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Abstract—In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation
quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet
unsolved research problem. In this paper we propose a novel statistical model (called SAQP) to automatically predict the quality of
on-the-fly synthesized speech animations by various data-driven techniques. Its essential idea is to construct a phoneme-based,
Speech Animation Trajectory Fitting (SATF) metric to describe speech animation synthesis errors and then build a statistical
regression model to learn the association between the obtained SATF metric and the objective speech animation synthesis
quality. Through delicately designed user studies, we evaluate the effectiveness and robustness of the proposed SAQP model.
To the best of our knowledge, this work is the first-of-its-kind, quantitative quality model for data-driven speech animation. We
believe it is the important first step to remove a critical technical barrier for applying data-driven speech animation techniques to
numerous online or interactive talking avatar applications.

Index Terms—Facial Animation, Data-Driven, Visual Speech Animation, Lip-Sync, Quality Prediction, and Statistical Models
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1 INTRODUCTION or interactive talking avatar application), and their agli
performances could be varied depending on specific inputs.

D URING the past several decades, plenty of researgfere is a simple yet conceptual example: for a specific

efforts have been focused to generate realistic spedaputted sentence, maybe the first algorithm generates a
animation given novel spoken or typed infddi. In par- better speech animation than the second one; while for
ticular, state-of-the-art data-driven speech animatipn aanother sentence input, this situation could be reversed,
proaches have achieved significant successes in termsheft is, the second algorithm could outperform the first
animation quality. One of the main reasons is that thes@e. Thus, an interesting question ¢sin we dynamically
techniques heavily exploit the prior knowledge encodasbmpare and determine which algorithm (among them) can
in pre-collected training facial motion datasets, by comynthesize the best speech animation for specific text or
catenating pre-segmented motion sampleg),(triphone speech inp® Indeed, in spite of the practical importance of
or syllable-based motion subsequencE®) 3; 4; 5; 6; the automated evaluation of data-driven speech animations
7;]8] or learning facial motion statistical model; 10; no plausible solution has yet been proposed and validated
11]. to date.

On the other side, all the above data-driven approaches hrspired by the above challenge, in this work we propose a
only empirically tested, that is, researchers first geeeratovel statistical model to automatically predict the gtyali

a small number of novel speech animations based ofisynthesized speech animations on-the-fly generated by
selected texts (or speech) and then evaluate the animativadous data-driven algorithms. Figure 1 is a schematic
via tedious user studies. It is obvious that such us#ustration of the proposed approach. In the training stag
studies can only be used to evaluate offline synthesize@ construct a phoneme-bas&heech Animation Trajec-
speech animations, since it is infeasible to use offlitery Fitting (SATF)metric to describe speech animation
user studies to assess the quality of on-the-fly synthesizgathesis errors. Then, we build a statistical regression
speech animations. Therefooan we automatically predict model, called theSpeech Animation Quality Prediction
the quality of dynamically synthesized speech animatio(@AQP) model, to learn the association between the ob-
without conducting actual user studies tained SATF metric and the ground-truth speech animation
synthesis quality. At the end, given any new text/voice

In addition, a number of different data-driven speech ani: DI .
Input (i.e. a phoneme sequence with timing information)

mation algorithms are available these days (e.g., assumlnr% . ining facial on d h d
all these algorithms run at the back end of an onli aht a given training facial motion ?tase“ N cpnstructe
r@AQP model can be used to predict the quality of on-
siaohan Ma and Zh 5 i the D . the-fly synthesized data-driven speech animations. We also
° laohan Ma an igang Deng are with the Department of Coerput H H H
Science, University of Houston, 4800 Calhoun Road, HousToh condgct delicately designed user studies to evaluate the
77204-3010. effectiveness and robustness of our SAQP model.

* This work has been accepted by IEEE Transactions on Vizaiidin . . .
and Computer Graphics for publication on January 29th, 2012 To the best of our knowledge, this work is the first-of-

E-mail: xiaoharjzdeng@cs.uh.edu its-kind, automated quality model for data-driven speech
animation. We believe it is the important first step to re-
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Fig. 1. The introduced Speech Animation Quality Prediction (SAQP) model can automatically predict the quality
of synthetic speech animations that are generated by a data-driven algorithm based on novel text or speech
input.

move a critical technical barrier for applying wealthy dataanimation survey by Deng and NdR8]). Here we only
driven speech animation techniques to numerous onlineloiefly review recent efforts most related to this work.
interactive talking avatar applications.

It is noteworthy that, although various data-driven speegw S h Animati
animation approaches had been proposed, in general, t e]y peech Animation

can be roughly classified into the following two CateTraditional speech animation approaches typically requir
gories: sample-basedand learning-based As such, we P PP ypicaty red

. . users to design visemese key mouth shapes), and then
select representative algorithms from each of the two .. : 7oA. . ,

. .. empirical smooth functionE29; 30; 31 or co-articulation
categories to evaluate our SAQP model. From existi

n . o
sample-based speech animation approat®es; 4: 5; 6: rgles[32] are used to synthesize novel speech animations.

7], we choose thAnime-Graphapproach5] and theeFASE For example, in the early_era, a Imgar predlct!on model
. is employed to generate lip-sync animations given novel
approacH6]. Among current learning-based approacl$gs ) .
' . - ) sound track[29]. In the Cohen-Massaro co-articulation
10; 11, we extend the classical multidimensional mor-

model[30] and its various extension81], a viseme shape
phable model (MMM) proposed by Ezzet al. [10] from is defined via hand-crafted dominance functions in terms of

2D to 3D for three-dimensional lip-sync generation. Secti ertain facial measurements such as the width and height

4 encloses more technical and implementation details of tﬁ?the mouth. In this way, final mouth shapes at animation

three chosen approaches. We believe that a methodol? . . .
) 1ifMe are determined as the weighted sum of dominance
successfully applied to the above three chosen data-drive

approache$5; 6; 14 can be soundly generalized to othel’
data-driven speech animation algorithms. In recent years, a large variety of data-driven speech anima

The remainder of this paper is organized as folIowf:on approaches utilize a pre-collected facial motion sketta

. . . 0 produce realistic lip-sync animations corresponding to
Sect!on 2 brleﬂ)_/ reviews recent related research efforns.W inputted texts[2; 9 10; 3; 4; 5; 6; 7; 1L For
Section 3 describes how we collect and process a facg;)t(am le, Brand9] learns Hidden Markov Models (HMMs)
motion dataset used in this work. Section 5 details how W& P

construct the proposed SAQP statistical model. Section 'om e_thgped V|deq and auc_ilo tracks _through an entrqpy
minimization learning algorithm. In his approach, facial

presents the appllcatlo.n of our SAQP modgl and USElotions can be directly synthesized by inputting audiokrac
study results. Finally, discussion and concluding remar

are given in Section 7 Mo the learned HMMs. Ezzagt al. [10] learn a multi-

' dimensional morphable model (MMM) from a set of mouth
prototype images (corresponding to basic visemes) and then
generate facial motion trajectories in the constructed MMM

