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Abstract—In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation
quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet
unsolved research problem. In this paper we propose a novel statistical model (called SAQP) to automatically predict the quality of
on-the-fly synthesized speech animations by various data-driven techniques. Its essential idea is to construct a phoneme-based,
Speech Animation Trajectory Fitting (SATF) metric to describe speech animation synthesis errors and then build a statistical
regression model to learn the association between the obtained SATF metric and the objective speech animation synthesis
quality. Through delicately designed user studies, we evaluate the effectiveness and robustness of the proposed SAQP model.
To the best of our knowledge, this work is the first-of-its-kind, quantitative quality model for data-driven speech animation. We
believe it is the important first step to remove a critical technical barrier for applying data-driven speech animation techniques to
numerous online or interactive talking avatar applications.

Index Terms—Facial Animation, Data-Driven, Visual Speech Animation, Lip-Sync, Quality Prediction, and Statistical Models
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1 INTRODUCTION

D URING the past several decades, plenty of research
efforts have been focused to generate realistic speech

animation given novel spoken or typed input[1]. In par-
ticular, state-of-the-art data-driven speech animation ap-
proaches have achieved significant successes in terms of
animation quality. One of the main reasons is that these
techniques heavily exploit the prior knowledge encoded
in pre-collected training facial motion datasets, by con-
catenating pre-segmented motion samples (e.g., triphone
or syllable-based motion subsequences)[2; 3; 4; 5; 6;
7; 8] or learning facial motion statistical models[9; 10;
11].

On the other side, all the above data-driven approaches are
only empirically tested, that is, researchers first generate
a small number of novel speech animations based on
selected texts (or speech) and then evaluate the animations
via tedious user studies. It is obvious that such user
studies can only be used to evaluate offline synthesized
speech animations, since it is infeasible to use offline
user studies to assess the quality of on-the-fly synthesized
speech animations. Therefore,can we automatically predict
the quality of dynamically synthesized speech animations
without conducting actual user studies?

In addition, a number of different data-driven speech ani-
mation algorithms are available these days (e.g., assuming
all these algorithms run at the back end of an online
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or interactive talking avatar application), and their online
performances could be varied depending on specific inputs.
Here is a simple yet conceptual example: for a specific
inputted sentence, maybe the first algorithm generates a
better speech animation than the second one; while for
another sentence input, this situation could be reversed,
that is, the second algorithm could outperform the first
one. Thus, an interesting question is:can we dynamically
compare and determine which algorithm (among them) can
synthesize the best speech animation for specific text or
speech input? Indeed, in spite of the practical importance of
the automated evaluation of data-driven speech animations,
no plausible solution has yet been proposed and validated
to date.

Inspired by the above challenge, in this work we propose a
novel statistical model to automatically predict the quality
of synthesized speech animations on-the-fly generated by
various data-driven algorithms. Figure 1 is a schematic
illustration of the proposed approach. In the training stage,
we construct a phoneme-based,Speech Animation Trajec-
tory Fitting (SATF) metric to describe speech animation
synthesis errors. Then, we build a statistical regression
model, called theSpeech Animation Quality Prediction
(SAQP)model, to learn the association between the ob-
tained SATF metric and the ground-truth speech animation
synthesis quality. At the end, given any new text/voice
input (i.e. a phoneme sequence with timing information)
and a given training facial motion dataset, the constructed
SAQP model can be used to predict the quality of on-
the-fly synthesized data-driven speech animations. We also
conduct delicately designed user studies to evaluate the
effectiveness and robustness of our SAQP model.

To the best of our knowledge, this work is the first-of-
its-kind, automated quality model for data-driven speech
animation. We believe it is the important first step to re-
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Fig. 1. The introduced Speech Animation Quality Prediction (SAQP) model can automatically predict the quality
of synthetic speech animations that are generated by a data-driven algorithm based on novel text or speech
input.

move a critical technical barrier for applying wealthy data-
driven speech animation techniques to numerous online or
interactive talking avatar applications.

It is noteworthy that, although various data-driven speech
animation approaches had been proposed, in general, they
can be roughly classified into the following two cate-
gories: sample-basedand learning-based. As such, we
select representative algorithms from each of the two
categories to evaluate our SAQP model. From existing
sample-based speech animation approaches[2; 3; 4; 5; 6;
7], we choose theAnime-Graphapproach[5] and theeFASE
approach[6]. Among current learning-based approaches[9;
10; 11], we extend the classical multidimensional mor-
phable model (MMM) proposed by Ezzatet al. [10] from
2D to 3D for three-dimensional lip-sync generation. Section
4 encloses more technical and implementation details of the
three chosen approaches. We believe that a methodology
successfully applied to the above three chosen data-driven
approaches[5; 6; 10] can be soundly generalized to other
data-driven speech animation algorithms.

The remainder of this paper is organized as follows:
Section 2 briefly reviews recent related research efforts.
Section 3 describes how we collect and process a facial
motion dataset used in this work. Section 5 details how we
construct the proposed SAQP statistical model. Section 6
presents the application of our SAQP model and user
study results. Finally, discussion and concluding remarks
are given in Section 7.

