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Generating Freestyle Group 
Formations in Agent-Based Crowd 
Simulations
Qin Gu and Zhigang Deng * University of Houston

In most crowd simulation systems, each agent 
intelligently moves toward its destination 
through navigational path!nding algorithms 

and avoids collisions with other agents and ob-
stacles through local behavior control models. 
However, research has paid little attention to 

simulating the collective behav-
iors of the entire crowd or a cer-
tain subgroup of the crowd. In 
many scenarios, these collective 
behaviors play a signi!cant role 
in exhibiting the crowd’s mass 
attributes. From the perspective 
of visual simulation, a group’s 
collective behaviors are usually 
demonstrated as their general 
formations. For instance, when 
a computer game simulates a 
large-scale battle, the two army’s 
formations directly re"ect their 
controllers’ strategic commands.

When simulating a crowd, 
one intuitive way to form a tar-
get formation is to provide each 
agent’s desired position at a par-

ticular moment1 and generate transitions between 
that position and the destination. However, users 
must manually specify many spatial, temporal, 
and correspondence constraints, which is time-
consuming and nontrivial, particularly when the 
crowd includes many agents that change location 
frequently. Similarly, when a group of people per-
forms a collective action simultaneously in the 

real world, it’s generally impossible for their com-
mander or team leaders to convey detailed move-
ment information such as every group member’s 
position at every time instance.

We propose an interactive, scalable framework 
to simulate freestyle group formation through in-
tuitive user interfaces (see Figure 1). Speci!cally, 
each agent in a group !rst evaluates its optimal 
destination in a user-speci!ed target formation 
constrained by formation patterns. Then, the frame-
work employs formation coordinates, a relative-agent-
position representation, to evaluate the !nal agent 
distribution in the target formation and the cor-
respondence between the initial and target states. 
During the runtime transition from the initial 
formation to the target formation, each agent will 
move along a path guaranteed to avoid local col-
lisions, follow user-sketched transition paths, and 
reach the target formation position.

This research provides two main contributions. 
The !rst is automated generation of freestyle group 
formations. Using a set of free-form user inputs, 
our approach automatically evaluates the corre-
sponding target agent distribution with relatively 
few parameter tunings. The formation coordinates 
enable our approach to robustly handle any varia-
tion of formation shape, orientation, and scale.

The second contribution is agent motion trajec-
tory control at both the local and global levels. 
This is especially useful when users try to simu-
late strategic scenarios such as “a military squad 
is forming a circle formation while bypassing any 
enemies or static obstacles.”

An interactive, scalable 
framework generates 
freestyle group formations 
and transitions via natural 
and !exible sketching 
interaction. It computes a 
plausible agent distribution 
in the target formation and 
agent correspondences 
between keyframes. Two-level 
formation trajectory control 
lets users intuitively guide 
agents’ transition paths from 
the initial formation to the 
target formation.
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Target Formation Speci!cation and 
Generation
Our group formation speci!cation and evaluation 
ef!ciently convert an intuitive user input or de-
scription of a group formation into a numerical 
representation of agent distribution. A group for-
mation’s realism derives from the common obser-
vation that a group member in a real-world crowd 
is less likely to move across the formation to reach 
a far-off position if a much closer one is reachable. 
This is because humans tend to save energy un-
less special constraints exist, which is beyond this 
article’s scope.

Formation Shape Representation
Interfaces for generating group formations should 
be intuitive enough for users to easily depict any 
formation without signi!cant parameter tuning or 
prior mathematical knowledge. Meanwhile, they 
should be accurate enough for the crowd simula-
tion algorithm to understand the users’ purpose. 
In reality, a group formation’s most salient visual 
feature is generally its contour shape, such as a 
square or circle. However, directly specifying and 
quantifying a geometric shape is nontrivial for 
most users.

To simplify this task, we propose a uni!ed for-
mation shape representation called a formation 

template—an oversampled point space (relative to 
the number of agents) with a roughly even dis-
tribution. Our approach converts the initial user 
input to the formation template; in this way, vari-
ous types of user input can share the rest of the 
simulation pipeline. Our framework currently can 
automatically convert three common types of user 
input: brush painting, texture maps, and boundary 
sketches.

Brush painting. Two-dimensional image-processing 
tools such as Adobe Photoshop commonly use 
brush-painting input. Branislav Ulicny and his col-
leagues proposed an ef!cient brush tool to author 
desired crowd speci!cations.2 To generate a uni!ed 
representation, we employ a 2D painting’s pixel 
intensities as a convenient reference to evaluate 
its target agent distribution. In the discrete simu-
lated crowd, we sample a position as a template 
point only if its pixel intensity matches the brush’s 
color within a certain threshold. Brush painting 
(see Figure 2a) works well for specifying simple 
formation shapes, which often require only a few 
painting components (for example, brush sizes).