2 RELATED WORK space for any desired utterance.

Researchers have conducted extensive research effortsv@manwhile, Bregletet al. [2] proposed the concept of re-
facial animation including face modelidd.2; 13; 14; 15; combining triphone segments, extracted from pre-coltécte
16; 17, deformation[18; 19; 20; 21; 2R and expression video footages, to generate new speech animations. Along
transferring and editind23; 24; 25; 26; 2J. Compre- this line, different semantic speech-motion segments such
hensively reviewing these efforts is beyond the scope aé syllable motiond3] and multi-phoneme motion§4;

this paper (interested readers can refer to the recent facia6; 7; § have also been explored. Also, various search
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strategies including greedy seal&h and constraint-guided facial motion capture dataset for this purpose. Specificall
dynamic programmind6; 8§ are adapted in these algo-natural speaking of a chosen native English female speaker
rithms. The above data-driven facial animation approachess recorded, with a 120 Hz sampling rate, by an optical
often focus on the accuracy or efficacy of their generatianotion capture system.

algorithms, while little attention has been paid to autoﬁff' pointed out in the existing literatufd7], talking might
a

ma_ltical_ly evaluate the quality of their synthesized speeg ect the entire facial regions (e.g., the cheek moves when
animations. . . )

mouth is opened). Thus, we captured facial motion of the

whole face instead of the lip region only. A total of 95 facial
2.2 Perceptual Approaches for Animation markers were put on the face and head (90 markers on the

face and 5 markers on the head, refer to Figure 2). The
In computer graphics and animation community, margaptured subject was directed to speak a custom phoneme-
approaches have been proposed to determine the vidsalnced corpus consisting of 237 sentences. In addition,
guality of an imagel33; 34 or a clip of animation[35; the facial marker motions and aligned acoustic speech
36]. Quality metrics or heuristics have also been developagtre recorded simultaneously. Subsequently, we removed
to measure or predict the fidelity of images and renderirige 3D rigid head motion of each frame by computing
for character animations in recent years. For instance; Ha rotation matrix based on the markers on the head, and
gins et al. [37] explored the perceptual effect of differenperformed phoneme-alignmentise( align each phoneme
geometric models for character animation. O'Sullivain with its corresponding motion capture subsequence) using
al. [38] evaluated the visual fidelity of physically-basedhe Festival systerf4g].
animations. Nonetheless, the above approaches still need

time-consuming and delicately designed subjective user _ ) )
studies. 3.1 Region-Based Reduced Facial Motion Repre-

sentation
Exploiting human perception and psychophysical insight
for graphics and animation applications has attracted a lot order to train our statistical quality model, we need to
of attention in recent year89]. For example, researcherdransform the original, high-dimensional facial motiortala
conducted extensive psychophysical experiments to evala-a compact, low-dimensional representation. In this work
ate the perceptual quality of animated facial expressiom® choose to transform the original 3D facial motion to a
or talking heads[40; 41; 42; 43; 44 Geiger and col- region-based, reduced representation. Its basic idea is to
leagues[41] performed two types (implicit and explicit) partition the whole face into different facial regions gin
of perceptual discrimination tasks to tell whether a vide@ physically-motivated facial segmentation sché#g and
realistic speech animation clip is real or synthetic. Cosite then apply Principal Component Analysis (PCA) to motions
al. [42] evaluated the behavioral quality of synthetic talkingf the markers in each region, separately. The region-based
heads based on the “McGurk Effect” test. In additiorRCA representation encodes more intuitive correspondence
Wallraven et al. conducted a series of psychophysicdletween PCA eigen-vectors and localized facial movements
experiments to study the perceptual quality of animatédan applying a single PCA to the whole fal&#)]. Figure
facial expressiong44] or stylized facial expression rep-2 shows the facial region segmentation result in this work.
resentation$40].

© Forehead

Ma et al.[45] quantitatively analyze how human perception
is affected by audio-head motion characteristics of talkin
avatars, specifically, quantifying the correlation betwee
perceptual user ratings (obtained via user study) and joint
audio-head motion features as well as head motion patterns
in the frequency-domain. Recently, Deng and N6
proposed a computational perceptual metric to evaluate
synthetic facial expressions such as expression type and
scale. However, the same methodology cannot be straight-

forwardly applied to the case of evaluating synthetic Sbeeﬁig. 2. lllustration of the facial region segmentation

animations. Arguably, one of the main reasons is that audio- . : .
. ) . . result in this work. Different marker colors represent
motion synchronization and speech co-articulation poae

additional technical challenges to the task. Istinct regions.

Eyes

*Nose

¢ Right cheek

© Left cheek

« Mouth

Based on the above facial region segmentation, we obtain
3 EXPERIMENTAL DATASET the following six facial regions: forehead, eye, the left

cheek, the right cheek, mouth, and nose. For each facial
To quantify data-driven speech animation, we need tegion, we apply Robust Principal Component Analysis
experiment with a collection of facial motion data (as théRPCA)[51] to reduce its dimension and construct a trun-
training facial motion dataset). In this work, we acquired aated PCA space. Though a part-based PCA parameteriza-
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tion of facial motions is essentially linear, we choose PCA
parameterization over other forms of non-linear deformer
based facial motion parameterization schemes (e.g., face
rigging [27]) due to its efficiency and characteristic of
localized facial movement mappin§0; 44. In this work,

to retain more than 95% of the motion variations, the
retained dimension is 4 for the forehead region, 4 for the
eye region, 3 for the left cheek region, 3 for the right cheek
region, 8 for the mouth region, and 5 for the nose region. In
this way, we can transform any facial motion capture frame
into a region-based, reduced representation. In follow-u
sections, our model mainly deals with this reduced facig SPEECH ANIMATION QUALITY MODEL
motion representation.

tidimensional morphable model (MMM) from a small
set of 2D talking face video clips. At runtime, a novel
trajectory (i.e. facial motion and texture parameters) in
the MMM space is optimized based on novel phoneme
sequence input. The original MMM-based approach is
only for 2D talking face generation. In this work, we
straightforwardly extend it from 2D to 3D for three-
dimensional lip-sync generation.

