
14 January/February 2013 Published by the IEEE Computer Society 0272-1716/13/$31.00 © 2013 IEEE

Feature Article

Generating Freestyle Group
Formations in Agent-Based Crowd
Simulations
Qin Gu and Zhigang Deng * University of Houston

In most crowd simulation systems, each agent
intelligently moves toward its destination
through navigational path!nding algorithms

and avoids collisions with other agents and ob-
stacles through local behavior control models.
However, research has paid little attention to

simulating the collective behav-
iors of the entire crowd or a cer-
tain subgroup of the crowd. In
many scenarios, these collective
behaviors play a signi!cant role
in exhibiting the crowd’s mass
attributes. From the perspective
of visual simulation, a group’s
collective behaviors are usually
demonstrated as their general
formations. For instance, when
a computer game simulates a
large-scale battle, the two army’s
formations directly re"ect their
controllers’ strategic commands.

When simulating a crowd,
one intuitive way to form a tar-
get formation is to provide each
agent’s desired position at a par-

ticular moment1 and generate transitions between
that position and the destination. However, users
must manually specify many spatial, temporal,
and correspondence constraints, which is time-
consuming and nontrivial, particularly when the
crowd includes many agents that change location
frequently. Similarly, when a group of people per-
forms a collective action simultaneously in the

real world, it’s generally impossible for their com-
mander or team leaders to convey detailed move-
ment information such as every group member’s
position at every time instance.

We propose an interactive, scalable framework
to simulate freestyle group formation through in-
tuitive user interfaces (see Figure 1). Speci!cally,
each agent in a group !rst evaluates its optimal
destination in a user-speci!ed target formation
constrained by formation patterns. Then, the frame-
work employs formation coordinates, a relative-agent-
position representation, to evaluate the !nal agent
distribution in the target formation and the cor-
respondence between the initial and target states.
During the runtime transition from the initial
formation to the target formation, each agent will
move along a path guaranteed to avoid local col-
lisions, follow user-sketched transition paths, and
reach the target formation position.

This research provides two main contributions.
The !rst is automated generation of freestyle group
formations. Using a set of free-form user inputs,
our approach automatically evaluates the corre-
sponding target agent distribution with relatively
few parameter tunings. The formation coordinates
enable our approach to robustly handle any varia-
tion of formation shape, orientation, and scale.

The second contribution is agent motion trajec-
tory control at both the local and global levels.
This is especially useful when users try to simu-
late strategic scenarios such as “a military squad
is forming a circle formation while bypassing any
enemies or static obstacles.”

An interactive, scalable
framework generates
freestyle group formations
and transitions via natural
and !exible sketching
interaction. It computes a
plausible agent distribution
in the target formation and
agent correspondences
between keyframes. Two-level
formation trajectory control
lets users intuitively guide
agents’ transition paths from
the initial formation to the
target formation.

 IEEE Computer Graphics and Applications 15

Target Formation Speci!cation and
Generation
Our group formation speci!cation and evaluation
ef!ciently convert an intuitive user input or de-
scription of a group formation into a numerical
representation of agent distribution. A group for-
mation’s realism derives from the common obser-
vation that a group member in a real-world crowd
is less likely to move across the formation to reach
a far-off position if a much closer one is reachable.
This is because humans tend to save energy un-
less special constraints exist, which is beyond this
article’s scope.

Formation Shape Representation
Interfaces for generating group formations should
be intuitive enough for users to easily depict any
formation without signi!cant parameter tuning or
prior mathematical knowledge. Meanwhile, they
should be accurate enough for the crowd simula-
tion algorithm to understand the users’ purpose.
In reality, a group formation’s most salient visual
feature is generally its contour shape, such as a
square or circle. However, directly specifying and
quantifying a geometric shape is nontrivial for
most users.

To simplify this task, we propose a uni!ed for-
mation shape representation called a formation

template—an oversampled point space (relative to
the number of agents) with a roughly even dis-
tribution. Our approach converts the initial user
input to the formation template; in this way, vari-
ous types of user input can share the rest of the
simulation pipeline. Our framework currently can
automatically convert three common types of user
input: brush painting, texture maps, and boundary
sketches.

Brush painting. Two-dimensional image-processing
tools such as Adobe Photoshop commonly use
brush-painting input. Branislav Ulicny and his col-
leagues proposed an ef!cient brush tool to author
desired crowd speci!cations.2 To generate a uni!ed
representation, we employ a 2D painting’s pixel
intensities as a convenient reference to evaluate
its target agent distribution. In the discrete simu-
lated crowd, we sample a position as a template
point only if its pixel intensity matches the brush’s
color within a certain threshold. Brush painting
(see Figure 2a) works well for specifying simple
formation shapes, which often require only a few
painting components (for example, brush sizes).

