N×N is a symmetric matrix with

W(i, j) = wij (2)

Then,

cut(A,B) =
∑

u∈A,v∈B

W(u, v) (3)

A normalized cut,Ncut(A,B), is defined as:

Ncut(A,B) =
cut(A,B)

assoc(A,G)
+

cut(A,B)

assoc(B,G)
(4)

where

assoc(A,G) =
∑

u∈A,p∈G

W(u, p) (5)

and assoc(B,G) is defined in a similar way. In order to
maximize the total dissimilarity betweenA andB, the total
similarity within A, and the total similarity withinB, Shi
and Malik [20] formulate and solve the following generalized
eigen-vector problem:

Wy = (1 − λ)Dy (6)

They apply a threshold to the eigen-vector with the second
largest eigen-value to yield the optimal bipartition. In Eq. 6,
D is a diagonal matrix such that

D(i, j) =

N
∑

j=0

W(i, j) (7)

andy is a group membership indication vector. A detailed
description of how to solve Eq. 6 can be found in [20].

Fig. 5. Illustration of mapping a 3D neuron surface to a graph: (a) an
example of the reconstructed 3D neuron geometry (i.e. triangular mesh). (b)
The process of mapping a triangular mesh to a graph.

In our algorithm, each triangular face in the reconstructed
neuron geometry (i.e. triangular mesh) is considered as a node
in a graph. In the graph, nodes are connected by edges to
their neighbors. Since the neuron surface is represented asa
triangular mesh; each face has exactly three face neighbors.
How we map a triangle mesh to a graph is illustrated in Fig.
5. The dissimilarity between two connected facesfi andfj is
defined as follows:

Wfi,fj
= edihedral(fi,fj) (8)

Here the functiondihedral calculates the dihedral angle
between the two faces. Letui anduj be the vectors which are
orthogonal to facesfi andfj, respectively. Then, the dihedral
angle between the two faces,fi andfj , is computed as follows:

dihedral(fi, fj) = arccos(
|ui · uj|

|ui||uj |
) (9)

Then, we solve Eq. 6 for eigen-vectors with the smallest
eigen-values and use the eigen-vector with the second smallest
eigen-value to bipartition the graph into two patches (sub-
graphs). We repeat this process on the partitioned patches
(graphs) until the number of patches reaches a user-specified
maximum. At the end, the algorithm returns a group of
eigen-vectors. Each eigen-vector represents a patch, and every
element of the eigen-vector can be mapped to one face on the
surface: if the element equals to 1, it means its corresponding
face belongs to the patch. The (b) panel in the right of Fig.
4 shows some example results after we break touching spines
into patches based on local geometric features.

Stitching spine patches:In this step, we introduce a novel
spine stitching algorithm to group some patches together to
form a new spine based on high-level geometric features.
We first examine the boundary of each patch as follows: if
one patch is connected with another patch, we add them as
a pair in a candidate list. Whether two patchespi and pj

should be stitched together is primarily based on two high level
geometric metrics (illustrated in Fig. 6). The first geometric
metric is the projected distance between the centroids of the
two connecting patches. The second geometric metric is the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 5

Fig. 6. Illustration of our two high-level geometric features/metrics. The
blue and green curves represent two connecting patches. Thered dash line
represents the backbone.

intersecting volume ratio of the bounding boxes of the two
connecting patches. The two geometric metrics are designed
to guide the algorithm to only stitch patches on the same spine,
avoiding stitching patches that belong to different spines. We
combine the two metrics in the following way:

η(pi, pj) =
vol (pi ∩ pj)

min (vol (pi) , vol (pj))
− disproj(pi, pj) (10)

In Eq. 10, the first item calculates the intersecting volume
ratio of the bounding boxes of the two connecting patches, and
the second item is the distance between the projected centroids
of the two connecting patches.

If a patch is associated with only one other patch based on
the above constructed candidate list, we can simply apply a
thresholdγ to η(pi, pj) in Eq. 10 to determine whether the
two patches should be stitched. However, more complicated
cases often exist such as each patch is associated with more
than one other patches. Therefore, in this work we stitch spine
patches through maximization of a global possibility.