In this section, we describe how we construct a phoneme-
based Speech Animation Quality Predictig@AQP) model

for data-driven speech animation. Assuming an inputted
phoneme sequence to a data-driven synthesis algorithm,

] - ) . U, is P = {P1,P5,..,Pt} and the used facial motion
To increase the readability of this paper, we briefly degcrity 11t is denoted ad, we aim to construct a SAQP model

_the t_hree data-driv_en speech animation approaches cho(%?n: Fy(P, M) that can automatically predict the quality
in this work: the Anime-Graph approag$l, the eFASE ap- of synthesized speech animation corresponding,tbased

proachl6], and 3D extension of the MMM-based approacl, ihe training facial motion datasf, by using the data-
[10], as follows. For more technical details of the threﬁriven speech animation algorithin

approaches, please refer to their original publicati@ns;
10).

4 SELECTED DATA-DRIVEN ALGORITHMS
FOR EVALUATION

We use the following main steps to construct the SAQP

It is noteworthy that this work is only focused on speecﬂ1OOIeI (refer to Figure 1).

animation, and emotion is not its main focus. In addition,
among the three chosen algorithms, the MMM-based ap-
proach[10] cannot deal with “emotional visual speech”
while the other two[5; 6] can deal with it. Therefore, to
this end, in our implementations we intentionally did not
utilize the emotion part in the Anime-Graph and eFASE
approachefs; 6] in order to have sound and fair evaluations
on the three algorithms. We are aware that evaluating the
quality of emotional visual speech would be an important
future research topic to explore.

1) As described in follow-up Section 5.1, we first con-
struct aSpeech Animation Trajectory FittingsATF)
metric (denoted ag’) to quantify the speech ani-
mation synthesis trajectory fitting errdg,,,, of any
inputtedP based on the givelM. The SATF metric
does not depend on any specific speech animation
synthesis algorithm since it is computed solely based
on the inputtedP and the used training datasef.
Hence E,,, = T(P,M).

We also compute the ground-truth speech animation
synthesis qualityQ,,, of the inputtedP based on
the givenM as the root mean-squared-error (RMSE)
between the pre-recorded facial motions.(ground-
truth) and synthetic motions by the data-driven algo-
rithm 0.

Then, as described in Section 5.2, given a
small number #) of training samples randomly
selected from the pre-recorded facial motion
dataset, we learn @aussian Process Regression

2)

« The Anime-Graph approach [5]: It first constructs a
large set of inter-connected anime-graphs from a pre-
collected facial motion dataset, and each anime-graph
essentially encloses aligned facial motion, acoustic
features, emotion label and phoneme information. Dur-
ing the synthesis process, given novel speech input,3)
its algorithm searches for an optimal concatenation of
anime-graphs using a greedy search strategy.

« The eFASE approach [6]: At the offline data pro-

cessing stage, it extracts facial motion nodes (or called
viseme segments) from a pre-collected facial motion
dataset, and each motion node represents the facial
motion of a phoneme. Then, its algorithm further
clusters and organizes the motion nodes based on their

phoneme labels. At runtime, its algorithm searches 4)

for a minimal cost path to optimally concatenate
viseme segments through a constraint-based dynamic
programming algorithm, and various constraints can
be interactively specified by users.

3D extension of the MMM-based approach [10]:

The original MMM-based approach first trains a mul-

(GPR) model, Fy, to connect the SATF
metric, E = {Eq,Es,....E,n,...,E,}, and the
ground-truth speech animation synthesis quality,
Q = {Q1,Q2,..,Qpm,...,Qn}. In other words,
Q=Fy(E).

Finally, Fy can be employed to predict the speech
animation synthesis qualitf)’, of any new inputted
phoneme sequencg;, based on a new facial motion
training datasetM’, that is,Q’ = Fy(T'(P’,M)).
Note thatM’ is expected to be captured on the same
subject as the one iM, with the same facial marker
layout.
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5.1 Speech Animation Trajectory Fitting Metric sequences of phonemes, and the coeffickehalances the
trade-off between the fitting errors of individual phonemes

Our Speech Animation Trajectory Fitting (SATF) metricand the smoothness of phoneme transitions. How to con-

is built on the concept of speech animation synthesigructU, V, D, andW and how to solve foy are detailed

trajectory fitting. Specifically, we modify the trajectoryin follow-up section 5.1.1. Finally, we can obtaky,,, by

fitting technique proposed by Ezzet al. [10] to compute pluggingy into the above Eq. 1.

the SATF metric due to the following reasons: (1) It does

not depend on any specific speech animation syntheéighough there is no explicit dynamic modeling of co-
algorithm, and (2) it is phoneme-based so that phonerfgiculation effect in the phoneme sequence, Vgvari-

contexts can be naturally exploited in the SATF metric. @nces) matrix implicitly generates coarticulation effeks
reported in the work of10], a small variance indicates

The goal of speech animation trajectory fitting is to quanhat the synthesized trajectory for a particular phoneme is
tify the synthesis error of an inputted phoneme sequenggre likely to only pass its own parameter space, and thus
P based on the giverM (the training facial motion this phoneme has little co-articulation effect. Meanwhile
dataset)P is a stream of phonemeP;} that represent |arge variance indicates that the synthesized trajectory f
the phonetic data of the utterance. Since the audio ag& phoneme is more likely to pass through the neighboring

facial motion are aligned, we have all the region-basgshonemes’ parameter spaces, and thus the co-articulation
PCA coefficients/parameters (Section 3.1) for any pawiculeffect of this phoneme can be modeled.

phoneme. Inspired by the Ezzat et al’s wdrk0], we

represent the facial motion characteristics of each phenem

P; mathematically as a multidimensional Gaussian with.1.1 Computing Means and Variances of Visemes
mean and variance of all the facial motion frames. through Trajectory Fitting

A visemeis defined as the visual representation of AssumingP is the inputted phoneme sequence avi
phonemei(e., the motion subsequence of a phoneme). ig a given facial motion dataset, the computed mean and
this Work, the means and variances of all the visemes \.yﬁriance elements of all the visemes®nhare diagona"y

P are computed based on a given datasktas follows. packed into vectolU and matrixV, respectivelyU is a
The middle frame of a viseme, precisely, the region-basggrtical concatenation of the mean vector;, for P; in
PCA representation of the middle frame (Section 3.1jhoneme sequence, and eddh vector is a concatenation

is chosen as the visemelgepresentative sampleSince of the 27 region-based PCA coefficients (described in

the mean and variance of each viseme depend on dgction 3). Herek is the total number of the used PCA
phoneme context.€. its preceding/following phonemes),coefficients (=27 in this work).

its means and variances are computed by only considering
its representative samples with the same phoneme context.