Texture maps. For complicated formations, brush 
painting might be inaccurate and time-consuming. 
Instead, we can treat the target shape as a 2D 

Global planning and decision-making

Global trajectory control Global group collision avoidance

Local trajectory control Local agent collision avoidance 

Formation vectors Agent speed, orientation

Trajectory
sketch

Formation
sketch Agent animations

Group speed, orientation

Figure 1. Embedding group formation control into a complete crowd simulation system. Orange indicates 
the components of a traditional crowd simulation system; blue and purple indicate user interactions and 
formation control, respectively, in our framework.
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texture ground and directly retrieve the shape in-
formation by matching the points in the texture 
coordinates with those in the crowd simulation 
world coordinates.

Boundary sketches. The previous two types of user 
input provide fast solutions for sampling relatively 
simple or prede!ned formation shapes. However, 
in many scenarios, users might want to specify 
complicated formations on the "y. Brush painting 
can’t specify subtle formation details such as 
sharp angles or continuous changes of the stroke 
size. Texture maps require the target formation to 
be well de!ned in advance and cannot be changed 
on the "y. Furthermore, both input types depend 
on color intensity information during sampling. 
If the environment has similar color information 
on the virtual ground, the sampling results would 
be inaccurate.

To complement those two input types, we de-
veloped a freehand-sketching interface using two 
types of boundary curves—inclusive curves and ex-

clusive curves. With them, users can specify arbi-
trary target formations such as the examples in 
Figures 2b and 3.

The initial user sketches are freehand curves 
or line stripes that might contain irregular point 
(shape vertex) distributions. To generate a visu-
ally balanced target formation template, we !rst 
evenly resample (that is, reevaluate) the points 
on the boundaries. We then !ll the area between 
the inclusive and exclusive boundaries through an 
extended scanline "ood-!ll algorithm (see Figure 
4), employing the same sampling unit used for 
boundaries. We adapted our !lling algorithm to a 
discrete grid space so that its computation is faster 
than the traditional pixel-by-pixel sampling that 
most image-processing tools use.

Figure 4 is an extension of the traditional "ood-
!ll algorithm in a continuous (pixel by pixel) 
space, such as the bucket-!ll tool used in 2D 
painting programs. When checking the connected 
neighbors of each sampling point in the template, 
we use the PointInBoundary() function to 

(a)

(b) User inputs Formation templates Results

Simulation

Figure 2. Generating uni"ed formation templates with (a) brush painting and (b) boundary sketches. A 
formation template is an oversampled point space (relative to the number of agents) with a roughly even 
distribution.

Figure 3. Generating freestyle group formations through inclusive curves (the blue boundaries) and exclusive curves (the red 
boundaries). The "nal formation has holes, which would otherwise be tricky to generate.
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check whether a point is inside the polygon formed 
by the boundary points. We could evaluate the 
point in several ways. We choose the angle sum 
solution because it is robust in 3D space. Further-
more, to avoid sampling points too close to the 
boundaries, PointInBoundary()checks four 
points with constant offsets (top, bottom, left, 
and right) to the current checkpoint.

This algorithm’s most critical parameter is the 
sampling unit used for the boundaries and inside 
areas. An overly large sampling unit can reduce the 
computational load but might produce an unbal-
anced agent distribution in the target formation 
(see Figure 5a). On the other hand, an overly small 

sampling unit might break the balance between 
boundary and nonboundary agents (see Figure 5b). 
This is because the algorithm evaluates the bound-
ary agents before the nonboundary agents (we 
discuss this in more detail later). A high density 
of boundary agents could lead to too few agents 
inside the formation shape.

To relieve users from repeatedly trying different 
sampling rates, we introduce an automatic algo-
rithm to identify a balanced, optimal sampling 
unit (see Figure 5c). This algorithm is based on 
the observation that for any 2D polygon, if the 
number of vertices is large enough, the desired ra-
tio between the boundary length and the area’s 

Input: bPoints, boundary points.
Input: unitX, a sampling unit to traverse the template.
Input: unitY, a sampling unit to traverse the template.
Output: fPoints, outputted filled points inside the boundaries.

