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A Surface-based 3D Dendritic Spine Detection
Approach from Confocal Microscopy Images

Qing Li and Zhigang Deng*

Abstract—Determining the relationship between the dendritic function [5]. Some existing commercial software tools (e.g
spine morphology and its functional properties is a funda- |maris) perform semi-automated dendrite and spine detecti
mental challenge in neurobiology research. In particular, how However, such a semi-automated process is typically costly

to accurately and automatically analyze meaningful structiral fi . d subiect to h bi
information from a large microscopy image dataset is far awg Ime-consuming, and subject to human bias.

from being resolved. As pointed out in existing literature, one

remaining challenge in spine detection and segmentation isow 3D Surface -
to automatically separate touching spines. In this paper, ased hels < Construction > Geometric | ] Region
on various global and local geometric features of the dendie CenterLine Extraction Growing
structure, we propose a novel approach to detect and segment Extraction
neuronal spines, in particular, a breaking-down and stitching- sze::::?;ign Single
up algorithm to accurately separate touching spines. Extesive s \ Spines >Smpe
performance comparisons show that our approach is more Separate - Analysis
accurate and robust than two state-of-the-art spine dete@n and Touching  [€—— Tg‘;‘l’:égg
segmentation algorithms. Spines
Index Terms—Spine detection, surface-based segmentation,
normalized cut, microscopy images, and touching spines Fig. 1. Pipeline of the proposed spine detection and segtientapproach.
|. INTRODUCTION In this paper, we propose a novel 3D surface based dendritic

In neurobiology research, 3D neuron reconstruction aﬁﬁme detection and segmentation approach (its pipeline is
[

dendritic spine identification on a large data set of micopgc ugtrated in Fig. hl).38a3|cally, we ]1:|rst ?xtracththe t?a"k‘:;
images is essential for understanding the relationshipdsst  2Nd reconstruct the 3D neuron surface from the noise-reduce

neuronal images. Then, by analyzing three geometric fesitur

morphology and functions of dendritic spines [21]. Deregit
P . Lnet ¢ Sp! [21] I n the 3D surface, spines are separated from the dendrits. Af

are the tree-like structures of neuronal cells, and spimes 2 based h X lassificati : ,
small protrusions on the surface of dendrites. Spines h 1, based on the spine classification outcomes (i.e.lesorg

various visual shapes (e.g., mushroom, thin, and stubhy) &Ruching_spines) fr.om our shape analysis module, a nOI‘E_l‘.IhliZ
can appear or disappear over time. Existing neurobiolo talgorlt_hm [20] is adapted to separate the togchlng_spnne
literature shows that the morphological changes of spin following two-phase protocol: i) The touching spinee ar

and the dendritic spine structures are highly correlatetth wi e_composed into small patch_es_, ar_ld then ii) the patche_s are
their underlying cognitive functions [21]. Therefore, hduw stitched together through maximization of an energy flomcti

efficiently and accurately detect and extract spines isiafuc—rhrough comprehensive performance comparisons, we show

yet challenging problem. that ou][ ahpproach is mgre ac_curate;nd robust than two chosen
Existing dendritic spine detection methods can be roug te-of-the-art spine detection and segmentation afgps

divided into the following two categories: 2D MIP (maximum): [16]- As pointed out in existing literature [13], [16he
intensity projection) image-based algorithms [1] and 3Eada real challenge of spine detection and segmentation is how to

based algorithms [16], [5], [22]. The major drawbacks 0allutomatically separate touching spines. Our approachgesv
the 2D MIP methods are: (1) 3D microscopy images apenovel automated solution to this challenging problemoAls

projected to a 2D plane; a significant amount of informatiof“" method is fully automatic, without requiring any prior

such as spines that are orthogonal to the imaging plane Wfining dataset.

be inevitably lost. (2) Dendritic structures that overldpng

the projection direction are difficult to extract. 3D dataséd

algorithms either use voxel clustering [16] or extract the Microscopy Image Processing:Nowadays, microscopy

dendritic skeleton structure of neurons using a medial gsied image processing techniques have been widely used in divers
fields such as medicine, biological and cancer researcly, dru
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zdeng@cs.uh.edianuscript initially received on February 9th, 2011, sed

on August 1st, 2011, and accepted on August 18th, 2011. ex_tract, analyze information from digital images a_Cquik%d
Copyright (c) 2010 IEEE. Personal use of this material isnjiged. microscope systems [4], [11], [9], [23], [12]. Microscopy