Texture maps. For complicated formations, brush
painting might be inaccurate and time-consuming.
Instead, we can treat the target shape as a 2D

Global planning and decision-making

Global trajectory control Global group collision avoidance

Local trajectory control Local agent collision avoidance

Formation vectors Agent speed, orientation

Trajectory
sketch

Formation
sketch Agent animations

Group speed, orientation

Figure 1. Embedding group formation control into a complete crowd simulation system. Orange indicates
the components of a traditional crowd simulation system; blue and purple indicate user interactions and
formation control, respectively, in our framework.

16 January/February 2013

Feature Article

texture ground and directly retrieve the shape in-
formation by matching the points in the texture
coordinates with those in the crowd simulation
world coordinates.

Boundary sketches. The previous two types of user
input provide fast solutions for sampling relatively
simple or prede!ned formation shapes. However,
in many scenarios, users might want to specify
complicated formations on the "y. Brush painting
can’t specify subtle formation details such as
sharp angles or continuous changes of the stroke
size. Texture maps require the target formation to
be well de!ned in advance and cannot be changed
on the "y. Furthermore, both input types depend
on color intensity information during sampling.
If the environment has similar color information
on the virtual ground, the sampling results would
be inaccurate.

To complement those two input types, we de-
veloped a freehand-sketching interface using two
types of boundary curves—inclusive curves and ex-

clusive curves. With them, users can specify arbi-
trary target formations such as the examples in
Figures 2b and 3.

The initial user sketches are freehand curves
or line stripes that might contain irregular point
(shape vertex) distributions. To generate a visu-
ally balanced target formation template, we !rst
evenly resample (that is, reevaluate) the points
on the boundaries. We then !ll the area between
the inclusive and exclusive boundaries through an
extended scanline "ood-!ll algorithm (see Figure
4), employing the same sampling unit used for
boundaries. We adapted our !lling algorithm to a
discrete grid space so that its computation is faster
than the traditional pixel-by-pixel sampling that
most image-processing tools use.

Figure 4 is an extension of the traditional "ood-
!ll algorithm in a continuous (pixel by pixel)
space, such as the bucket-!ll tool used in 2D
painting programs. When checking the connected
neighbors of each sampling point in the template,
we use the PointInBoundary() function to

(a)

(b) User inputs Formation templates Results

Simulation

Figure 2. Generating uni"ed formation templates with (a) brush painting and (b) boundary sketches. A
formation template is an oversampled point space (relative to the number of agents) with a roughly even
distribution.

Figure 3. Generating freestyle group formations through inclusive curves (the blue boundaries) and exclusive curves (the red
boundaries). The "nal formation has holes, which would otherwise be tricky to generate.

 IEEE Computer Graphics and Applications 17

check whether a point is inside the polygon formed
by the boundary points. We could evaluate the
point in several ways. We choose the angle sum
solution because it is robust in 3D space. Further-
more, to avoid sampling points too close to the
boundaries, PointInBoundary()checks four
points with constant offsets (top, bottom, left,
and right) to the current checkpoint.

This algorithm’s most critical parameter is the
sampling unit used for the boundaries and inside
areas. An overly large sampling unit can reduce the
computational load but might produce an unbal-
anced agent distribution in the target formation
(see Figure 5a). On the other hand, an overly small

sampling unit might break the balance between
boundary and nonboundary agents (see Figure 5b).
This is because the algorithm evaluates the bound-
ary agents before the nonboundary agents (we
discuss this in more detail later). A high density
of boundary agents could lead to too few agents
inside the formation shape.

To relieve users from repeatedly trying different
sampling rates, we introduce an automatic algo-
rithm to identify a balanced, optimal sampling
unit (see Figure 5c). This algorithm is based on
the observation that for any 2D polygon, if the
number of vertices is large enough, the desired ra-
tio between the boundary length and the area’s

Input: bPoints, boundary points.
Input: unitX, a sampling unit to traverse the template.
Input: unitY, a sampling unit to traverse the template.
Output: fPoints, outputted filled points inside the boundaries.

 1: q = new empty queue;
 2: q.push(startingPoint);
 3: while q is not empty do
 4: checkPoint = q.front();
 5: left = checkPoint - unitX;
 6: while PointInBoundary(left) && left has not been checked do
 7: fPoints.push(left);
 8: top = left + unitY;
 9: if PointInBoundary(top) && top has not been checked then
10: q.push(top);
11: end if
12: bottom = left - unitY;
13: if PointInBoundary(bottom) && bottom has not been checked then
14: q.push(bottom);
15: end if
16: left = checkPoint - unitX;
17: end while
18: perform the same steps for all right neighbors of the checkpoint ...
19: queue.pop(checkPoint);
20: end while
21: return fPoints;

Figure 4. A discrete !ood-"ll algorithm. We adapted this algorithm to a discrete grid space so that its
computation is faster than the traditional pixel-by-pixel sampling that most image-processing tools use.