U,
In this work, two basic phoneme contexts are considered: U, ot
triphone and diphone To compute the mean and variance . 5
of a phonemdP;, we first find and compute the mean and . U;
variance of all the visemes @&; with the triphone context U= U; U; = : (@)
(Pi—1,P;,Pit1) in M, otherwise, consider its diphone . i
} . U!
context (P;, P;+1); and, the last alternative would be its . i
flat mean and variance (considering all the representative Ur

samples ofP; regardless their phoneme contexts).

Basically, the trajectory fitting problem can be mathematV is & diagonal concatenation of the variance mawix
cally formed as a regularization probldsg]. As described (for P; in the phoneme sequend®). Each'V; matrix is
in the work of[10], for a given phoneme sequenke the K x K.

following objective function (Eqg. 1), called the SATF metri

in this work, is minimized to find the best fitting facial \

motion sequencey. R VN

E,, = y-UID'VID(y-U) (@1 .
i\ yT wT w y . . . . Vr
Here D is the time duration matrix for all the phonemes vl .
in P; W is a difference operator (i.e., a matrix) used for . V2

smoothing the fitted resulty; U and V are the mean . e
and variance matrices estimated from the facial motion . .. VK
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After U and'V are obtained, we compute the fitted resuliThe coefficient\ in Eq. 4 balances the trade-off between the

y, by minimizing Eq. 1 (i.e., settingE,,,,/9y=0). At the
end, we obtain the following Eq. 4.

DT VID+ AW W)y=D"V'!DU (4

fitting errors of individual phonemes and the smoothness of
phoneme transitions. In this work, we experimentally set it
to 0.5. How to determine the optimalas well as the order

of W is described in follow-up Section 5.1.2.

Since all the frames are represented as region-based PEA2 Determining Optimal Parameters

coefficients; thereforey is a vertical concatenation of the
region-based PCA coefficient vectgr at each time step
(refer to Eq. 5).

In the aboveW, higher orders of smoothness are formed
by repeatedly multiplyingW with itself: second order
WIWTWW, third order WWITWTWWW, and so

[ yi ] on. Figure 3 shows how the cross-validation Root Mean
V2 y! Squared Error (RMSE) is changed when the ordeMéf
. y? and the coefficient\ in Eq. 1 are varied (also refer to
. Section 5.3). As shown in Figure 3, for all the three chosen
Y= | v Yi= () approache$5; 6; 1d, the optimal order ofW is 1 (that
. is, the optimalW is a matrix corresponding to the first-
. vy order difference operator) and the optimalis 0.5, thus
yr we empirically set\ to 0.5 in this work.
The time duration matrixD is a diagonal duration- G o
weighted matrix that emphasizes shorter phonemes and 5 -+ First-Order W
emphasizes longer ongs0]. The purpose of the duration- 8 o6 'F'iﬁﬁﬁf‘é‘&fs\"w rn— a
weighted matrix is to relieve the impact of extremely loni % PR e
phonemes. In this work, we use the following form fo ¢ 051 . J P .
each diagonal element @¥; in the time duration matriD: S04 S g -8y oo e
e} !
1-— ]13)’: (Here,Dp, denotes the duration @; in time fos’ &
frames, andDp denotes the length of the entire utteranc §- ’ " N
P in time frames), and each,; is K x K. Thus,D is 0. T N —,.
formulated as follows: 0 05 10 15 20 25 30 35 40 45 50 55
0.7 T T 1 :
S -+ First-Order W
r D, ) 30.67 - 8-Second-Order W
D » Third-Order W
2 Zo0s Bl ,ﬂ:.?f'_"“
D — . . . . . 6 § ’ —/./ " &3 %
. . D, . . (6) %04 ,m‘/,,: e -
@ 0.3+ o 7
L DT ) 8 E( *
1 DPT', 0.2 : . - : : : - : : -
~ Dp 0 05 10 15 20 2‘5K3‘0 35 40 45 50 55
Dp,
1_ DI: 0.7 T T T -
D; = s -+ First-Order W
G - |~H-Second-OrderW|
. 7 Third—Order W
DPi = ;’B,,\\
L I- Dp | EOS + Fr, ﬂ\\ 2 <t + - ~th
g o4 PRC" R
The matrix W is the first order difference operatf53] g By l.g
(Section 5.1.2 describes how we determine the optim g o3-
order of W is 1), and it is used to smooth the fitted resul © , *
y. Eachl is a K x K identity matrix. %

05 10 15 20 25 30 35 40 45 50 55
A

Fig. 3. lllustration of how the cross-validation RMSE
error is changed when )\ and the order of W are

W=| o (") varied: the anime-graph approach [5] (Top), the eFASE

approach [6] (Middle), and the 3D extension of the
MMM-based approach [10] (Bottom).
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In order to understand how the combination of triphone training data, M, ‘
diphones, and mono-phones in the inputted phoneme l

guenceP could affect the trajectory fitting error of the _
constructed SATF metric, we randomly select and analy ‘ fold #1 ‘ ‘ fold #2 ‘ mmmm| fold#10

six test sentences. Table 1 shows the detailed phone
contexts of the six selected test sequences and their &er| syb-motion sub-motion
(per phoneme) fitting errors computed by our introduce | gaaset, SM, dataset, SM.
SATF metric (i.e.,E,,,/T). As shown in this table, since
the percentages of combined triphones and diphones in
six test sentences are close, their resultant fitting eas SATF ground-truth
numerically close accordingly. Also, the direct corredati metrics, E synthesis errors, O
between triphone/diphone combination and the resulte
fitting error is not straightforward. However, quantitaiy

sub-motion
dataset, SM,

analyzing and modeling this issue could be an interestil Ga}lssian Process
future study. Regression Model (SAQP)
Sentence| Triphone | Diphone | Monophone|  Average Fig. 4. lllustration of the SAQP modeling process.
# Percentage| Percentage| Percentage| Fitting Error
1 30% 53% 7% 0.134
2 34% 48% 18% 0.180
3 37% 45% 18% 0.146
4 39% 42% 19% 0.153 . .
5 41% 41% 18% 0.163 Meanwhile, for each of the above 484 synthesis tasks
6 44% 40% 16% 0.155 such asE;, we also know its corresponding pre-recorded
TABLEL (ground-truth) facial motion inM,. As such, we can
The phoneme contexts of the six selected test compute its ground-truth synthesis err@;, by calculating
sentences and their average (per phoneme) fitting  the RMSE error between the synthesized facial motion and
errors computed by our introduced SATF metric. the pre-recorded ground truth.