However, permission to use this material for any other psegomust be images could be 2D. 3D. and in time series. Typical tasks
obtained from the IEEE by sending a request to pubs-ernnis@deee.org. ’ ’

Qing Li and Zhigang Deng are with Computer Science DepartmenOf mi.croscopy image pr.ocessing include Qe_tecting_ andlseg-
University of Houston, Houston, TX. menting boundary of objects [4], [9], classifying objeatsoi

Il. RELATED WORK



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, AGUST 2011 2

multiple categories [23], recovering the motion of movingn oil immersion lens (EC Plan-Neofluaf0x, 1.4N.A.)
object in multiple time points [11], [12], etc. Currently,iim was used for imaging. Dil was excited using a Helium/Neon
croscopy image processing faces significant challengesadué&43nm laser line. The resolution of the image stack was
the following reasons: (1) objects of interest are ofterclou 0.064um x 0.064um x 0.12um (with over-sampling). Please
ing/overlapping each other or irregularly arranged, with nrefer to [7] for more details.
definite shapes. (2) lllumination variations are not distfire In the data preprocessing stage, a 3D median filter with
in thick specimens. Absorption, scattering, and diffractof a 3 x 3 x 3 kernel size was first applied to the images to
the light by structures located above and below the focalglaremove noise. The median filter is a commonly used nonlinear
cause image intensity fall off in deep specimens. (3) Thaperator that replaces the original gray level of a pixel by
background of microscopy images is usually very noisy. the median of the gray levels of the pixels in a specified

3D Spine Detection Previous efforts on dendritic spineneighborhood. As a type of ranking filters, the median filter
detection can be roughly divided into two categoriess based on the statistics derived from rank-ordering a et o
classification-based approachdd6], [13] and centerline elements. It is often useful because it can reduce noiseuith
extraction-based approachfs, [5], [24], [22]. Classification- blurring edges in the image. The noise-reducing effect ef th
based approaches separate points into different groupg asi median filter depends on two factors: (1) the spatial extént o
trained classifier. For example, Rodriguez et al. [16] psgb its neighborhood and (2) the number of pixels involved in the
an automated three-dimensional spine detection apprasch median calculation.
ing voxel clustering. Li et al. [13] proposed a 3D surfacsdzh ~ We chose the median filter since it is able to remove certain
classification algorithm. In their work, 3D neuron surfase inoise that cannot be removed by conventional convolution
reconstructed through the marching cubes algorithm [1&hE filtering. Then, to correct uneven illumination degradatia
vertex on the surface is classified into vertex on the spingsp-hat filter was adopted. After that, fuzzy C-mean cluster
or vertex on the dendrite based on three geometric featurd®] was used to cluster the image into 3 clusters: back-
Then, touching spines are separated by adopting surfesesbayround, weak spines, and dendrite with strong spines. Weak
watershed algorithm. spines and the dendrite represent the neuron. Subsequesitly

Centerline extraction-based approaches detect all the pemployed the marching cubes algorithm [14] to reconstruct
sible centerlines of certain objects in the image (e.gnagisithe 3D surface of the neuron. Then, a low-pass filter and
a curvilinear structure detector [22] or local binary fitfin mesh decimation were used to remove noise and reduce the
model of level sets [24]) and treat dendritic spines as smédlssellation density. The number of iterations in the lagp
protrusions attached to the dendrites. However, theseadsthfilter and the decimation factor control the smoothness ef th
often require empirically designed post-processing praces resultant 3D neuron surface.
and limited to processing relatively simple neuron streesu
Later, Koh et al. [8] adopt a thinning method to extraq
centerlines and apply the grassfire propagation technique
assign each dendritic point a distance to the medial axikeof {
dendritic structure. Since segmentation is achieved bpailo
thresholding and limited geometric information is consgte
for spine detection, this method may detect pseudo spin
Janoos et al. [5] present a method for dendritic skelett
structure extraction using a curve-skeletons approackda
on the medial geodesic function which is defined on th
reconstructed isosurfaces.