(a) (b) (c)

Figure 5. Sampling-unit optimization. (a) An overly large sampling unit gives the template fewer points than agents. (b) An
overly small sampling unit clusters too many agents on the boundaries. (c) Our adaptive sampling algorithm evaluates the unit
for an optimal con"guration.

18 January/February 2013

Feature Article

square root is approximately a constant. However,
most numerical solutions for computing the area
of an irregular (convex or concave) polygon, such
as triangulation methods, aren’t ef!cient enough.

To compute the optimal sampling unit, we start
with a relatively small unit such as 100, as opposed
to the world grid unit of 1,000. Then, we evaluate
r, the ratio between the boundary and nonbound-
ary agents, by counting the boundary points and
inside points. Once we estimate r, the optimal
sampling unit for generating the formation tem-
plate is the ratio between the total boundary curve
length and the number of boundary agents b. To
obtain b, we solve

b2 + r2 × b – r2 × n = 0,

where n is the total number of group agents.

Formation Coordinates
After creating the formation template, we must
evaluate the best candidate position for each agent.
However, it’s nontrivial to !nd any deterministic
relationship between the world coordinates of the
original agent positions and the template point
positions. This complexity is due to the target for-
mations’ large variety of shapes, positions, orien-
tations, and scales. So, we need a comprehensive
yet compact representation to correlate the origi-
nal and target formations. Formation coordinates
ful!ll this function, translating the world coordi-
nates to a scalable formation representation.

To eliminate the effect of entire group
movements during formation generation, we !rst
evaluate the weighted group center position of all
the agents, pc, using

p
m

pc i ii

m
=

=∑
1

1
ω ,

where m is the number of agents, ωi is the ith
agent’s weight, and pi is the ith agent’s world
position.

Then, we compute two relative features and
one absolute feature from each agent and each
candidate point in the template (see Figure 6). First,
we compute the agent’s direction to the formation
center: nx, ny. Both nx and ny range from 0 to 1. Any
agent in a formation needs to know its relative
direction with respect to the current group center,
instead of the relative direction to the origin of
the world coordinate system. We compute this by
normalizing the direction vector from the group
center to the evaluating point.

Second, we compute the agent’s relative distance
to the formation center: dist, which is between 0 and
1. Again, this feature must be relative to ensure the
formation coordinate’s scalability. We normalize
the absolute distance between the current point to
the group center by the formation shape’s radius
(that is, the distance from the evaluating point
to a boundary point). However, this radius might
vary signi!cantly for different boundary points.
Also, recomputing the exact radius for every
point is impractical. Instead, we use only certain
representative formation radii, and we choose the
closest radius when performing normalization. In
our experiments, evenly splitting the formation
shape to eight sectors by four vectors provided
visually acceptable results and performance.

Finally, we compute the absolute formation
orientation: θx, θy. The previous two relative features
enclose each agent’s general position with respect
to the group center, assuming the whole group
always keeps its orientation. For example, an
agent in a group formation’s southwest region will
normally always be in that region. However, this
isn’t always valid when the whole group changes
its orientation. For example, if the entire group’s
orientation changes to 180 degrees according
to the world horizontal axis, the same agent’s
absolute direction will also rotate. So, from the
world coordinate system’s perspective, that agent
is now in the group formation’s northeast area
(see Figure 6).

(a)

A
A

A A

B B B B

(b) (c) (d) (e)

Figure 6. Evaluating the positions of agents A and B in the target formation. (a) Interactive user input and speci"cations. (b)
Converting all the points in the formation template to formation coordinates. (c) Computing the formation coordinates for A
and B in the initial agent distribution. (d) Finding the corresponding template points for A and B with the most similar formation
coordinates. (e) Performing point-based relaxation to generate the "nal distribution in the target formation.

 IEEE Computer Graphics and Applications 19

Therefore, the formation coordinate includes θx,
θy. By default, this feature will be the same for all
the agents in one group to keep the agent distribu-
tion consistent. If we need to simulate inconsistent
crowd scenarios such as a turbulence transition
(for example, when agents can’t maintain their
adjacency condition), we can intentionally set this
feature to random values for different agents.

Given a point or agent A or B in the world space
(see Figure 6), we can !nally formulate the for-
mation coordinate as a 5D feature vector (nx, ny,
dist, θx, θy). Unlike the global formation orienta-
tion, the formation coordinate doesn’t include the
whole group’s global movement because the global
movement doesn’t affect the group formation’s
shape and local distribution. We’ll directly apply
the formation coordinate to every agent during the
higher-level simulation (we discuss this in more
detail later).