The used RMSE error is determined by computing the
5.2 Statistical Quality Prediction Model differences of both the positions and velocities between
the synthesized facial motion and the pre-recorded ground

We split the pre-recorded facial motion dataset (describedtruth. In this work, we choose a set of facial markers over

Section 3) into a training subs@; (80%, 189 sentences),the whole facial geometry to compute the RMSE error due
and a test/validation subs@{, (20%, 48 sentences). Then0 the following main reasons: (1) 3D facial meshes of

we useM, to train the SAQP statistical model that carYarious persons or even the same person typically have
predict speech animation synthesis quality based on tifferenttopologies (i.e., the number of vertices) sucthas

SATF metric. We detail its modeling procedure in thigvidely used multi-resolution mesh representation. Thius, i
section. the RMSE error is computed based on the difference of alll

the deformed facial mesh vertices, it will directly depend
The construction of our SAQP model is based on the crossn the used facial mesh representation (as an additional
validation mechanism. As illustrated in Figure 4, we firsfactor to the SAQP model). By contrast, the marker-based
split the whole training motion datase¥k;) into 10 folds, RMSE error is independent to the used facial mesh. (2)
and each fold has less than 20 sentences. In this phasgmputing the marker-based RMSE error is much more
we keep the split ofM; in a phoneme-balanced mannerefficient than computing all the mesh vertices based RMSE
In other words, each of the folds covers facial motiongrror. In addition, marker-driven facial deformation (e.g
for all the phonemes used in this study. Subsequently, W& thin-shell linear deformation modg4; 21) has been
randomly pick and combiné folds (1 < £ < 9) into @ proven to be effective to soundly produce realistic and-high
sub-motion datase8M,;. In this work, a total of 56 sub- fidelity facial deformations. In this work, we also choose
motion datasets are constructed. Then, for each of the suke thin-shell linear deformation model to deform the face
motion datasetsSM;, we useM; — SM; as the training mesh based on the displacements of a set of markers.
data to compute the SATF metric for each sentence in
SM; based on Eq. 1. In other words, if th& sentence
(i.e, phoneme sequence) 81M; is denoted aSM7, and  Specifically, to compute the RMSE error in this work, we
its corresponding SATF metric is denoted @ then consider not only the first-order effect (positions of facia
E; = T(SM},Mt — SM;). In this way, we obtain a total markers), but also the second-order effect (velocities of
of 484 SATF metrics. For the sake of a clear explanatiofgcial markers) towards and away from the targets. Eq. 8
we use{E;,E,, ..., E,} (n=484) to denote these obtainedjives the formula to compute the RMSE erlQ!';- as the
SATF metrics. ground-truth synthesis error:
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a Gaussian Process Regression (GPR) model to learn the
mapping fromE to Q. We choose the GPR model for this
WY PACTE S i) P p:

learning due to the following reasons: First, the GPR model

Q

is non-parametric, so it does not require extensive manual
>, (W(XF —X§))2 efforts for parameter tuning to achieve good training

2 ja (8) results. Second, the GPR model is context-dependent;

hence, it is capable of automatically and robustly handling

Here I’ denotes the total frame number of theh facial SATF metrics with different characteristics.

motion sequence in the training datagéf; andX§ denote

the marker positions of theth frame of the synthesized

facial motion and the pre-recorded ground truth motios,Cale arametef, and a signal magnitude parameter
respectively;X; denotes the marker velocities of theh P 1 '9 gnitude p )

; . . : raining a GPR model is to learn the hyper-parameter vec-
facial motion frameyw denotes the weights/importances o or 6. In this work. we learn the hvper-barameter vee
facial markers; and\; and )\, are the weights to balance ) ’ yper-p by

the position part and the velocity part. In this work, W(%Jgtlmézmg the following marginal log-likelihood functio
empirically setA; and )\, to 0.64 and 0.36, respectively. a- 9)-

Mathematically, a GPR model is characterized by its hyper-
I;?arameter vectof that includes a characteristic length-

When computing the abO\Q;'., we apply a higher weight

to the facial markers in the mouth region than those in Lgp = —log P(Q|E,0)
other facial regions. Its underlying rationale is that when 1 1 _
perceiving lip-sync animations, humans tend to put more - 3 log [K +0° 1| + §QT(K +0°)7'Q
attention/emphasis on the mouth region than other facial
regions. As such, we assign a higher weight,, to the
markers in the mouth region, while assign 1 as the default _ ) ) )
weight to the other facial markers. In Section 5.3, wkereLcr is the negative log-posterior of the mode?, IS
will describe how to determine the optimal,, via cross- the variance of noise (0.014 in this work), akdis a used
validation. Figure 5 illustrate how the facial markers arkernel function. In this work, the used kernel function is
partitioned to two categories (the mouth region and ¥ ARD covariance functiofbg] (refer to Eq. 10).

other) for weight assignment.

+% log 27 9)

1
K =k(E;,E;) =02 eXP(—Qe—QHEz‘ —-Ej|I’) (10)
1

Then, Rasmussen’s minimization algoritis6] is chosen
to optimize Lgp due to its efficiency. The maximum
number of iterations is experimentally set to 1024. After
0 is optimally solved, the trained GPR model yields a
likelihood function for any predicted output. Concretely,
for any new SATF metric (i.e., a scalar value, we
can compute a probabilistic distribution of its predicted
synthesis quality errogy. In addition, we can evaluate the
negative log probability of the predicted output. This log-
likelihood function is shown in Eq. 11.

Fig. 5. The used facial marker partition scheme for
weight assignment.

Finally, we use a linear mapping to transform the computed Ls = —1og P(qle,9)
RMSE errorQ; to the range of 1 to 5 in order to make it _ llog(27r(V(e) +02) + lla—U(e)l (11)
consistent with the five-point Likert scale (employed in the 2 2(V(e) +0?)
user study described in Section 6), where 1 represents the
worst quality and 5 represents the best quality. This linear
mapping can be constructed straightforwardly: assuming U(e) = r(e)"(K+o°1)7'Q
the largest synthesis error in our dataset¢jsthen the Vie) = kle,e)—r(e)T(K+o?T) k(e
mapped value o€ is 5 — 4« (Qj/£).
Here x(e) is a vector in which thé®* entry is k(e, E;),
5.2.1 Gaussian Process SAQP Model function U returns the mean of the posterior distribution
of the learned model given new inpef and functionl’
Given the above obtained SATF metrics,E returns the variance of the learned posterior distribution
(={E4,....E;,...,E,}), and their corresponding ground-sum, we just need to minimizBg to obtain the predicted
truth synthesis errorQ) (={Qu, ..., Q, ..., Q,}), we train outputq.
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and the ground-truth RMSE errors of the cross-validation