 1: q = new empty queue;
 2: q.push(startingPoint);
 3: while q is not empty do
 4:   checkPoint = q.front();
 5:   left = checkPoint - unitX;
 6:   while PointInBoundary(left) && left has not been checked do
 7:     fPoints.push(left);
 8:     top = left + unitY;
 9:     if PointInBoundary(top) && top has not been checked then
10:       q.push(top);
11:     end if
12:     bottom = left - unitY;
13:     if PointInBoundary(bottom) && bottom has not been checked then
14:       q.push(bottom);
15:     end if
16:     left = checkPoint - unitX;
17:   end while
18:   perform the same steps for all right neighbors of the checkpoint ...
19:   queue.pop(checkPoint);
20: end while
21: return fPoints;

Figure 4. A discrete !ood-"ll algorithm. We adapted this algorithm to a discrete grid space so that its 
computation is faster than the traditional pixel-by-pixel sampling that most image-processing tools use.

(a) (b) (c)

Figure 5. Sampling-unit optimization. (a) An overly large sampling unit gives the template fewer points than agents. (b) An 
overly small sampling unit clusters too many agents on the boundaries. (c) Our adaptive sampling algorithm evaluates the unit 
for an optimal con"guration.
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square root is approximately a constant. However, 
most numerical solutions for computing the area 
of an irregular (convex or concave) polygon, such 
as triangulation methods, aren’t ef!cient enough.

To compute the optimal sampling unit, we start 
with a relatively small unit such as 100, as opposed 
to the world grid unit of 1,000. Then, we evaluate 
r, the ratio between the boundary and nonbound-
ary agents, by counting the boundary points and 
inside points. Once we estimate r, the optimal 
sampling unit for generating the formation tem-
plate is the ratio between the total boundary curve 
length and the number of boundary agents b. To 
obtain b, we solve

b2 + r2 × b – r2 × n = 0,

where n is the total number of group agents.

Formation Coordinates
After creating the formation template, we must 
evaluate the best candidate position for each agent. 
However, it’s nontrivial to !nd any deterministic 
relationship between the world coordinates of the 
original agent positions and the template point 
positions. This complexity is due to the target for-
mations’ large variety of shapes, positions, orien-
tations, and scales. So, we need a comprehensive 
yet compact representation to correlate the origi-
nal and target formations. Formation coordinates 
ful!ll this function, translating the world coordi-
nates to a scalable formation representation.

To eliminate the effect of entire group 
movements during formation generation, we !rst 
evaluate the weighted group center position of all 
the agents, pc, using

p
m

pc i ii

m
=

=∑
1

1
ω ,

where m is the number of agents, ωi is the ith 
agent’s weight, and pi is the ith agent’s world 
position.

Then, we compute two relative features and 
one absolute feature from each agent and each 
candidate point in the template (see Figure 6). First, 
we compute the agent’s direction to the formation 
center: nx, ny. Both nx and ny range from 0 to 1. Any 
agent in a formation needs to know its relative 
direction with respect to the current group center, 
instead of the relative direction to the origin of 
the world coordinate system. We compute this by 
normalizing the direction vector from the group 
center to the evaluating point.

Second, we compute the agent’s relative distance 
to the formation center: dist, which is between 0 and 
1. Again, this feature must be relative to ensure the 
formation coordinate’s scalability. We normalize 
the absolute distance between the current point to 
the group center by the formation shape’s radius 
(that is, the distance from the evaluating point 
to a boundary point). However, this radius might 
vary signi!cantly for different boundary points. 
Also, recomputing the exact radius for every 
point is impractical. Instead, we use only certain 
representative formation radii, and we choose the 
closest radius when performing normalization. In 
our experiments, evenly splitting the formation 
shape to eight sectors by four vectors provided 
visually acceptable results and performance.

Finally, we compute the absolute formation 
orientation: θx, θy. The previous two relative features 
enclose each agent’s general position with respect 
to the group center, assuming the whole group 
always keeps its orientation. For example, an 
agent in a group formation’s southwest region will 
normally always be in that region. However, this 
isn’t always valid when the whole group changes 
its orientation. For example, if the entire group’s 
orientation changes to 180 degrees according 
to the world horizontal axis, the same agent’s 
absolute direction will also rotate. So, from the 
world coordinate system’s perspective, that agent 
is now in the group formation’s northeast area 
(see Figure 6).

(a)

A
A

A A

B B B B

(b) (c) (d) (e)

Figure 6. Evaluating the positions of agents A and B in the target formation. (a) Interactive user input and speci"cations. (b) 
Converting all the points in the formation template to formation coordinates. (c) Computing the formation coordinates for A 
and B in the initial agent distribution. (d) Finding the corresponding template points for A and B with the most similar formation 
coordinates. (e) Performing point-based relaxation to generate the "nal distribution in the target formation.
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Therefore, the formation coordinate includes θx, 
θy. By default, this feature will be the same for all 
the agents in one group to keep the agent distribu-
tion consistent. If we need to simulate inconsistent 
crowd scenarios such as a turbulence transition 
(for example, when agents can’t maintain their 
adjacency condition), we can intentionally set this 
feature to random values for different agents.