Estimating the Target Distribution
We estimate the agent distribution in the target
formation to !nd the correspondence between any
agent in the initial formation and its appropriate
candidate position in the formation template. Us-
ing formation coordinates, we design a correspon-
dence construction algorithm based on two key
heuristics (assumptions).

First, in the target formation, boundary agents
should closely !t the boundary curves to clearly
exhibit the user-speci!ed formation shape. This is
particularly important to user perception because,
as we mentioned before, the contour shape is the
most salient feature distinguishing one formation
from another in crowd simulations.

Second, each nonboundary agent should keep
its adjacency condition as much as possible. So,
our algorithm !rst !nds correspondences for the
boundary agents and then !nds correspondences
for the nonboundary agents.

Finding correspondences for the boundary agents.
To guarantee the exact formation shape, every
boundary point in the formation template requires
exactly one corresponding agent to !t in. So,
this must be the !rst step of correspondence-
!nding. After converting the positions of all the
agents in the initial distribution into formation
coordinates, we subtract the formation orientation
(θx, θy) from each agent’s relative direction (nx, ny)
to yield the relative agent direction. We store this
direction along with the relative agent distance in
a KD-tree data structure. For each point on the
target formation template boundaries, we similarly
convert its world coordinate to its formation

coordinate. We can ef!ciently compute the agent
corresponding to each boundary point by !nding
the nearest neighbor in the KD-tree (for example,
agent B in Figure 6).

Finding correspondences for the nonboundary agents.
Because the formation template is an oversampled
candidate or point space, we shouldn’t expect
strict one-to-one correspondences between the
inner template points and the remaining agents.

Instead of !nding the corresponding agent for
each inner template point, we inversely identify
the corresponding template point for each non-
boundary agent that wasn’t selected in the previ-
ous step. Similarly, we use each agent’s formation
coordinate to !nd the closest inner template point.
We further transform that point to its world co-
ordinate representation—that is, the agent’s target
position (see agent A in Figure 6).

Formation Relaxation and Customization
As we described earlier, the resultant nonboundary
agent distribution might not be naturally distrib-
uted because the number of inner template points
might be signi!cantly larger than the number of
nonboundary agents. In addition, the inner tem-
plate points are orthogonally sampled, which looks
less natural to humans.

To improve the naturalness of the resultant agent
distribution or formation, we apply point-based re-
laxation optimization to the generated initial agent
distribution (see Figure 7). This process uses the
boundary points as relaxation constraints. In our
experiments, a small number of iterations (for ex-
ample, 3 to 5) usually produced acceptable results.

To perform the relaxation, Figure 7 uses a Gauss-
ian function as the kernel of radial basis func-
tions. If we used a KD-tree to store the agents’
positions, the updateDistribution() function
would require re-creation operations, costing Θ(n
log n). Performance generally is critical for agent-
based crowd simulations because the system must
update every agent individually at each time step.
Our implementation reduces n log n to n by reg-
istering agents into a regular grid system at each

Performance generally is critical for
agent-based crowd simulations because
the system must update every agent
individually at each time step.

20 January/February 2013

Feature Article

update. The closestPoints() function simply
collects the agents registered in surrounding grids
with Θ(1) cost.

The weight parameter, w, determines the relax-
ation effectiveness on each agent. By default, we
apply a uniform weight to all the agents, which
means every agent has the same pushing or pull-
ing effect on its neighbors. This results in an even
agent distribution in the target formation. How-
ever, some applications might prefer an unbal-
anced agent distribution to achieve certain special
effects such as local clustering. So, users can lower
the relaxation weights for those agents at the clus-
tering center so that they’ll have a smaller pushing
effect on their neighbors.

Agent Motion Trajectory Control
Our two-level agent motion trajectory control com-
prises local formation transition control and global
formation trajectory control. The !rst level enables
all the agents to reach their proper target positions
with different moving styles while forming the tar-
get formation. The other level guides the agent group
as a whole to follow arbitrary user-sketched paths.

Local Formation Transition Control
Local formation transition is the transition from
one formation to another without considering the
whole group’s general locomotion. Many factors
can affect it. The most intuitive way to control
this transition would be to simply compute a lin-
ear interpolation from an agent’s initial position

to its estimated target position. However, this pro-
cess can’t re"ect user control or realistic collision
avoidance among agents. So, we further consider
two factors that in"uence agent movements: local
force-based3,4 collision avoidance and sketch-based
local trajectory control.

We employ force-based collision avoidance be-
cause it can handle very-high-density crowds. Each
agent is pushed away by the tangential forces from
its neighbor agents and environmental obstacles
in the area of interest (that is, the human visible
range). For extremely high-density crowds, the tan-
gential forces alone might appear insuf!cient to
drive agents apart. If the simulation system detects
a collision between two agents, it applies extra re-
pulsion force to immediately stop the agents to pre-
vent unrealistic penetrations.