Specifically, in our algorithm, a 0-1 integer programming
is employed to determine the multi-association cases. Let
P = {pi|i = 1, 2, ...n} denoten patches associated each
other and need to be stitched properly. For a patchpi, we
assumemi other patches are identified as stitching candidates
Mi = {(pi, pj)|j = 1, 2, ..., mi}. Therefore, the total number
of candidate stitching pairs isN =

∑n

i=1 mi. These candidate
pairs areM =

⋃n

i=1 Mi.
The optimal matching strategy is to determine the optimal

solution z∗ = {0/1}N that maximizes an energy objective
function (Eq. 11) while maintaining a constraint (Eq. 12): each
patch can be associated with at most one patch at a time. The
objective function is formulated as follows.

z∗ = argmax
z∈{0,1}N

(f(z))

f(z) =

N
∑

l=1

[z(l) × η(pil
, pjl

)]
(11)

Fig. 7. 3D surface-based spine detection and segmentation results of three
example images. Segmented spines are labeled in different colors. Two mis-
detected tiny spines are highlighted in two black circles.

Here z is a N × 1 vector to denote the decisions of the
N possible associations:z(l) = 1 indicates thelth possible
association is chosen; whilez(l) = 0 indicates thelth possible
association is discarded.(il, jl) indicates the patch labels in the
lth possible association. The one-to-one association constraint
can be formulated as follows:

Az ≤ b (12)

HereA is a n×N matrix: its rows indicate all the patches
and its columns correspond to the decisions of theN possible
association pairs;b is an×1 vector with all 1s, which means
that each patch can be associated with at most one other patch
at a time. For theN possible associationsM = {(pil

, pjl
)|l =

1, 2, ..., N},

A(k, l) =











1; k = il

1; k = jl

0; otherwise

, 0 < l ≤ N (13)

The above optimization problem can be solved through 0-1
integer programming. In this work, we use branch-and-bound
(LPBB) based linear programming algorithm [18] to solve it.
The optimization process of LPBB is to build a searching tree
by repeatedly discretizing (0 or 1) the variables (branching)
and pruning the tree branches based on the optimal value
of this node (bounding) computed by linear programming.
Note that this optimization process is only applied to groups
in which more than one patches are associated in multiple
stitching pairs. For simple one-to-one cases, a thresholdγ is
used to determine whether the two patches should be stitched
(described above). Several patch stitching results are shown in
(c) panel in the right of Fig. 4. After the patch stitching, we
combine the separated touching spines with single spines to
obtain the final spine detection and segmentation results, as
shown in Fig. 7.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 6

Fig. 8. Detection performance comparisons between our approach and the two chosen spine detection algorithms [13], [16]. The Y axis of the three panels
(from left to right) is “detection accuracy”, “missing spine rate”, and “false positive rate”, respectively.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of our approach, we had tested
our algorithm on 6 neuronal image datasets. The spine detec-
tion and segmentation results of three images are shown in
Fig. 7, where spines automatically segmented by our algorithm
are labeled in different colors. As shown in this figure, our
approach can robustly and automatically segment majority of
spines including touching spines, except a tiny number of
sporadic mis-detections.

Fig. 9. The visual result comparison of our algorithm with two other spine
detection and segmentation algorithms [13], [16] on a neuronal image. (a)
shows the result from [13]. (b) shows the result from [16]. (c) shows the
result from our algorithm. In all the results, spines are labeled in different
colors. The black circles indicate missing, spurious, false positive spines.

To validate the segmentation performance of our approach,

we asked a biologist to manually detect and segment spines in
the test images. Then, we compared the detection performance
of our algorithm with two state-of-the-art, neuronal spine
detection algorithms [13], [16] and the ground truth. As shown
in Fig. 8, our approach achieved a higher spine detection
accuracy, a smaller spine missing rate, and a lower false
positive rate than the two chosen spine tracking algorithms
[13], [16]. However, in Fig. 7, we also can see that our
approach still missed the detection of a few tiny spines, though
the same tiny spines were also mis-detected by the two other
algorithms [13], [16].