Geometry-based SegmentatianMany approaches [10],
[2], [19] employ simple, interpretable geometric featufes (a) (b)
3D mesh segmentation, but they are often limited to either a

; ; ; infi  Fig. 2. lllustration of Rayburst sampling. (a) Rayburst gping in XY plane.
single generic rule (e.g., concavity, skeleton topologsing Blue lines show the rays casting out in all the directionsvirthe predicted

shape primitives) or a single feature (e.g., shape diamet&hter point. The red line is the ray with the shortest ler{gtameter) while
curvature tensor, geodesic distances) to partition antti@gu the green line has the longest length (local orientatids))Ektracted backbone

mesh Recently researchers either match points betw@%lqﬂ'e neuron and the estimated radiuses are illustratechénntaximum

. . . infensi rojection image.
meshes based on rigid mesh alignments [3] or simultaneously v prol 9

segment and label parts in 3D meshes using a data-driven
scheme [6]. One common limitation of these approaches is

that they often require a consistently labeled trainingfeet IV. NEURON BACKBONE EXTRACTION
different types of meshes. After the above data preprocessing, the dendrite backbone
and the approximated radiuses along the backbone are gen-
lIl. I MAGE ACQUISITION AND PREPROCESSING erated by extending the Rayburst sampling algorithm [17].

In the image acquisition stage, mice brain slices wefghe Rayburst sampling core can be 2D or 3D with a variable
labeled by ballistic delivery of fluorescent dye Dil (Molechumber of rays that are uniformly spaced within a unit sphere
ular Probes). Confocal microscope (Zeiss LSMO0) with Compared with 3D Rayburst sampling, 2D Rayburst in the
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XY and XZ (or YZ) planes is less computationally expensive,

while it reliably yields comparable results [17]. \/j

Inspired by this idea, our Rayburst sampling algorithm ’ & g /]
works as follows: at the beginning, a seed point (an initial ‘

center point) inside of the dendrite is selected by userenTh (a)

2D Rayburst sampling in both the XY and XZ (or YZ) planes X

are adopted. A threshold is used to control the maximally S~ & \ 9’
allowed intensity difference between the center point of ¢ w >

neuron and its dendritic boundary. The length of the shorte: (b

ray in XY plane is the estimated diameter, and the locatiot

of the center point is updated as the midpoint of the shortes a \ .
ray. Then, rays sampled in the XZ (or YZ) plane are usec -“— % @ % |

to adjust the Z coordinate of the center point. The next twc '

center points toward both the ends of the dendrite are asbum (c)

to follow the local orientation of the current center poittite

orientation of the longest ray in XY plane is the approxindateFig. 4. Left: lllustration of our spine shape analysis and categorimatio
local orientation of the dendrite. This procedure repeati u PYTCRIe, When ary samping Ine s sent fiom one side of meto tre
the predicted center point reaches the border of the stacko@erwise, it is a touching spinight: Visualization of how we separate
it goes into the background. If the dendrite contains a brantouching spines: (a) initial touching spines, (b) the ressafter the touching
structure, a user-specified seed pointis needed for eapbira e e POKen o smal peches using & rormlzecigatian, and
In this work, the number of rays antlare experimentally set

to 36 and 80, respectively. Fig. 2 illustrates this process a

one example result.
P 2) Mean curvature on the surfac@he mean curvature of

each face on the 3D neuron surface is computed as the
average curvature of its surrounding vertices.

3) Normal variance:Normal variance of each facg is
defined as the average angle between the face normal
and the vector that is perpendicular to the backbone and
passes each of's surrounding vertices.
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= { . (a) We normalize the above features and add them together
\\/'\’,-.h»../\b /‘(ﬁ""”\ﬁqql to generate a score map. Then, we use a surface-based region
* ¥ i D TR LTl imy growing algorithm to separate spines from the dendritehis t
ITouching 1 A4 & :“ 1 e v process, faces whose values in the score map are greater than
 Spines - N x ¢ (a user-specified threshold) are randomly selected as seed
(b) points. If the score value of a neighbor of each seed point is

larger thart and it has not been visited previously, then it will
Fig. 3. Visualization of the computed score map after regicowing. (a) P€ Chosen as a new seed point. This process repeats urité all t
Visualization of the score map. Each face on the surface som from 0 faces have been visited. In this wotkis experimentally set to
to 1. (b) A thresholdg is used in the region growing algorithm to separatgy og Opne example result after the region growing is shown in
spines with dendrite. Spines are labeled in different &ld@buching spines . - .
are highlighted in black rectangles. Fig. 3. From this figure, we can see that although most spines
are detected and separated from the dendrite, some spmes ar
still touching together. As such, the next step of our apginoa
is to automatically detect and separate touching spines.
V. SEPARATING NEURONAL SPINES WITH DENDRITE Spine shape analysis and categorizatiorAfter spines are