Without user interactions, each agent would go
straight to the target position with minor transi-
tion adjustments on the way to avoid local colli-
sions with other agents. However, many scenarios
expect agents to follow a more sophisticated path
during the local formation transition, such as a
splitting and merging transition. Similarly to the
formation speci!cation interface, our local forma-
tion transition control lets users draw freehand
curves to specify one or multiple moving paths as
general guides (see Figure 8).

Unlike many previous approaches, we construct
a second virtual local grid !eld (instead of regu-
lar world grids) to evaluate a "ow vector to guide
transitions. This is because the formation transi-

Input: bPoints, constraint boundary points.
Input: iPoints, points to be relaxed.
Input: η, relaxation iterations.
Input: β, Gaussian constant parameter (β > 0).
Input: speed, moving rate of relaxation in each iteration.
Input: w, relaxation weight.
Output: rPoints, outputted relaxed points inside the boundaries.

 1: rPoints = iPoints;
 2: for each η do
 3: allPoints = rPoints + bPoints;
 4: updateDistribution(allPoints);
 5: for each rPoint in rPoints do
 6: neighbors = closestPoints(rPoint);
 7: for each neighbor in neighbors do
 8: d = distance(rPoint, neighbor);
 9: v = v + d × exp(–β × d2);
10: end for
11: rPoint = rPoint + v/numOfNeighbors × speed × w;
12: end for
13: end for
14: return rPoints;

Figure 7. Point-based formation relaxation. In our experiments, a small number of iterations (for example, 3 to
5) usually produced acceptable results.

 IEEE Computer Graphics and Applications 21

tions are local behaviors despite group positions.
So, even if users draw curves farther from the ab-
solute group location, our algorithm will still con-
sider these actions as local guidance to each agent.
In other words, our algorithm will internally snap
the center of user curves to the center of the vir-
tual grid !eld overlapping with the transition area
(see Figure 8).

All the virtual grids around the curves are !lled
with a "ow vector. We set the "ow vector’s direc-
tion to the tangential vector of the closest point on
the trajectory curve, and the "ow vector’s magni-
tude is inversely proportional to the distance be-
tween the grid and that point. If multiple curves
exist, we blend the grid’s !nal "ow vector from all
the in"uencing trajectory points with an experi-
mental threshold, D, as the upper-limit distance
for quali!ed in"uencing trajectories.

Finally, we compute each agent’s local velocity:

V w V w f w sf i
i

n

j
j

local = + +
=

−

=
∑ ∑1 2 3

1

1

1

9

.

The !rst term is the velocity driven purely by target
formation. The second term is the summed velocity
driven by the combination of tangential forces
from the agent’s neighboring group members and
obstacles.4 The third term is the summed velocity
driven by averaging "ow vectors in the current
and eight adjacent virtual grids (that is, sj j{ } =1

9)
derived from user sketches. The weights balance
the expected speed of formation generation (w1),
the expected accuracy of collision avoidance (w2),
and the expected in"uence of user interference
(w3). Our experiments provided visually plausible
results with w1 = 0.2, w2 = 0.5, and w3 = 0.3.

Global Formation Trajectory Control
So far, we’ve assumed that all the agents in a group
move and change formations relative to a !xed
group center. However, many crowd simulation
scenarios expect a group of agents to form a
certain formation while moving as a whole to
other locations. Furthermore, users can guide this
global movement.

To achieve such effects, we introduce three
factors to the group level:

V w V w V w Vglobal gn gc gs= + +4 5 6 .

Vgn is the global navigation vector heading to the
target formation’s location. Vgc is the velocity driven
by global collision avoidance between different
groups. Vgs is the user-guided velocity computed
from our sketching interface (see Figure 9). Our
simulations used w4 = 0.4, w5 = 0.4, and w6 = 0.2.

Instead of using virtual grids, this form of
control directly applies the user sketches of global
group trajectories on the regular world grids to
compute "ow vectors. This is intuitive because
the global trajectories are sensitive to the current
group location. If a drawing curve is too far from
the current group position, it won’t affect the
group’s trajectory.

Although this global curve is more visually intui-
tive, it might introduce an undesired situation. If a
user sketch starts close to the initial group location
but heads away from the target formation location
along the sketched path, the group will most likely
stick at the end of the sketched curve. This is be-
cause the magnitude of Vgs is inversely proportional
to the distance between the current group location
and the closest point on the sketched curve.

To tackle this issue, we introduce a valve
parameter α to Vgs:

V sj
j

gs = × < <
=
∑α α

1

9
0 1, .

When a group moves toward the end of a sketched
curve, the valve value will keep decreasing so that
Vgn will gradually dominate the group’s path to
guarantee the group reaches the target position.

At the group level, each group in the scene is
considered a single entity. Any rule- or force-based
model can serve as the collision controller, just as
in a single-agent simulation.