Note that this work can be regarded as a comprehensive
improvement/extension of [13]. The major difference between
this work and [13] is how touching spines are automatically
detected and separated. In [13], we simply adopt watershed
algorithm to separate touching spines. The limitation of the
watershed algorithm is that it is very hard to control the water
level, which will easily lead to over-segmentation results. In
this work, we first accurately categorize spines into single
spines and touch spines. Then, we introduce a robust break-
down and stitching-up algorithm to separate touching spines
into single spines.

Quantitative comparison and analysis results are shown in
Fig. 8 and the visual comparison is shown in Fig. 9. Note that
in Fig. 9 (b), the main reason why occluded spines cannot be
detected by [16] could be that the resolution along z direction
of neuron images is not fine enough. It is not related to
whether 3D median filter or other image processing procedure
is applied or not, in our opinions.

As mentioned in the introduction section, spines have been
categorized in multiple shapes. The accuracy of the segmenta-
tion algorithm will affect the classification results. Therefore,
we compared the segmentation performance of our method
with the ground truth, as well as methods proposed in [13]
and [16]. For each boundary vertexvi in our segmented spine,
we first calculated its closest boundary vertex in the ground
truth. Then, the segmentation error for one spine is defined as:

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 7

SegError =

N
∑

i=1

dis(vi, closest(vi))
∑N

k=1 dis(vk, vk+1)
(14)

Here N is the number of boundary vertices of the spine,
and

∑N

k=1 dis(vk, vk+1) calculates the length of the spine
boundary. The comparison results are shown in Fig. 10.

Fig. 10. Segmentation performance comparisons between ourapproach and
the two chosen algorithms [13], [16].

As clearly shown in Fig. 10, our algorithm achieved a lower
segmentation error. Rodriguez et al.’s method [16] uses voxel
clustering for segmentation and the vertex distance to the
backbone is used as the only criterion for segmentation. Its
segmentation performance was less consistent with the ground
truth. Li et al.’s method [13] had a competitive segmentation
performance in single spine cases as our algorithm. However,
our approach had a better performance in segmenting touching
spines than [13].

Fig. 11. Illustration of occluded 3D spine detections. (A) shows the XY-
Plane MIP (Maximum Intensity Projection) of one 3D neuron image. After this
projection, spines along the Z direction are occluded and cannot be detected.
(B) The detection result of our algorithm that is able to handle the occlusion
issue. Spines that are occluded in MIP but observed in the 3D surface are
highlighted in black circles.

One limitation of 2D MIP (Maximum Intensity Projection)
based spine detection algorithm is that spines along the Z

direction are occluded by other dendritic structures and thus
cannot be detected. Fig. 11 illustrates our 3D surface-based
spine detection approach is able to handle such occlusion
issues. Fig. 11 (A) shows the XY-Plane MIP (Maximum
Intensity Projection) of one 3D neuron image. After this
projection, spines along the Z direction are occluded and
cannot be detected. Fig. 11 (B) shows the results by our
algorithm that can detect spines along Z direction. Note that
in most 3D microscopy images, compared with the resolution
in X and Y direction, the resolution in Z direction is still far
from sufficient; substantial information along Z directionis
lost at the image acquisition stage.

We implemented our algorithm using Matlab. The average
computing time for detecting spines from a neuron image
is about 30 seconds using our method on a computer with
a 2.20GHz Intel Core 2 Duo CPU and 3G Memory. It is
noteworthy that we plan to make our self-contained code
of this work publicly available to other researchers in the
community upon request.

VII. D ISCUSSION ANDCONCLUSIONS

This paper introduces a novel 3D surface based dendritic
spine detection and segmentation approach. To validate the
performance of our algorithm, we compared the results by our
approach with the manually labeled ground-truth as well as the
results by two state-of-the-art spine detection and segmentation
algorithms [16], [13]. Our comparison results show that our
proposed approach is more accurate and robust than the two
chosen algorithms.