. . separated from the dendrite, we perform 3D shape analysis
In our approach, the following three geometric features aggy 5| the spines in order to automatically categorize them

calculated for each 3D face to separate neuronal spines frpyp, single spines or touching spines. The core idea of our

the dendrite. shape analysis algorithm is illustrated in the left of Fig. 4
1) Distance to the dendrite backbon&he distance be- Basically, if any sampling line is sent from one side of the
tween a vertex on the neuron surface and the backborgpine to the other side, a single spine will have at most two
is defined aghe shortest distancbetweenv and any faces intersecting with the sampling line. By contrast,his t
point of the backbone. In this way, the distance betwe@ase a touching spine will have at least four faces interggct
each facef and the backbone is defined as the averagdth the sampling line. Based on this key observation, for
distance betweerf’s vertices and the backbone. Thisach spine segment outputted from the above region growing
distance feature is chosen based on the observatalgorithm, we first randomly selest sampling vertices on
that vertices on the spine surface usually have largére spine surface. Them, sampling lines are sent out from
distances (to the backbone) than those on the dendritbke sample vertices and their directions are in parallehto t
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normals of the sampling vertices. In our experiments, wadou _
k=15 worked sufficiently well. To ensure the sampling vesice Qg,,,
are from one side of the spine, they are only chosen fromt o S
vertices whose normal variance features are high (Sectjon"'
If more than two sampling lines intersect with four or mor: g 4 I
faces on the spine segment, we categorize the spine segn (a)
as a touching spine segment; otherwise, we categorize it a
single spine segment.
Breaking a touching spine into patches:We propose a

normalized cuts based algorithm to break a touching spi
into patches based on its local geometric features. The n -
malized cuts is an unsupervised segmentation technique f
proposed by Shi and Malik [20]. Generally, the normalize
cuts algorithm works on a graph which consists of nodes and
edges. A measure of dissimilarity can be established based#- 5  !llustration of mapping a 3D neuron surface to a grafa) an

NN example of the reconstructed 3D neuron geometry (i.e.gtiam mesh). (b)
distinctive features [20]. The strengths of the edges b&tWerne process of mapping a triangular mesh to a graph.
nodes are weighted with an exponential factor as shown in Eq.
1.

(b)

In our algorithm, each triangular face in the reconstructed
W, ;=e °a (1) neuron geometry (i.e. triangular mesh) is considered asla no
in a graph. In the graph, nodes are connected by edges to
Stheir neighbors. Since the neuron surface is represented as
triangular mesh; each face has exactly three face neighbors

ow we map a triangle mesh to a graph is illustrated in Fig.
5. The dissimilarity between two connected fagesnd f; is
defined as follows:

Hered(i, j) is the measure of dissimilarity between nod
v; andv;, andoy controls the scale of this measure.

If we have a geometré with N elements, and we assume
bipartition of G into A and B, whereAUB = G, ANB = 0,
andW € RY*¥ is a symmetric matrix with

W(i,j) = w;j (2) W, s = edihedral(fi.f) (8)
JisrJj

Then, Here the functiondihedral calculates the dihedral angle
between the two faces. Let andu; be the vectors which are

cut(A, B) = Z Wi(u,v) ®3) orthogonal to faceg; and f;, respectively. Then, the dihedral
ucA,veB angle between the two faceg,andf;, is computed as follows:

A normalized cutNcut(A,B), is defined as:

Wi+ U
cut(A, B) cut(A, B) dihedral(f;, f;) = arccos( ||ul||u7|| 9
Ncut(A,B) = 4 J
assoc(A, G)  assoc(B, G) Then, we solve Eq. 6 for eigen-vectors with the smallest
where eigen-values and use the eigen-vector with the secondeshall

eigen-value to bipartition the graph into two patches (sub-
assoc(A, G) = Z W (u,p) (5) graphs). We repeat this process on the partitioned patches

wEA,pEG (graphs) until the number of patches reaches a user-spkcifie

maximum. At the end, the algorithm returns a group of
eigen-vectors. Each eigen-vector represents a patch vang e
element of the eigen-vector can be mapped to one face on the
surface: if the element equals to 1, it means its correspondi
face belongs to the patch. The (b) panel in the right of Fig.
4 shows some example results after we break touching spines
into patches based on local geometric features.
Stitching spine patches:ln this step, we introduce a novel
They apply a threshold to the eigen-vector with the secolgline stitching algorithm to group some patches together to
largest eigen-value to yield the optimal bipartition. In.Bg form a new spine based on high-level geometric features.
D is a diagonal matrix such that We first examine the boundary of each patch as follows: if
one patch is connected with another patch, we add them as
o N o a pair in a candidate list. Whether two patchgsand p;
D(i,j) = ZW(ZJ) (7)  should be stitched together is primarily based on two higélle
=0 geometric metrics (illustrated in Fig. 6). The first georitetr
andy is a group membership indication vector. A detailethetric is the projected distance between the centroids ef th
description of how to solve Eq. 6 can be found in [20]. two connecting patches. The second geometric metric is the

and assoc(B, G) is defined in a similar way. In order to
maximize the total dissimilarity betweeA and B, the total
similarity within A, and the total similarity withinB, Shi
and Malik [20] formulate and solve the following generatize
eigen-vector problem:

Wy = (1 - \)Dy (6)
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Fig. 6. lllustration of our two high-level geometric feadgfmetrics. The
blue and green curves represent two connecting patchesrethdash line
represents the backbone. Fig. 7. 3D surface-based spine detection and segmentasiits of three

example images. Segmented spines are labeled in diffecdorisc Two mis-
detected tiny spines are highlighted in two black circles.

intersecting volume ratio of the bounding boxes of the two
connecting patches. The two geometric metrics are designed

to guide the algorithm to only stitch patches on the sameespin Here 7 is a N x 1 vector to denote the decisions of the
avoiding stitching patches that belong to different spif¥e 7 possible associations(!) = 1 indicates thelth possible

combine the two metrics in the following way: association is chosen; whitg!) = 0 indicates thdth possible
association is discarde,, j;) indicates the patch labels in the
vol (p; N pj) lth possible association. The one-to-one association r@onst

1pepi) = i (vol (pi),vol (p;)) disproj (P> 2j)  (10)  can be formulated as follows:

In Eq. 10, the first item calculates the intersecting volume
ratio of the bounding boxes of the two connecting patches, an
the second item is the distance between the projected ddmtro Here A is an x N matrix: its rows indicate all the patches

of the two connecting patches. . - )
: - ) and its columns correspond to the decisions of shpossible
If & patch is associated with only one other patch based Q8sqciation pairdy is an x 1 vector with all 1s, which means

the above constructed candidate list, we can simply apply ;i each patch can be associated with at most one other patch
thresholdy to n(p;,p;) in Eq. 10 to determine whether the ¢ 5 time. For thev possible association® = {(p;,., p;, )|l =
two patches should be stitched. However, more complicate N}

cases often exist such as each patch is associated with moré "~
than one other patches. Therefore, in this work we stitchespi 1k =iy
patches through maximization of a global possibility. ’
Specifically, in our algorithm, a 0-1 integer programming
is employed to determine the multi-association cases. Let 0; otherwise
P = {p;li = 1,2,..n} denoten patches associated each
other and need to be stitched properly. For a patghwe
assumen,; other patches are identified as stitching candidat
M; = {(ps,pj)|li = 1,2,...,m;}. Therefore, the total number
of candidate stitching pairs & = "', m,. These candidate

Az<b (12)

Ak)={ Lk=j, ,0<I<N (13)

The above optimization problem can be solved through 0-1
integer programming. In this work, we use branch-and-bound
ﬁ_SPBB) based linear programming algorithm [18] to solve it.
The optimization process of LPBB is to build a searching tree
by repeatedly discretizing (O or 1) the variables (branghin

pairs areM = Uiz Mz ) . . and pruning the tree branches based on the optimal value
The optimal matching strategy is to determine the optimg} ihis node (bounding) computed by linear programming.