Finally, we combine the obtained global velocity
with the local velocity to deliver the !nal agent
velocity.

Figure 8. Local formation transition control. Users can specify relative local transition trajectories (the green arrows) anywhere in
the scenario. Our approach can automatically snap the user speci"cations to align the actual formation location overlapping with
the group center (see the red arrows).

22 January/February 2013

Feature Article

Figure 9 compares simulations with and without
global formation trajectory control. The initial and
target formations are the same in both simulations.
Our trajectory control lets us fully control the
intermediate transitions without changing the
!nal formation state.

Our trajectory control has two main advantages:

 ■ Splitting it into the local and global levels gives
users "exible, intuitive control over the transi-
tion paths.

 ■ Maintaining the group’s collective feature dur-
ing the formation transition allows all the group
members to share the same global navigator.

Although our approach computes collision avoid-
ance twice for each agent and each group, the
number of groups in a simulation is typically much
smaller than the number of the agents. So, the ad-
ditional global collision avoidance won’t notice-
ably affect the overall runtime performance.

Performance and Results
We demonstrated several applications using our
approach. A force-based HiDAC (High-Density Au-
tonomous Crowds) simulation model4 handled lo-

cal and global collision avoidance. We used a regular
PC with a 3.0-GHz CPU, 4 Gbytes of memory, and
an Nvidia GFX 260 GPU. Using 3D human models
(700 to 800 polygons) driven by high-quality mo-
tion capture primitives with 30 joints (62 degrees
of freedom), we simulated a crowd of up to 500
agents at 30 fps.

To determine the computational overhead, we
compared the average frame rates with and with-
out our approach. Table 1 shows that our approach
adds negligible overhead to the original crowd
simulation system. For animation results, see the
video at www.youtube.com/uhcgim.

Local Formation Control
In these experiments, agents were driven by only
their local formation velocities and local colli-
sion avoidance. When each simulation started, we
computed the group center of the initial agent po-
sitions and !xed the target group formation center
at the same position.

These experiments used three sets of examples.
Figure 10 shows a group of 100 autonomous agents
forming the letter A, as speci!ed by our brush-
painting interface. In a separate experiment, our
texture map interface used a real picture of the

Table 1. Runtime performance for a HiDAC (High-Density Autonomous Crowds) simulation model with and
without our approach.

Crowd size
(no. of agents)

Random crowd
(fps) HiDAC (fps)

HiDAC with our
approach (fps) Overhead (%)

100 202.3 162.0 158.9 2.2

200 156.2 113.1 109.2 3.3

300 96.8 54.1 51.2 4.3

400 52.3 35.4 32.0 5.9

500 38.5 29.4 27.1 7.1

(a)

(b)

Figure 9. A group of agents reaching a target formation (a) without and (b) with explicit transition control. Without explicit
control, each agent takes the optimal path to reach its target position. With explicit control, the user-sketched curves guide the
whole group to take a speci"c route while also changing the formation.

 IEEE Computer Graphics and Applications 23

2008 Beijing Olympic logo as the input. Our sys-
tem automatically generated an accurate forma-
tion that exactly !ts the shape in the picture.
Finally, using our boundary-sketching interface,
we could procedurally create arbitrary forma-
tions with or without holes (see Figure 3). The
resultant formations closely matched the input-
ted boundaries, which we could update during
the simulation. However, because our approach
doesn’t currently support control of the agents’
speed, empty areas in the crowd could occur dur-
ing the formation transition.

Global Formation Control
In these experiments, we assumed the entire crowd

was a single group and combined local and global
formation control. First, we let the group move and
interact with simple environments while forming
and maintaining a speci!ed formation. This type
of group formation and interaction often occurs
in military operations on "at terrain. We used our
approach to generate key formations at different
waypoints; the widely used A* path!nding algo-
rithm served as the global navigator.

Figure 11 shows a group of 150 agents head-
ing to several navigational waypoints, sequen-
tially driven by the global navigation vector while
changing its formation according to user speci!ca-
tions. The group bypassed building obstacles (see
Figure 11b) or followed a sketched control curve

(a)

(b)

(c)

Figure 11. A square formation transforms to a triangle formation, using (a) unconstrained formation transitions, (b) formation
transitions with obstacle constraints, and (c) formation transitions with trajectory controls. Our two-level formation control
effectively preserved the group’s collective behavior as it navigated through waypoints and encountered obstacles.

(b)(a) (c) (d)

Figure 10. Using the brush-painting interface. (a) The user input. (b) The initial state. (c) The simulation. (d) The results. The
group comprised 100 autonomous agents.