Given a point or agent A or B in the world space 
(see Figure 6), we can !nally formulate the for-
mation coordinate as a 5D feature vector (nx, ny, 
dist, θx, θy). Unlike the global formation orienta-
tion, the formation coordinate doesn’t include the 
whole group’s global movement because the global 
movement doesn’t affect the group formation’s 
shape and local distribution. We’ll directly apply 
the formation coordinate to every agent during the 
higher-level simulation (we discuss this in more 
detail later).

Estimating the Target Distribution
We estimate the agent distribution in the target 
formation to !nd the correspondence between any 
agent in the initial formation and its appropriate 
candidate position in the formation template. Us-
ing formation coordinates, we design a correspon-
dence construction algorithm based on two key 
heuristics (assumptions).

First, in the target formation, boundary agents 
should closely !t the boundary curves to clearly 
exhibit the user-speci!ed formation shape. This is 
particularly important to user perception because, 
as we mentioned before, the contour shape is the 
most salient feature distinguishing one formation 
from another in crowd simulations.

Second, each nonboundary agent should keep 
its adjacency condition as much as possible. So, 
our algorithm !rst !nds correspondences for the 
boundary agents and then !nds correspondences 
for the nonboundary agents.

Finding correspondences for the boundary agents. 
To guarantee the exact formation shape, every 
boundary point in the formation template requires 
exactly one corresponding agent to !t in. So, 
this must be the !rst step of correspondence-
!nding. After converting the positions of all the 
agents in the initial distribution into formation 
coordinates, we subtract the formation orientation 
(θx, θy) from each agent’s relative direction (nx, ny) 
to yield the relative agent direction. We store this 
direction along with the relative agent distance in 
a KD-tree data structure. For each point on the 
target formation template boundaries, we similarly 
convert its world coordinate to its formation 

coordinate. We can ef!ciently compute the agent 
corresponding to each boundary point by !nding 
the nearest neighbor in the KD-tree (for example, 
agent B in Figure 6).

Finding correspondences for the nonboundary agents. 
Because the formation template is an oversampled 
candidate or point space, we shouldn’t expect 
strict one-to-one correspondences between the 
inner template points and the remaining agents. 

Instead of !nding the corresponding agent for 
each inner template point, we inversely identify 
the corresponding template point for each non-
boundary agent that wasn’t selected in the previ-
ous step. Similarly, we use each agent’s formation 
coordinate to !nd the closest inner template point. 
We further transform that point to its world co-
ordinate representation—that is, the agent’s target 
position (see agent A in Figure 6).

Formation Relaxation and Customization
As we described earlier, the resultant nonboundary 
agent distribution might not be naturally distrib-
uted because the number of inner template points 
might be signi!cantly larger than the number of 
nonboundary agents. In addition, the inner tem-
plate points are orthogonally sampled, which looks 
less natural to humans.

To improve the naturalness of the resultant agent 
distribution or formation, we apply point-based re-
laxation optimization to the generated initial agent 
distribution (see Figure 7). This process uses the 
boundary points as relaxation constraints. In our 
experiments, a small number of iterations (for ex-
ample, 3 to 5) usually produced acceptable results.

To perform the relaxation, Figure 7 uses a Gauss-
ian function as the kernel of radial basis func-
tions. If we used a KD-tree to store the agents’ 
positions, the updateDistribution() function 
would require re-creation operations, costing Θ(n 
log n). Performance generally is critical for agent-
based crowd simulations because the system must 
update every agent individually at each time step. 
Our implementation reduces n log n to n by reg-
istering agents into a regular grid system at each 

Performance generally is critical for 
agent-based crowd simulations because 
the system must update every agent 
individually at each time step.
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update. The closestPoints() function simply 
collects the agents registered in surrounding grids 
with Θ(1) cost.

The weight parameter, w, determines the relax-
ation effectiveness on each agent. By default, we 
apply a uniform weight to all the agents, which 
means every agent has the same pushing or pull-
ing effect on its neighbors. This results in an even 
agent distribution in the target formation. How-
ever, some applications might prefer an unbal-
anced agent distribution to achieve certain special 
effects such as local clustering. So, users can lower 
the relaxation weights for those agents at the clus-
tering center so that they’ll have a smaller pushing 
effect on their neighbors.

Agent Motion Trajectory Control
Our two-level agent motion trajectory control com-
prises local formation transition control and global 
formation trajectory control. The !rst level enables 
all the agents to reach their proper target positions 
with different moving styles while forming the tar-
get formation. The other level guides the agent group 
as a whole to follow arbitrary user-sketched paths.