It is noteworthy that although our approach can achieve a
high spine detection and segmentation accuracy, it still mis-
detected a few tiny spines (Fig. 7). This in part comes from
our region growing algorithm that only uses a single global
threshold to separate spines from the dendrite. In the future,
to further improve the accuracy of our algorithm, we plan to
investigate new algorithms to adaptively learn this parameter
based on the local geometric features.

Since the test dataset we were able to acquire only encloses
straight neurons, not curvy neurons, we were not able to test
our algorithm on curvy neuron datasets. Considering curvy
neurons typically have a higher complexity than straight ones,
directly applying this current work to curvy neurons may
not work well; however, we believe a proper extension and
adaptation of this work will help to solve the problem. Another
limitation of the current work is that it does not handle single
spines with complex shapes. For single spines with complex
shapes (e.g., multi-headed spines), more sophisticated shape
analysis algorithms need be developed. We believe that witha
sufficient spine shape training dataset, accurately distinguish-
ing complex shape spines (e.g., multi-headed spines) from
touching spines can be achieved.

ACKNOWLEDGMENTS

This research is supported in part by Texas NHARP 003652-
0058-2007 and NSF IIS-0914965. We also would like to
thank Stephen TC Wong at the Methodist Hospital Research
Institute for insightful discussion and help, and Matthew

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AUGUST 2011 8

Baron, Merilee A. Teylan, and Yong Kim at the Rockefeller
University for providing the test image data. Any opinions,
findings,and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] J. Cheng, X. Zhou, E. Miller, R. M. Witt, J. Zhu, B. L. Sabatini, and S. T.
Wong. A novel computational approach for automatic dendrite spines
detection in two-photon laser scan microscopy.Journal of Neuroscience
Methods, 165(1):122–134, 2007.

[2] A. Golovinskiy and T. Funkhouser. Randomized cuts for 3Dmesh
analysis.ACM Trans. Graph., 27:145:1–12, 2008.

[3] A. Golovinskiy and T. Funkhouser. Technical section: Consistent
segmentation of 3d models.Comput. Graph., 33:262–269, 2009.

[4] Y. Hiraoka, T. Shimi, and T. Haraguchi. Multispectral imaging flu-
orescence microscopy for living cells.Cell Structure and Function,
27(5):367–374, 2002.

[5] F. Janoos, K. Mosaliganti, X. Xu, R. Machiraju, K. Huang,and S. T.
Wong. Robust 3D reconstruction and identification of dendritic spines
from optical microscopy imaging.Medical Image Analysis, 13(1):167–
179, 2009.

[6] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D mesh
segmentation and labeling. InACM SIGGRAPH 2010 papers, pages
102:1–12, 2010.

[7] Y. Kim, M. A. Teylan, M. Baron, A. Sands, A. C. Nairn, and P.Green-
gard. Methylphenidate-induced dendritic spine formationand deltafosb
expression in nucleus accumbens.Proc. Natl. Acad. Sci., 106(8):2915–
2920, 2009.

[8] I. Y. Y. Koh, W. B. Lindquist, K. Zito, E. A. Nimchinsky, and K. Svo-
boda. An image analysis algorithm for the fine structure of neuronal
dendrites.Neural Comput., 14:1283–1310, 2002.

[9] A. Kuijper and B. Heise. An automatic cell segmentation method
for differential interference contrast microscopy. In19th International
Conference on Pattern Recognition (ICPR), pages 8–11, 2008.

[10] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin. Fast mesh
segmentation using random walks. InProc. of 2008 ACM Symp. on
Solid and physical modeling, pages 183–191, 2008.

[11] F. Li, X. Zhou, J. Ma, and S. T. Wong. Multiple nuclei tracking using
integer programming for quantitative cancer cell cycle analysis. IEEE
Trans. on Medical Imaging, 29(1):96–105, 2010.