05, |+ [Caoetal 05] o dataset. From this figure, we can observe that the overall
g | |"SDengard Neumann 0] i trend of the three approaches is approximately close to the
@ .45} [Ezzat et al. 02] p: . . .
w ground-truth, although noticeable fluctuations exist.
= 04r 3 ) ) X .
”é ,u'“‘ﬂ’a R Figure 8 shows cross-validation comparison resu@@s, (
k| 088 i m,’ versusQ,,) of the retained 48 validation sentences (the
§ 0.3 above optimally determined,,, is used). As shown in this
g 025 el T figure, we can observe that the predicted speech animation
© 4o 2 * ] synthesis qualities of the three chosen approadbes;

10] are measurably close to the ground-truth, considering

0 5 10 15 20
Weight of the mouth markers

the intrinsic difficulty of this problem. Note that in Figue
in order to make the plotting easier to understand, we
intentionally rearrange the animation clip indexes by the
ground-truth synthesis quality in the ascending order.

Fig. 6. Plotting of how the cross-validation RMSE is
changed when w,, is increased.

0.8
—»— Ground-truth a

5.3 SAQP Model Cross-Validation
07 "+ [Caoetal.05] "} _g—'o,
) . " ||- 8- [Deng and Neumann 06] o =
We validate the accuracy of our SAQP model by applying -0~ [Ezzatetal. 02] by

14
o

to three chosen data-driven speech animation synthesis
gorithms[5; 6; 1d. Specifically, in the model training step,
each of the three chosen algorithms is used to generate
own set of ground-truth synthesis errdiQ1, Qs, ..., Q. }

(n=484, refer to Section 5.2), though the same SAT B
metrics{E;, E,, ..., E,,} are used. We train three different "
SAQP models for the three algorithms, respectively.

I
[

I
~
S

Cross-validation RMSE error

o
w

o
)

20 25 3.0 35 40 45 55

As mentioned in Section 5.2, the facial motion subset AT mere

M, (total 48 sentences) is specifically retained for cross- 06

validation purpose. Therefore, in the validation step, s fi

compute the SATF metrics of the 48 validation sentences, 05f 5 q
{Ey,, E.,, ..., E,; }. Meanwhile, each of the three chosen "
algorithms|[5; 6; 10 is used to compute its own set of 04f

speech animation synthesis errors (ground-truth) for the

48 validation sentences, denoted {83.,, Quy, .-, Quss |- 03

Finally, we use the trained GPR model to predict the speech
animation synthesis qualities based on the inpuliiag
(1 <i<48), thatis,Q,, = Fy(E,,).

02—

%\

+

" +
L--B8 &L - _O_,V:Q,o'

+

1.5

2.0

2.5

3.0

Our cross-validation procedure consists two steps: thgy. 7. Plotting of the SATF metrics E, versus the
first step determines the optimai,, (i.e., the weight for cross-validation RMSE errors Q, by the three chosen
facial markers in the mouth region, refer to Eq. 8) viapproaches and the ground-truth RMSE errors. The

cross-validation, and the second step performs the cropsttom panel is a zoomed version of a selected portion
validation comparison over the selected test sentencesifyhe top panel.

using the determined optimal,,. The reason is that the

learned GPR hyper-parameters in the SAQP model depends

on the chosen value of the,, parameter, and thus it i56 RESULTS AND EVALUATIONS
necessary to determine the optimag), in the first step.

Figure 6 shows how the cross-validation RMSE error 19 th'_s work, we conducted a user study to evaluate _the
changed when,, varies. In this figure, X axis denoteseffectlveness of our proposed SAQP model. In the effective-

wm, and Y axis denotes the averaged cross-validation er ss user study, we choose three recent representative data

(total 48 cross-validation sentences). As clearly shown ven SPeeCh animation apprqacliEsG; 14 to evaluate .
Figure 6, the optimals,, for both [6] and[10] is 3, and its effectiveness (refer to Section 4). In the above Section

I5.3, we performed cross-validation on the three approaches
However, it still remains unclear whether the proposed
SAQP model can be soundly accurate and robust when
Figure 7 plots the SATF metric&, versus the cross- arbitrary texts from real-world applications or voicesrfro
validation RMSE error€), by the three chosen approachedifferent subjects (i.e., different from the subjects wdos

the optimalw,,, for [5] is 4. The constructed SAQP mode
in the remaining writing uses the optimal valuesugf,.
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subject is different from the motion capture female subject
in Section 3. After that, we used the Festival systeid]
to extract their corresponding phoneme sequences with
timing information from the recorded voices. Based on
the obtained 17 phoneme sequences, each of the three
chosen data-driven speech animation approadbess;
10] was used to generate 17 speech animation clips (in
other words, a total of 51 synthetic speech animation clips
250y 1 with aligned audio) by using the same facial motion dataset
as detailed in Section 3. In our user study, the resolution
3 70 55 20 s 50 of all the synthetic speech animation clips is 6430.
Sentence index Figure 9 shows four randomly selected frames in one
; ; ‘ synthetic clip. To suppress the potential influences ofrothe
P . visual factors on user perception, eye gaze in these clips
3 1 stays still (looking straight ahead), and there is no head
movements in the clips. For animation results, please refer
to the enclosed demo video.

Synthesis quality

We conducted a user study on the above 51 clips. A
total of 16 student volunteers participated in the study and
they were specifically instructed to only rate the “lip-sync
quality” (that is, not other visual factors such as rendgrin
eye movements, and head movements) of the clips one by

Synthesis quality

o 10 20 30 40 50

Sentence index one. We used a five-point Likert scale, where 1 represents
s “extremely poor”, and 5 represents “realistic like a real
' human”. In particular, the participants were allowed to
- B- Predicted

assign any real number (not restricted to integer numbers,
e.g., he/she can give a 4.3 rating) between 1.0 and 5.0
as their rating. To counter balance the display order of
the visual stimuli in the study, the animation clips were
displayed in a random order for each participant.

Synthesis quality
& =

w

25

Sentence index

Fig. 8. Cross-validation comparison results of all the
48 sentences in our validation dataset: the Anime-
Graph based approach [5] (Top), the eFASE approach
[6] (Middle), and 3D extension of the MMM-based Fig. 9. Four selected frames in one synthetic speech
approach [10] (Bottom). animation clip used in our user study.