Local Formation Transition Control
Local formation transition is the transition from 
one formation to another without considering the 
whole group’s general locomotion. Many factors 
can affect it. The most intuitive way to control 
this transition would be to simply compute a lin-
ear interpolation from an agent’s initial position 

to its estimated target position. However, this pro-
cess can’t re"ect user control or realistic collision 
avoidance among agents. So, we further consider 
two factors that in"uence agent movements: local 
force-based3,4 collision avoidance and sketch-based 
local trajectory control.

We employ force-based collision avoidance be-
cause it can handle very-high-density crowds. Each 
agent is pushed away by the tangential forces from 
its neighbor agents and environmental obstacles 
in the area of interest (that is, the human visible 
range). For extremely high-density crowds, the tan-
gential forces alone might appear insuf!cient to 
drive agents apart. If the simulation system detects 
a collision between two agents, it applies extra re-
pulsion force to immediately stop the agents to pre-
vent unrealistic penetrations.

Without user interactions, each agent would go 
straight to the target position with minor transi-
tion adjustments on the way to avoid local colli-
sions with other agents. However, many scenarios 
expect agents to follow a more sophisticated path 
during the local formation transition, such as a 
splitting and merging transition. Similarly to the 
formation speci!cation interface, our local forma-
tion transition control lets users draw freehand 
curves to specify one or multiple moving paths as 
general guides (see Figure 8).

Unlike many previous approaches, we construct 
a second virtual local grid !eld (instead of regu-
lar world grids) to evaluate a "ow vector to guide 
transitions. This is because the formation transi-

Input: bPoints, constraint boundary points.
Input: iPoints, points to be relaxed.
Input: η, relaxation iterations.
Input: β, Gaussian constant parameter (β > 0).
Input: speed, moving rate of relaxation in each iteration.
Input: w, relaxation weight.
Output: rPoints, outputted relaxed points inside the boundaries.

 1: rPoints = iPoints;
 2: for each η do
 3:   allPoints = rPoints + bPoints;
 4:   updateDistribution(allPoints);
 5:   for each rPoint in rPoints do
 6:     neighbors = closestPoints(rPoint);
 7:     for each neighbor in neighbors do
 8:       d = distance(rPoint, neighbor);
 9:       v = v + d × exp(–β × d2);
10:     end for
11:     rPoint = rPoint + v/numOfNeighbors × speed × w;
12:   end for
13: end for
14: return rPoints;

Figure 7. Point-based formation relaxation. In our experiments, a small number of iterations (for example, 3 to 
5) usually produced acceptable results.
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tions are local behaviors despite group positions. 
So, even if users draw curves farther from the ab-
solute group location, our algorithm will still con-
sider these actions as local guidance to each agent. 
In other words, our algorithm will internally snap 
the center of user curves to the center of the vir-
tual grid !eld overlapping with the transition area 
(see Figure 8).

All the virtual grids around the curves are !lled 
with a "ow vector. We set the "ow vector’s direc-
tion to the tangential vector of the closest point on 
the trajectory curve, and the "ow vector’s magni-
tude is inversely proportional to the distance be-
tween the grid and that point. If multiple curves 
exist, we blend the grid’s !nal "ow vector from all 
the in"uencing trajectory points with an experi-
mental threshold, D, as the upper-limit distance 
for quali!ed in"uencing trajectories.

Finally, we compute each agent’s local velocity:

V w V w f w sf i
i

n

j
j

local = + +
=

−

=
∑ ∑1 2 3

1

1

1

9

.

The !rst term is the velocity driven purely by target 
formation. The second term is the summed velocity 
driven by the combination of tangential forces 
from the agent’s neighboring group members and 
obstacles.4 The third term is the summed velocity 
driven by averaging "ow vectors in the current 
and eight adjacent virtual grids (that is, sj j{ } =1

9 ) 
derived from user sketches. The weights balance 
the expected speed of formation generation (w1), 
the expected accuracy of collision avoidance (w2), 
and the expected in"uence of user interference 
(w3). Our experiments provided visually plausible 
results with w1 = 0.2, w2 = 0.5, and w3 = 0.3.

Global Formation Trajectory Control
So far, we’ve assumed that all the agents in a group 
move and change formations relative to a !xed 
group center. However, many crowd simulation 
scenarios expect a group of agents to form a 
certain formation while moving as a whole to 
other locations. Furthermore, users can guide this 
global movement.

To achieve such effects, we introduce three 
factors to the group level:

V w V w V w Vglobal gn gc gs= + +4 5 6 .

Vgn is the global navigation vector heading to the 
target formation’s location. Vgc is the velocity driven 
by global collision avoidance between different 
groups. Vgs is the user-guided velocity computed 
from our sketching interface (see Figure 9). Our 
simulations used w4 = 0.4, w5 = 0.4, and w6 = 0.2.