[12] Q. Li, Z. Deng, Y. Zhang, X. Zhou, U. V. Nagerl, and S. T. Wong.
A global spatial similarity optimization scheme to track large numbers
of dendritic spines in time-lapse confocal microscopy.IEEE Trans. on
Medical Imaging, 30(3):632–641, 2011.

[13] Q. Li, X. Zhou, Z. Deng, M. Baron, M. A. Teylan, Y. Kim, andS. T. C.
Wong. A novel surface-based geometric approach for 3D dendritic spine
detection from multi-photon excitation microscopy images. In ISBI’09,
pages 1255–1258, 2009.

[14] G. M. Nielson and B. Hamann. The asymptotic decider: resolving the
ambiguity in marching cubes. InIEEE Visualization’91, pages 83–91,
1991.

[15] T. D. Pham, D. I. Crane, T. H. Tran, and T. H. Nguyen. Extraction of
fluorescent cell puncta by adaptive fuzzy segmentation.Bioinformatics,
20:2189–2196, 2004.

[16] A. Rodriguez, D. B. Ehlenberger, D. L. Dickstein, P. R. Hof, and S. L.
Wearne. Automated three-dimensional detection and shape classification
of dendritic spines from fluorescence microscopy images.PLoS One,
3(4):e1997, 2008.

[17] A. Rodriguez, D. B. Ehlenberger, P. R. Hof, and S. L. Wearne. Rayburst
sampling, an algorithm for automated three-dimensional shape analysis
from laser scanning microscopy images.Nature Protocols, 1:2152–2161,
2006.

[18] A. Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., New York, NY, USA, 1986.

[19] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent meshpartitioning
and skeletonisation using the shape diameter function.The Visual
Computer, 24(4):249–259, 2008.

[20] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Trans. on PAMI, 22(8):888–905, 2000.

[21] R. Yuste and T. Bonhoeffer. Morphological changes in dendritic
spines associated with long-term synaptic plasticity.Annual Reviews
in Neuroscience, 24:1071–1089, 2001.

[22] Y. Zhang, K. Chen, M. Baron, M. A. Teylan, Y. Kim, Z. Song,
P. Greengard, and S. T. Wong. A neurocomputational method for fully
automated 3D dendritic spine detection and segmentation ofmedium-
sized spiny neurons.Neuroimage, 50:1472–1484, 2010.

[23] Y. Zhang, X. Zhou, R. M. Witt, B. L. Sabatini, D. Adjeroh,and S. T.
Wong. Dendritic spine detection using curvilinear structure detector and
LDA classifier. NeuronImage, 36:346–360, 2007.

[24] W. Zhou, H. Li, and X. Zhou. 3D neuron dendritic spine detection
and dendrite reconstruction.International Journal of Computer Aided
Engineering and Technology, 1:516–531, 2009.

Qing Li is a Ph.D. student in the Department of
Computer Science, University of Houston, Houston,
TX. Her research interests include computer graph-
ics, computer animation, and medical imaging. She
had received his B.S. in Computer Science from the
Beijing University of Chemical Technology, Beijing,
China, in 2006.

Zhigang Dengis currently an Assistant Professor of
Computer Science at the University of Houston (UH)
and the Founding Director of the UH Computer
Graphics and Interactive Media (CGIM) Lab. His re-
search interests include computer graphics, computer
animation, virtual human modeling and animation,
human computer interaction, visual-haptic interfac-
ing, and GPU-based computing. He completed his
Ph.D. in Computer Science at the Department of
Computer Science at the University of Southern
California (Los Angeles, CA) in 2006. Prior that, he

also received B.S. degree in Mathematics from Xiamen University (China),
and M.S. in Computer Science from Peking University (China). Over the
years, he has worked at the Founder Research and DevelopmentCenter
(China) and AT&T Shannon Research Lab. He is a senior member of IEEE
and a member of ACM and ACM SIGGRAPH.