24 January/February 2013

Feature Article

As the !rst step of any crowd simulation, researchers
have explored navigational path!nding algorithms

to handle complex dynamic environments. On the other
hand, increasingly more researchers are focusing on
middle-level perception models to simulate local dynam-
ics. Among those models, force-based models1 and their
extensions2 apply repulsion and tangential social forces to
drive interaction between individual agents or subgroups.
Following Craig Reynolds’ seminal research,3 researchers
have also extensively studied rule-based simulation (for
example, adding multilevel group rules and cognitive
planning4) to achieve highly realistic human behavior. For
a comprehensive review of crowd simulation techniques,
see Crowd Simulation.5

Group formation and transition are vital characteristics
of many crowds. Chris Wojtan and his colleagues used stan-
dard adjoint calculations with gradient-based optimization
to control a "ocking simulation while offering certain con-
trollability (that is, keyframing control).6 However, keyfram-
ing control in a large-scale, dynamic crowd simulation isn’t
always ef!cient. Renato Silveira and his colleagues intro-
duced a group map structure to generate boundary group
formations through user sketching, but without considering
agent distribution.7

Taesoo Kwon and his colleagues’ approach edited
group motion as a whole while maintaining neighborhood
formation and agents’ moving trajectories in the origi-
nal group motion data as much as possible.8 The edit-
ing operations, such as pinning or dragging individuals,
employed a graph structure in which vertices represented
agents’ positions at speci!c frames and edges encoded
neighborhood formations and moving trajectories. This
approach focused on minimizing the distortion of relative
arrangements among adjacent agents. In contrast, our
approach (see the main article) focuses on a more mac-
roscopic perspective of keeping or changing the crowd
formation’s overall shape.

Shigeo Takahashi and his colleagues combined heuristic
rules with explicit hard constraints to produce and control
sophisticated group formations.9 However, users had to
manually specify exact agent distributions, which was time-
consuming and labor intensive if the crowd contained many
agents. Unlike their approach, ours needs only a few types
of user input to specify high-level formations and automati-
cally generates an appropriate agent distribution.

Sachin Patil and his colleagues proposed a comprehen-
sive framework to guide moving agents with navigation
!elds.10 Their approach showed convincing simulation
results with "exible inputs of either user sketches or 2D
video. The major distinction between their approach and
ours is that we focus more on collective formation control
than on guiding each agent individually.

Our preliminary research involved an intuitive sketch-
ing interface to generate arbitrary group formations in a

crowd.11 There are two main differences between that
research and the research we report in the main article.
First, our previous research only sketched boundary curves
to specify formations, whereas this new research supports
three types of user input (brush painting, texture maps, and
boundary sketches). Flexible combination of these inputs
can produce a richer variety of freestyle group formations.

Second, in our previous research, all the agents found
their unconstrained optimal paths, so no user control ex-
isted. In contrast, our new research provides users with
two-level agent motion transition control to intuitively
guide simulations. First, local formation transition control
treats the entire group as a local distribution with a static
formation center. Users can specify different transition
preferences for individual agents when the agents head to
their target positions. Second, global formation trajectory
control lets users specify arbitrary moving paths as high-
level guidance constraints when navigating the group to
its target position.

References
 1. D. Helbing and P. Molnar, “Social Force Model for Pedes-

trian Dynamics,” Physical Rev. E, vol. 51, no. 5, 1995, pp.
4282–4286.

 2. N. Pelechano, J.M. Allbeck, and N.I. Badler, “Controlling
Individual Agents in High-Density Crowd Simulation,” Proc.
2007 ACM Siggraph/Eurographics Symp. Computer Animation
(SCA 07), Eurographics Assoc., 2007, pp. 99–108.

 3. C.W. Reynolds, “Flocks, Herds, and Schools: A Distributed
Behavioral Model,” Proc. Siggraph, ACM, 1987, pp. 25–34.

 4. Q. Yu and D. Terzopoulos, “A Decision Network Framework
for the Behavioral Animation of Virtual Humans,” Proc. 2007
ACM Siggraph/Eurographics Symp. Computer Animation (SCA
07), Eurographics Assoc., 2007, pp. 119–128.

 5. D. Thalmann and S.R. Musse, Crowd Simulation, Springer, 2007.
 6. C. Wojtan, P.J. Mucha, and G. Turk, “Keyframe Control of

Complex Particle Systems Using the Adjoint Method,” Proc.
2006 ACM Siggraph/Eurographics Symp. Computer Animation
(SCA 06), Eurographics Assoc., 2006, pp. 15–23.

 7. R. Silveira, E. Prestes, and L.P. Nedel, “Managing Coherent
Groups,” Computer Animation and Virtual Worlds, vol. 19,
nos. 3–4, 2008, pp. 295–305.

 8. T. Kwon et al., “Group Motion Editing,” ACM Trans. Graph-
ics, vol. 27, no. 3, 2008, article 80.

 9. S. Takahashi et al., “Spectral-Based Group Formation Control,”
Computer Graphics Forum, vol. 28, no. 2, 2009, pp. 639–648.