Instead of using virtual grids, this form of 
control directly applies the user sketches of global 
group trajectories on the regular world grids to 
compute "ow vectors. This is intuitive because 
the global trajectories are sensitive to the current 
group location. If a drawing curve is too far from 
the current group position, it won’t affect the 
group’s trajectory.

Although this global curve is more visually intui-
tive, it might introduce an undesired situation. If a 
user sketch starts close to the initial group location 
but heads away from the target formation location 
along the sketched path, the group will most likely 
stick at the end of the sketched curve. This is be-
cause the magnitude of Vgs is inversely proportional 
to the distance between the current group location 
and the closest point on the sketched curve.

To tackle this issue, we introduce a valve 
parameter α to Vgs:

V sj
j

gs = × < <
=
∑α α

1

9
0 1, .

When a group moves toward the end of a sketched 
curve, the valve value will keep decreasing so that 
Vgn will gradually dominate the group’s path to 
guarantee the group reaches the target position.

At the group level, each group in the scene is 
considered a single entity. Any rule- or force-based 
model can serve as the collision controller, just as 
in a single-agent simulation.

Finally, we combine the obtained global velocity 
with the local velocity to deliver the !nal agent 
velocity.

Figure 8. Local formation transition control. Users can specify relative local transition trajectories (the green arrows) anywhere in 
the scenario. Our approach can automatically snap the user speci"cations to align the actual formation location overlapping with 
the group center (see the red arrows).
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Figure 9 compares simulations with and without 
global formation trajectory control. The initial and 
target formations are the same in both simulations. 
Our trajectory control lets us fully control the 
intermediate transitions without changing the 
!nal formation state.

Our trajectory control has two main advantages:

 ■ Splitting it into the local and global levels gives 
users "exible, intuitive control over the transi-
tion paths.

 ■ Maintaining the group’s collective feature dur-
ing the formation transition allows all the group 
members to share the same global navigator.

Although our approach computes collision avoid-
ance twice for each agent and each group, the 
number of groups in a simulation is typically much 
smaller than the number of the agents. So, the ad-
ditional global collision avoidance won’t notice-
ably affect the overall runtime performance.

Performance and Results
We demonstrated several applications using our 
approach. A force-based HiDAC (High-Density Au-
tonomous Crowds) simulation model4 handled lo-

cal and global collision avoidance. We used a regular 
PC with a 3.0-GHz CPU, 4 Gbytes of memory, and 
an Nvidia GFX 260 GPU. Using 3D human models 
(700 to 800 polygons) driven by high-quality mo-
tion capture primitives with 30 joints (62 degrees 
of freedom), we simulated a crowd of up to 500 
agents at 30 fps.

To determine the computational overhead, we 
compared the average frame rates with and with-
out our approach. Table 1 shows that our approach 
adds negligible overhead to the original crowd 
simulation system. For animation results, see the 
video at www.youtube.com/uhcgim.

Local Formation Control
In these experiments, agents were driven by only 
their local formation velocities and local colli-
sion avoidance. When each simulation started, we 
computed the group center of the initial agent po-
sitions and !xed the target group formation center 
at the same position.

These experiments used three sets of examples. 
Figure 10 shows a group of 100 autonomous agents 
forming the letter A, as speci!ed by our brush-
painting interface. In a separate experiment, our 
texture map interface used a real picture of the 

Table 1. Runtime performance for a HiDAC (High-Density Autonomous Crowds) simulation model with and 
without our approach.

Crowd size  
(no. of agents)

Random crowd  
(fps) HiDAC (fps)

HiDAC with our 
approach (fps) Overhead (%)

100 202.3 162.0 158.9 2.2

200 156.2 113.1 109.2 3.3

300 96.8 54.1 51.2 4.3

400 52.3 35.4 32.0 5.9

500 38.5 29.4 27.1 7.1

(a)

(b)

Figure 9. A group of agents reaching a target formation (a) without and (b) with explicit transition control. Without explicit 
control, each agent takes the optimal path to reach its target position. With explicit control, the user-sketched curves guide the 
whole group to take a speci"c route while also changing the formation.



 IEEE Computer Graphics and Applications 23

2008 Beijing Olympic logo as the input. Our sys-
tem automatically generated an accurate forma-
tion that exactly !ts the shape in the picture. 
Finally, using our boundary-sketching interface, 
we could procedurally create arbitrary forma-
tions with or without holes (see Figure 3). The 
resultant formations closely matched the input-
ted boundaries, which we could update during 
the simulation. However, because our approach 
doesn’t currently support control of the agents’ 
speed, empty areas in the crowd could occur dur-
ing the formation transition.