: . N - S
solutionz® = {0/1}" that maximizes an energy objectiveyyte that this optimization process is only applied to gmup
function (Eg. 11) while maintaining a constraint (Eq. 18¢cB i, \which more than one patches are associated in multiple
patch can be associated with at most one patch at a time. -Elﬂ?ching pairs. For simple one-to-one cases, a threshdkd
objective function is formulated as follows. used to determine whether the two patches should be stitched
(described above). Several patch stitching results anarsimo
(c) panel in the right of Fig. 4. After the patch stitching, we
N (11) com_bine the_z separ_ated touching spines with single spines to
f(z) = Z 2(1) x n(pi,» piy)] obtain 'Fhe _flnal spine detection and segmentation resudts, a
= shown in Fig. 7.

z* = argmax(f(z))
z€{0,1}N
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Detection Performance Comparisons

Fig. 8. Detection performance comparisons between ourapprand the two chosen spine detection algorithms [13], [lite Y axis of the three panels
(from left to right) is “detection accuracy”, “missing sgimate”, and “false positive rate”, respectively.

VI. EXPERIMENTAL RESULTS
To evaluate the performance of our approach, we had testB8 testimages. Then, we compared the detection perfoenanc

we asked a biologist to manually detect and segment spines in

our algorithm on 6 neuronal image datasets. The spine det@k-our algorithm with two state-of-the-art, neuronal spine
tion and segmentation results of three images are showndgfection algorithms [13], [16] and the ground truth. Aswho
Fig. 7, where spines automatically segmented by our atyarit " Fig. 8, our approach achieved a higher spine detection
are labeled in different colors. As shown in this figure, ou#ccuracy, a smaller spine missing rate, and a lower false
approach can robustly and automatically segment majofity RPSitive rate than the_ two chosen spine tracking algorithms
spines including touching spines, except a tiny number B3], [16]. However, in Fig. 7, we also can see that our

sporadic mis-detections.
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approach still missed the detection of a few tiny spineg o
the same tiny spines were also mis-detected by the two other
algorithms [13], [16].

Note that this work can be regarded as a comprehensive
improvement/extension of [13]. The major difference betwe
this work and [13] is how touching spines are automatically
detected and separated. In [13], we simply adopt watershed
algorithm to separate touching spines. The limitation @& th
watershed algorithm is that it is very hard to control theaewat
level, which will easily lead to over-segmentation results
this work, we first accurately categorize spines into single
spines and touch spines. Then, we introduce a robust break-
down and stitching-up algorithm to separate touching spine
into single spines.

Quantitative comparison and analysis results are shown in
Fig. 8 and the visual comparison is shown in Fig. 9. Note that

oA
©

\‘IV(MAJ
v v Y @

W g A !
A G
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in Fig. 9 (b), the main reason why occluded spines cannot be

ol S
* / detected by [16] could be that the resolution along z dioecti
L 7 of neuron images is not fine enough. It is not related to
), g . . . .

y/ whether 3D median filter or other image processing procedure
o - 4 o is applied or not, in our opinions.
y P

- (a) < b) £ (c)

As mentioned in the introduction section, spines have been
categorized in multiple shapes. The accuracy of the seg@nent
tion algorithm will affect the classification results. Thésre,
we compared the segmentation performance of our method
with the ground truth, as well as methods proposed in [13]
and [16]. For each boundary vertexin our segmented spine,
we first calculated its closest boundary vertex in the ground
To validate the segmentation performance of our approathyth. Then, the segmentation error for one spine is defised a

Fig. 9. The visual result comparison of our algorithm wittotather spine
detection and segmentation algorithms [13], [16] on a neairdmage. (a)
shows the result from [13]. (b) shows the result from [16). $bows the
result from our algorithm. In all the results, spines areelatl in different
colors. The black circles indicate missing, spurious,ef@ssitive spines.
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N direction are occluded by other dendritic structures ang th
SegError Z ca_nnot be d_etected. Fig. 1_1 illustrates our 3D surfaceebase
= SN dis(vk, vig) spine detection approach is able to handle such occlusion

) ) ~ issues. Fig. 11 (A) shows the XY-Plane MIP (Maximum

HereNN IS the number of boundary vertices of the spingniensity Projection) of one 3D neuron image. After this
and >, dis(vk, vr11) calculates the length of the spineyrgiection, spines along the Z direction are occluded and
boundary. The comparison results are shown in Fig. 10.  -3nnot be detected. Fig. 11 (B) shows the results by our
algorithm that can detect spines along Z direction. Not¢ tha

dis(v;, closest(v;))

(14)