#10 #28 #76 #128

facial motion data are acquired for SAQP model trainin
refer to Section 3) are inputted. In particular, in many oali

or interactive applications, it is technically infeasitle \ye analyze the user study results using two different ways.

acquire the ground-truth speech motions in adva®og. ( First, we statistically analyze the obtained user ratir@s t

via pre-planned facial motion acquisition). As such, Wgneck the rating consistency. Second, we perform compari-

focus on quantifying the performance of the SAQP modghy, analysis on the user-rated (i.e., ground-truth) ouésom

in these scenarios. and the algorithm outcomes predicted by our SAQP model
in order to evaluate its accuracy and robustness.

%2 Analysis of User Study Results

6.1 Effectiveness User Study Statistics of the ground-truth (user-rated) perceptual
outcomes. The averaged user ratings of the 51 (=17*3)
We first randomly extracted 17 sentences from CNN Newsynthetic clips are called thground-truth perceptual out-
Yahoo News, and Internet speech as the test sentences, @rdesin this work. As shown in Figure 10, we observe
then recorded the voice of a male human subject whémat despite some outliers, most of the participants had
he spoke the chosen 17 sentences. Note that this medetain agreements on the perceptual ratings of all the
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synthetic clips. In particular, such a rating consistergy writing, the quality outcomes computed/predicted by our
more obvious at those lowly rated and highly rated clipsSAQP model (Section 5.2) are called thesdicted per-

We also computed the standard deviations of the obtain%fcptual outcomes-igure 11 plpts the comparison between
e ground-truth and the predicted perceptual outcomes. As

. t
ground—tryth perceptual outcomes. Figure 11 plots thestasrﬂlown in this figure, we can observe that regardless which
dard deviations as blue error-bars. We can observe thaft, : T )
only 8 (i.e., 23.53%) out of the used 51 clips have thed the three algorithm45; 6; 14 is used, at most cases,
standardl d.'evia'éions larger than 0.5, and only 1 out of é&e predicted perceptual outcomes computed by the SAQP
. arg ) Y -+ OUL 0T 955del are sufficiently close to the ground-truth perceptual
has its standard deviation larger than 0.7. This indicates .
. . . . outcomes (user ratings).
majority of the obtained user ratings are consistent, to a
certain extent. We also computed the quantitative errors of our predictions
Table 2 shows the computed RMSE errors. As shown

in the table, for the three chosen approach®s6; 14,

5 r =
2 a5 ‘ ! ; I | the quantitative errors of our SAQP model are reasonably
§ 5 7T I | small: RMSE for [5] is 0.44, RMSE for[6] is 0.39, and
3 ' ! - RMSE for[10] is 0.48. We also used Canonical Correlation
%3-5’ ‘ Analysis (CCA)[57] to measure the correlation between the
g 3t i . 1 ground-truth perceptual outcomes and the predicted percep
Sl I tual outcomes. The computed CCA coefficients= 0.86
f o I ! H for [5], 7o = 0.90 for [6], andr; = 0.87 for [10], are
5 4 : reasonably close to 1.0 (perfectly linear). This showseher
R ! - is an approximately linear correlation between the ground-
1 F 6 iE 20 truth perceptual outcomes and the predicted outcomes by
Animation clip index our SAQP model.

o

In sum, through the quantitative analysis of the prediction
errors by our SAQP model (i.e., RMSE and CCA), our
user study results showed that the proposed SAQP model
is able to soundly predict the qualities of synthetic data-
driven speech animations, and the algorithm predictions
are measurably close to the ground-truth user ratings. We
believe, with relatively minor modifications, the proposed
SAQP model can be generalized and used as a quanti-
fied quality predictor for other existing data-driven sgeec
animation approaches such as the work[&f 4; 5; 11;

10 15 20
Animation clip index 7]
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% . ! + . | Summary of the quantitative prediction errors by the
g proposed SAQP model.
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£ 4 7 DiscussION AND CONCLUSIONS
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In this paper, we introduce a novel speech animation quality
prediction (SAQP) model that can robustly predict the qual-
perceptual outcomes) of the 51 synthetic speech ani- ity of synthetic speech animations dynamically_ genergted
mation clips: the anime-graph approach [5] (Top), the by (.:ia.ta—dnven approaches. Its core element is a tra_med
eFASE approach [6] (Middle), and the 3D extension s_taust_lc_al regression model that br.|dg(.es the Speech Anima
of the MMM-based approach [10] (Bottom). To better tion Flttl_ng Trajectory (SATF) metric with the ground-thut
visualize the user ratings, we rearrange the animation ~SYNnthesis measure.
clip indexes by the averaged ground-truth perceptual To the best of our knowledge, this work is the first reported,
outcomes in the ascending order. automated, quantitative quality predictor for data-dnive
speech animation approaches. In particular, at runtime it
Comparison analysis of the user study results: In this does not need to conduct offline, costly, and tedious user

Fig. 10. The obtained user ratings (the ground-truth
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studies. Our user study results showed that the SAQP modEbkynthetic animations (in particular, facial and chagact
is able to soundly predict the synthesis quality of datanimations) is a challenging problem, our current work has
driven speech animation approaches and the predictions aneumber of limitations, described as follows.

reasonably close to the ground-truth user ratings. More-

over, we also believe with straightforward modifications « First, the accuracy of the current SAQP model still

or extensions, our SAQP model can be plausibly gener-
alized and used as a quantified quality predictor for other

existing data-driven speech animation approa¢Bes; 11;
7].

ta
L)
T

0
)]
T

Synthesis quality
B o

N

10
Animation clip index

—— Ground-truth
- 8- Predicted

3.5¢

25F

Synthesis quality
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Animation clip index

—— Ground-truth
45¢ - 8- Predicted

EN
T
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Synthesis quality
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N

0 5 1‘0 1‘5 20
Animation clip index

Fig. 11. Comparisons between the ground-truth per-
ceptual outcomes (the averaged user ratings) and the
predicted perceptual outcomes by our SAQP model:
the anime-graph approach [5] (Top), the eFASE ap-
proach [6] (Middle), and the 3D extension of the MMM-
based approach [10] (Bottom). To better visualize the
results, we rearrange the animation clip indexes by
the ground-truth perceptual outcomes in the ascending
order. The blue lines in the figure denote the standard
deviations.

As in general automatically predicting the visual quality

needs to be further improved. For example, as shown
in Figure 11, the predictions by the SAQP model
are less accurate when the ground-truth perceptual
qualities of synthetic speech animations are low.
Second, since the used SATF metric utilizes phoneme
contexts, a reasonably large training dataset would
be needed to construct and train a well-behaviored
SAQP model. For instance, if the training facial motion
dataset cannot provide a good coverage of various
diphones and triphones, then the constructed SAQP
model might not be able to make accurate predic-
tions when the inputted phoneme sequence contains
a significant portion of uncovered diphone or triphone
contexts.