Global Formation Control
In these experiments, we assumed the entire crowd 

was a single group and combined local and global 
formation control. First, we let the group move and 
interact with simple environments while forming 
and maintaining a speci!ed formation. This type 
of group formation and interaction often occurs 
in military operations on "at terrain. We used our 
approach to generate key formations at different 
waypoints; the widely used A* path!nding algo-
rithm served as the global navigator.

Figure 11 shows a group of 150 agents head-
ing to several navigational waypoints, sequen-
tially driven by the global navigation vector while 
changing its formation according to user speci!ca-
tions. The group bypassed building obstacles (see 
Figure 11b) or followed a sketched control curve 

(a)

(b)

(c)

Figure 11. A square formation transforms to a triangle formation, using (a) unconstrained formation transitions, (b) formation 
transitions with obstacle constraints, and (c) formation transitions with trajectory controls. Our two-level formation control 
effectively preserved the group’s collective behavior as it navigated through waypoints and encountered obstacles.

(b)(a) (c) (d)

Figure 10. Using the brush-painting interface. (a) The user input. (b) The initial state. (c) The simulation. (d) The results. The 
group comprised 100 autonomous agents.
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As the !rst step of any crowd simulation, researchers 
have explored navigational path!nding algorithms 

to handle complex dynamic environments. On the other 
hand, increasingly more researchers are focusing on 
middle-level perception models to simulate local dynam-
ics. Among those models, force-based models1 and their 
extensions2 apply repulsion and tangential social forces to 
drive interaction between individual agents or subgroups. 
Following Craig Reynolds’ seminal research,3 researchers 
have also extensively studied rule-based simulation (for 
example, adding multilevel group rules and cognitive 
planning4) to achieve highly realistic human behavior. For 
a comprehensive review of crowd simulation techniques, 
see Crowd Simulation.5

Group formation and transition are vital characteristics 
of many crowds. Chris Wojtan and his colleagues used stan-
dard adjoint calculations with gradient-based optimization 
to control a "ocking simulation while offering certain con-
trollability (that is, keyframing control).6 However, keyfram-
ing control in a large-scale, dynamic crowd simulation isn’t 
always ef!cient. Renato Silveira and his colleagues intro-
duced a group map structure to generate boundary group 
formations through user sketching, but without considering 
agent distribution.7

Taesoo Kwon and his colleagues’ approach edited 
group motion as a whole while maintaining neighborhood 
formation and agents’ moving trajectories in the origi-
nal group motion data as much as possible.8 The edit-
ing operations, such as pinning or dragging individuals, 
employed a graph structure in which vertices represented 
agents’ positions at speci!c frames and edges encoded 
neighborhood formations and moving trajectories. This 
approach focused on minimizing the distortion of relative 
arrangements among adjacent agents. In contrast, our 
approach (see the main article) focuses on a more mac-
roscopic perspective of keeping or changing the crowd 
formation’s overall shape.

Shigeo Takahashi and his colleagues combined heuristic 
rules with explicit hard constraints to produce and control 
sophisticated group formations.9 However, users had to 
manually specify exact agent distributions, which was time-
consuming and labor intensive if the crowd contained many 
agents. Unlike their approach, ours needs only a few types 
of user input to specify high-level formations and automati-
cally generates an appropriate agent distribution.

Sachin Patil and his colleagues proposed a comprehen-
sive framework to guide moving agents with navigation 
!elds.10 Their approach showed convincing simulation 
results with "exible inputs of either user sketches or 2D 
video. The major distinction between their approach and 
ours is that we focus more on collective formation control 
than on guiding each agent individually.

Our preliminary research involved an intuitive sketch-
ing interface to generate arbitrary group formations in a 

crowd.11 There are two main differences between that 
research and the research we report in the main article. 
First, our previous research only sketched boundary curves 
to specify formations, whereas this new research supports 
three types of user input (brush painting, texture maps, and 
boundary sketches). Flexible combination of these inputs 
can produce a richer variety of freestyle group formations.

Second, in our previous research, all the agents found 
their unconstrained optimal paths, so no user control ex-
isted. In contrast, our new research provides users with 
two-level agent motion transition control to intuitively 
guide simulations. First, local formation transition control 
treats the entire group as a local distribution with a static 
formation center. Users can specify different transition 
preferences for individual agents when the agents head to 
their target positions. Second, global formation trajectory 
control lets users specify arbitrary moving paths as high-
level guidance constraints when navigating the group to 
its target position.

References
 1. D. Helbing and P. Molnar, “Social Force Model for Pedes-

trian Dynamics,” Physical Rev. E, vol. 51, no. 5, 1995, pp. 
4282–4286.