Segmentation Comparison in most 3D microscopy images, compared with the resolution
in X and Y direction, the resolution in Z direction is stillrfa
009 T from sufficient; substantial information along Z directidm
0.08} . lost at the image acquisition stage.
0.07k i We implemented our algorithm using Matlab. The average

S B o | computing time for detecting spines from a neuron image
“gJ ' tetal ]3] Rodri 1112 is about 30 seconds using our method on a computer with
B 00sr odriguez et al.[12] | a 2.20GHz Intel Core 2 Duo CPU and 3G Memory. It is

=

[

f‘,’ Our Method

(]

0.03} — of this work publicly available to other researchers in the

0.021 é I i community upon request.
0.01} 1

VIl. DIScUSSION ANDCONCLUSIONS

This paper introduces a novel 3D surface based dendritic
spine detection and segmentation approach. To validate the
performance of our algorithm, we compared the results by our
Fig. 10. Segmentatipn performance comparisons betweeapproach and approach with the manua”y labeled ground-truth as welhas t
the two chosen algorithms [13], [16]. results by two state-of-the-art spine detection and setatien
As clearly shown in Fig. 10, our algorithm achieved a Iowea}Igorithms [16], [13]i Our comparison results show that our
segmentation error. Rodriguez et al.’s method [16] use:el\/O)PrOpOSEd approach is more accurate and robust than the two

. . : hosen algorithms.
clustering for segmentation and the vertex distance to t eIt i< noteworthy that althouah our aoproach can achieve a
backbone is used as the only criterion for segmentation. hts h spine d y d 9 app it St mi
segmentation performance was less consistent with thendrou Igh spine detection and segmentation accuracy, it sts-mi

0.041- =+ B 7 noteworthy that we plan to make our self-contained code
|
I

truth. Li et al's method [13] had a competitive segmentatiodeteCted a few tiny spines (Fig. 7). This in part comes from

performance in single spine cases as our algorithm. Howev%}Jr region growing algorithm that only uses a single global
our approach had a better performance in segmenting togmchﬁ

spines than [13].

reshold to separate spines from the dendrite. In the dutur
to further improve the accuracy of our algorithm, we plan to
investigate new algorithms to adaptively learn this patame
based on the local geometric features.

Since the test dataset we were able to acquire only encloses
straight neurons, not curvy neurons, we were not able to test
our algorithm on curvy neuron datasets. Considering curvy
neurons typically have a higher complexity than straiglgon
directly applying this current work to curvy neurons may
not work well; however, we believe a proper extension and
adaptation of this work will help to solve the problem. Aneth
limitation of the current work is that it does not handle $ing
spines with complex shapes. For single spines with complex
~ shapes (e.g., multi-headed spines), more sophisticat@gesh

(A) ' ®) analysis algorithms need be developed. We believe thatawith
sufficient spine shape training dataset, accurately djstin-
ing complex shape spines (e.g., multi-headed spines) from
Fig. 11. lllustration of occluded 3D spine detections. (Apws the XY- touching spines can be achieved.

Plane MIP (Maximum Intensity Projection) of one 3D neuroraga. After this
projection, spines along the Z direction are occluded amsh@abe detected.

(B) The detection result of our algorithm that is able to Harttie occlusion ACKNOWLEDGMENTS
issue. Spines that are occluded in MIP but observed in the Bface are . . .
highlighted in black circles. This research is supported in part by Texas NHARP 003652-

0058-2007 and NSF 11S-0914965. We also would like to
One limitation of 2D MIP (Maximum Intensity Projection)thank Stephen TC Wong at the Methodist Hospital Research
based spine detection algorithm is that spines along theln&titute for insightful discussion and help, and Matthew
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Baron, Merilee A. Teylan, and Yong Kim at the Rockefelle22] Y. zhang, K. Chen, M. Baron, M. A. Teylan, Y. Kim, Z. Song,
University for providing the test image data. Any opinions, P Greengard, and S. T. Wong. A neurocomputational methoéfiy

automated 3D dendritic spine detection and segmentatiomeafium-

findings,and conclusions or recommendations expressein t - gjeq spiny neuronsNeuroimage 50:1472-1484, 2010.
material are those of the authors and do not necessarilgtefigs] Y. zhang, X. Zhou, R. M. Witt, B. L. Sabatini, D. Adjeroland S. T.
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