Third, in our current work, the RMSE error is used
to measure the ground-truth synthesis error (quality)
in the SAQP model construction step (refer to Section
5.2). However, we are aware that the RMSE error may
not be the ideal metric to represent ground-truth per-
ceptual outcomes of those synthetic speech animation
clips. Ideally, extensive subjective user studies need to
be conducted to consistently rate the hundreds (about
500 in this work) of visual speech animation clips to
obtain the true perceptual outcomes, and if such ob-
tained user ratings (not the computed RMSE errors in
the current work) are used to train the proposed SAQP
model, we anticipate that the prediction accuracy of
the SAQP model could be significantly improved.
Nevertheless, in reality, such large-scale user studies
are often impractical. Therefore, our current work
selects the RMSE error as the economical alternative
to the user-rated perceptual outcome.

Fourth, if our proposed SAQP model is trained based
on one subject’s facial motion dataset, without model
retraining, it cannot be directly used as a quality pre-
dictor for data-driven synthetic speech animations that
are based on another different subject’s facial motion
dataset. The main reasons include: 1) in reality, it is
practically difficult to put the identical facial marker
layout for different motion capture subjects; 2) even if
the facial marker layouts of different motion capture
subjects are identical, different subjects typically have
distinct facial geometries (that is, the transformed
region-based PCA representation based on one subject
cannot be directly used to describe another subject)
and have idiosyncrasies of mouth movements even
when speaking the same utterance (that is, different
persons typically have distinct sets of visemes and
expressions). Therefore, both the region-based PCA
representation and the computed ground-truth synthe-
sis error essentially depend on the idiosyncrasy of the
particular subject in the training dataset, while both
of them are used in the SAQP model training step
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(Section 5.2). In addition, the optimized SAQP modeb] C. Bregler, M. Covell, and M. Slaney, “Video rewrite: drigivisual
parameters (e.g., those optimized in Section 5) might speech with audio,” irSIGGRAPH '97 1997, pp. 353-360.

be also dataset-specific, to a certain extent. [3] S. Kshirsagar and N. M. Thalmann, “Visyllable based speeth a
mation,” Computer Graphics Forumvol. 22, no. 3, 2003.

Another p0tential application of the proposed SAQP mOd&l] J. Ma, R. Cole, B. Pellom, W. Ward, and B. Wise, “Accurate hiisi

is to on-the-fly compare and evaluate the online perfor- speech synthesis based on concatenating variable lengtionmo
mance of various data-driven speech animation algorithms. capture data,"lEEE Transaction on Visualization and Computer

For example, assuming a number of different data-driven Graphics vol. 12, no. 2, pp. 266-276, 2006.

speech animation algorithms run at the back end, akdl Y.Cao, W.C. Tien, P. Faloutsos, and F. Pighin, “Expresspeesh-
then based on the SAQP predictions, an online system gg‘é‘;ﬂlfgg';' arimation,ACM Trans. Graph. vol. 24, no. 4, pp.
(e.g., taking arbitrary text or speech input from users and ’ '

generate a corresponding talking avatar) can automaficafl Z Deng and gait'i\:]euvmvi?r']‘”'h?ﬂi’*ﬁ?ﬁ;Sgr’;parescsé‘ftrfrscghzr]iégation
pick and display the best animation clip among all the clips 2)(/)06, pp. 251-260. 9 P P '

generated by those back end algorithms. [71 K. Wampler, D. Sasaki, L. Zhang, and Z. Popovi¢, “Dynamic,

Along a similar direction, our proposed SAQP model Sgpfsegfglg speech animation from a single meshSQ@A '07 2007,
could also be potentially used to compare different data- " ' _ S
driven speech animation approaches in a systematic man#r, Z; Deng and U. Neumann, *Expressive speech animation ssisthe
. . with phoneme-level control,Computer Graphics Forumvol. 27,
qu example, researchers can input the sentences in SOome py g pp. 2096-2113, 2008.
widely useq C.orpora (e.g., the UPenn L.DC -COI‘pB:TFS]) [9] M. Brand, “Voice puppetry,” inSIGGRAPH '99 1999, pp. 21-28.
to some existing data-driven speech animation approaches _ _ . S
and then quantitatively compare the quality of the synthefitd ;hﬁgsévn?-if;'g‘gh?&? 02029(%‘; Trag‘gg'z ggdeoreﬂhsbeem
speech animations by those approaches, based on our SAQP o _ PP o _
model. In this way, those different data-driven approachBdl !-J. Kim and H.-S. Ko, 3D lip-synch generation with dagithful
b t ticall d d | d machine learning,Computer Graphics Forumvol. 26, no. 3, pp.
can be systematically compared and analyzed. 295-301, 2007.
In the future, we plan to evaluate the SAQP model if12 F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. HleSan,
real-world online applications such as online news virtual o?ﬁ]éhy\is'sﬁgg;é?gﬁ!ggxlag?pres%o%i from Photpges” Proc.
presenters, and thus we will be able to further quantify $ 95 PP ’ '
and improve the current model such as dynamically ré3 ?gcifpzininrgg-gge:gr’\,ﬂ ‘élggsgapbﬁgrgfgd;g for thféynltgzsm
learning the statistical model based on online user feddbac ' ’ PP ’
Second, as the future work, we are interested in explorifigfl Y- Lee, D. Terzopoulos, and K. Waters, “Realistic modeliagfacial
. . . .. animation,” inProc. of ACM SIGGRAPH’951995, pp. 55-62.
the direction of expanding and generalizing the current

model. For example, it could be extended to predict tH&l T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C.,Tu
J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross,|“Ana

qua“ty of S_ymhetlc SPeeCh animations generated not Only ysis of human faces using a measurement-based skin refiectan
by data-driven techniques, but also by any other speech model,” ACM Trans. Graph.vol. 25, no. 3, pp. 1013-1024, 2006.
animation approaches such as tradmc_nnallyet WG”-!qugG] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen
key viseme based or blendshape animation technigues. P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec, “Facigfope
In addition, eyebrow movement could be an important mance synthesis using deformation-driven polynomial ldegment

. . . . maps,”ACM Trans. Graph.vol. 27, no. 5, pp. 1-10, 2008.
factor to the realism of synthetic speech animation, and we
plan to explore how to effectively incorporate the eyebrolW? T We'tse'" H'sLéAI’_c')s;/an Ggg'Af}gg MN PaUJ{S" ;F?\lcf/ﬁfék\_/i (f:a'\ﬁ
movement as well as emotional visual speech into statistica gggge&;‘_ e T ser - New Tork Y, USA AL

quality prediction models in the future. , _ _ , .
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