 10. S. Patil et al., “Directing Crowd Simulations Using Naviga-
tion Fields,” IEEE Trans. Visualization and Computer Graphics,
vol. 17, no. 2, 2011, pp. 244–254.

 11. Q. Gu and Z. Deng, “Formation Sketching: An Approach to
Stylize Groups in Crowd Simulation,” Proc. Graphics Interface
2011 (GI 11), Canadian Human-Computer Communications
Soc., 2011, pp. 1–8.

Related Work in Crowd Simulation and Group Formations

 IEEE Computer Graphics and Applications 25

(see Figure 11c) while gradually changing its for-
mation. Agents farther from the obstacles or curve
points automatically chose a longer path with a
larger orbiting radius to save space for the agents
that were closer to the obstacles.

Our results demonstrate our approach’s "ex-
ibility and effectiveness. Most agent-based

crowd simulation approaches focus on each
agent’s individual behaviors on the basis of its lo-
cal information such as adjacent neighbors in the
crowd. However, many real-world crowd scenarios
such as battles and football games must consider
each group’s global information and interactions
between groups. Also, unlike Shigeo Takahashi and
his colleagues’ research,1 which focused on generat-
ing the transition between keyframes through vari-
ous hard constraints, our approach automatically
generates scalable, adaptive group formations. (For
more on Takahashi and his colleagues’ research
and other related research, see the sidebar.) So,
with our approach, users need only specify sev-
eral intuitive high-level features such as forma-
tion sketches and trajectory sketches to generate
large-scale interacting crowds with freestyle group
formations.

In the actual implementation, a trade-off exists
between movement smoothness and formation
accuracy. For instance, when an agent evaluates
its appropriate velocity heading to the target posi-
tion, other agents might already have taken that
position. This situation will result in the agent’s
unsmooth movement; the agent might continu-
ally try to reach the exact position in the target
formation by going back and forth in a small area.
In this situation, we let the agent probe the next
available position by searching for the second-
closest neighbor in the KD-tree.

We found that two-level collision avoidance
can better keep the formations while avoiding ob-
stacles. The intergroup dynamics tend to guide all
the agents, from a group perspective, to avoid an
obstacle as a whole if possible (see Figure 11c), in-
stead of easily scattering the agents owing to local
collision avoidance (see Figure 11a).

The current global trajectory control treats a
group as a single entity by assuming that the group
formations’ shape is generally isotropic, such as
a square or circle. So, global collision avoidance
ignores the shape effect for anisotropic group for-
mations. Thus, a group’s agents still depend highly
on local collision avoidance. We plan to work on
this issue in the future.

Finally, our approach currently doesn’t let users

put timing constraints on formation transitions.
Our next step will be to introduce this feature—for
example, by incorporating agent velocity control to
dynamically adjust agents’ speed.

Acknowledgments
US National Science Foundation award IIS-0914965,
Texas Norman Hackerman Advanced Research Pro-
gram project 003652-0058-2007, and research gifts
from Google and Nokia partly supported this research.
Any opinions, !ndings, and conclusions or recommen-
dations expressed in this article are the authors’ and
don’t necessarily re"ect the agencies’ views.

References
 1. S. Takahashi et al., “Spectral-Based Group Forma-

tion Control,” Computer Graphics Forum, vol. 28, no.
2, 2009, pp. 639–648.

 2. B. Ulicny, P.d.H. Ciechomski, and D. Thalmann,
“Crowdbrush: Interactive Authoring of Real-Time
Crowd Scenes,” Proc. 2004 ACM Siggraph/Eurographics
Symp. Computer Animation (SCA 04), Eurographics
Assoc., 2004, pp. 243–252.

 3. D. Helbing and P. Molnar, “Social Force Model for
Pedestrian Dynamics,” Physical Rev. E, vol. 51, no. 5,
1995, pp. 4282–4286.

 4. N. Pelechano, J.M. Allbeck, and N.I. Badler, “Con-
trolling Individual Agents in High-Density Crowd
Simulation,” Proc. 2007 ACM Siggraph/Eurographics
Symp. Computer Animation (SCA 07), Eurographics
Assoc., 2007, pp. 99–108.

Qin Gu is a PhD candidate in the University of Houston’s
Department of Computer Science. His research interests
include computer graphics and character and crowd ani-
mation. Gu received an MS in computer science from the
University of Houston. Contact him at ericgu@cs.uh.edu.

Zhigang Deng is an associate professor of computer science
at the University of Houston. His research interests include
computer graphics, computer animation, and human-computer
interaction. Deng received a PhD in computer science from the
University of Southern California. He’s a member of IEEE and
ACM. Contact him at zdeng@cs.uh.edu or zdeng4@uh.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