 2. N. Pelechano, J.M. Allbeck, and N.I. Badler, “Controlling 
Individual Agents in High-Density Crowd Simulation,” Proc. 
2007 ACM Siggraph/Eurographics Symp. Computer Animation 
(SCA 07), Eurographics Assoc., 2007, pp. 99–108.

 3. C.W. Reynolds, “Flocks, Herds, and Schools: A Distributed 
Behavioral Model,” Proc. Siggraph, ACM, 1987, pp. 25–34.

 4. Q. Yu and D. Terzopoulos, “A Decision Network Framework 
for the Behavioral Animation of Virtual Humans,” Proc. 2007 
ACM Siggraph/Eurographics Symp. Computer Animation (SCA 
07), Eurographics Assoc., 2007, pp. 119–128.

 5. D. Thalmann and S.R. Musse, Crowd Simulation, Springer, 2007.
 6. C. Wojtan, P.J. Mucha, and G. Turk, “Keyframe Control of 

Complex Particle Systems Using the Adjoint Method,” Proc. 
2006 ACM Siggraph/Eurographics Symp. Computer Animation 
(SCA 06), Eurographics Assoc., 2006, pp. 15–23.

 7. R. Silveira, E. Prestes, and L.P. Nedel, “Managing Coherent 
Groups,” Computer Animation and Virtual Worlds, vol. 19, 
nos. 3–4, 2008, pp. 295–305.

 8. T. Kwon et al., “Group Motion Editing,” ACM Trans. Graph-
ics, vol. 27, no. 3, 2008, article 80.

 9. S. Takahashi et al., “Spectral-Based Group Formation Control,” 
Computer Graphics Forum, vol. 28, no. 2, 2009, pp. 639–648.

 10. S. Patil et al., “Directing Crowd Simulations Using Naviga-
tion Fields,” IEEE Trans. Visualization and Computer Graphics, 
vol. 17, no. 2, 2011, pp. 244–254.

 11. Q. Gu and Z. Deng, “Formation Sketching: An Approach to 
Stylize Groups in Crowd Simulation,” Proc. Graphics Interface 
2011 (GI 11), Canadian Human-Computer Communications 
Soc., 2011, pp. 1–8.

Related Work in Crowd Simulation and Group Formations



 IEEE Computer Graphics and Applications 25

(see Figure 11c) while gradually changing its for-
mation. Agents farther from the obstacles or curve 
points automatically chose a longer path with a 
larger orbiting radius to save space for the agents 
that were closer to the obstacles.

Our results demonstrate our approach’s "ex-
ibility and effectiveness. Most agent-based 

crowd simulation approaches focus on each 
agent’s individual behaviors on the basis of its lo-
cal information such as adjacent neighbors in the 
crowd. However, many real-world crowd scenarios 
such as battles and football games must consider 
each group’s global information and interactions 
between groups. Also, unlike Shigeo Takahashi and 
his colleagues’ research,1 which focused on generat-
ing the transition between keyframes through vari-
ous hard constraints, our approach automatically 
generates scalable, adaptive group formations. (For 
more on Takahashi and his colleagues’ research 
and other related research, see the sidebar.) So, 
with our approach, users need only specify sev-
eral intuitive high-level features such as forma-
tion sketches and trajectory sketches to generate 
large-scale interacting crowds with freestyle group 
formations.

In the actual implementation, a trade-off exists 
between movement smoothness and formation 
accuracy. For instance, when an agent evaluates 
its appropriate velocity heading to the target posi-
tion, other agents might already have taken that 
position. This situation will result in the agent’s 
unsmooth movement; the agent might continu-
ally try to reach the exact position in the target 
formation by going back and forth in a small area. 
In this situation, we let the agent probe the next 
available position by searching for the second-
closest neighbor in the KD-tree.

We found that two-level collision avoidance 
can better keep the formations while avoiding ob-
stacles. The intergroup dynamics tend to guide all 
the agents, from a group perspective, to avoid an 
obstacle as a whole if possible (see Figure 11c), in-
stead of easily scattering the agents owing to local 
collision avoidance (see Figure 11a).

The current global trajectory control treats a 
group as a single entity by assuming that the group 
formations’ shape is generally isotropic, such as 
a square or circle. So, global collision avoidance 
ignores the shape effect for anisotropic group for-
mations. Thus, a group’s agents still depend highly 
on local collision avoidance. We plan to work on 
this issue in the future.

Finally, our approach currently doesn’t let users 

put timing constraints on formation transitions. 
Our next step will be to introduce this feature—for 
example, by incorporating agent velocity control to 
dynamically adjust agents’ speed. 
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