2 RELATED WORK

Researchers have conducted extensive research efforts on
facial animation including face modeling[12; 13; 14; 15;
16; 17], deformation[18; 19; 20; 21; 22], and expression
transferring and editing[23; 24; 25; 26; 27]. Compre-
hensively reviewing these efforts is beyond the scope of
this paper (interested readers can refer to the recent facial

animation survey by Deng and Noh[28]). Here we only
briefly review recent efforts most related to this work.

2.1 Speech Animation

Traditional speech animation approaches typically require
users to design visemes (i.e. key mouth shapes), and then
empirical smooth functions[29; 30; 31] or co-articulation
rules [32] are used to synthesize novel speech animations.
For example, in the early era, a linear prediction model
is employed to generate lip-sync animations given novel
sound track[29]. In the Cohen-Massaro co-articulation
model[30] and its various extensions[31], a viseme shape
is defined via hand-crafted dominance functions in terms of
certain facial measurements such as the width and height
of the mouth. In this way, final mouth shapes at animation
time are determined as the weighted sum of dominance
values.

In recent years, a large variety of data-driven speech anima-
tion approaches utilize a pre-collected facial motion dataset
to produce realistic lip-sync animations corresponding to
new inputted texts[2; 9; 10; 3; 4; 5; 6; 7; 11]. For
example, Brand[9] learns Hidden Markov Models (HMMs)
from aligned video and audio tracks through an entropy
minimization learning algorithm. In his approach, facial
motions can be directly synthesized by inputting audio track
into the learned HMMs. Ezzatet al. [10] learn a multi-
dimensional morphable model (MMM) from a set of mouth
prototype images (corresponding to basic visemes) and then
generate facial motion trajectories in the constructed MMM
space for any desired utterance.

Meanwhile, Bregleret al. [2] proposed the concept of re-
combining triphone segments, extracted from pre-collected
video footages, to generate new speech animations. Along
this line, different semantic speech-motion segments such
as syllable motions[3] and multi-phoneme motions[4;
5; 6; 7; 8] have also been explored. Also, various search
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strategies including greedy search[5] and constraint-guided
dynamic programming[6; 8] are adapted in these algo-
rithms. The above data-driven facial animation approaches
often focus on the accuracy or efficacy of their generation
algorithms, while little attention has been paid to auto-
matically evaluate the quality of their synthesized speech
animations.

2.2 Perceptual Approaches for Animation

In computer graphics and animation community, many
approaches have been proposed to determine the visual
quality of an image[33; 34] or a clip of animation[35;
36]. Quality metrics or heuristics have also been developed
to measure or predict the fidelity of images and rendering
for character animations in recent years. For instance, Hod-
gins et al. [37] explored the perceptual effect of different
geometric models for character animation. O’Sullivanet
al. [38] evaluated the visual fidelity of physically-based
animations. Nonetheless, the above approaches still need
time-consuming and delicately designed subjective user
studies.

Exploiting human perception and psychophysical insight
for graphics and animation applications has attracted a lot
of attention in recent years[39]. For example, researchers
conducted extensive psychophysical experiments to evalu-
ate the perceptual quality of animated facial expressions
or talking heads[40; 41; 42; 43; 44]. Geiger and col-
leagues[41] performed two types (implicit and explicit)
of perceptual discrimination tasks to tell whether a video-
realistic speech animation clip is real or synthetic. Cosker et
al. [42] evaluated the behavioral quality of synthetic talking
heads based on the “McGurk Effect” test. In addition,
Wallraven et al. conducted a series of psychophysical
experiments to study the perceptual quality of animated
facial expressions[44] or stylized facial expression rep-
resentations[40].

Ma et al. [45] quantitatively analyze how human perception
is affected by audio-head motion characteristics of talking
avatars, specifically, quantifying the correlation between
perceptual user ratings (obtained via user study) and joint
audio-head motion features as well as head motion patterns
in the frequency-domain. Recently, Deng and Ma[46]
proposed a computational perceptual metric to evaluate
synthetic facial expressions such as expression type and
scale. However, the same methodology cannot be straight-
forwardly applied to the case of evaluating synthetic speech
animations. Arguably, one of the main reasons is that audio-
motion synchronization and speech co-articulation pose
additional technical challenges to the task.

3 EXPERIMENTAL DATASET

To quantify data-driven speech animation, we need to
experiment with a collection of facial motion data (as the
training facial motion dataset). In this work, we acquired a

facial motion capture dataset for this purpose. Specifically,
natural speaking of a chosen native English female speaker
was recorded, with a 120 Hz sampling rate, by an optical
motion capture system.

As pointed out in the existing literature[47], talking might
affect the entire facial regions (e.g., the cheek moves when
mouth is opened). Thus, we captured facial motion of the
whole face instead of the lip region only. A total of 95 facial
markers were put on the face and head (90 markers on the
face and 5 markers on the head, refer to Figure 2). The
captured subject was directed to speak a custom phoneme-
balanced corpus consisting of 237 sentences. In addition,
the facial marker motions and aligned acoustic speech
were recorded simultaneously. Subsequently, we removed
the 3D rigid head motion of each frame by computing
a rotation matrix based on the markers on the head, and
performed phoneme-alignments (i.e. align each phoneme
with its corresponding motion capture subsequence) using
the Festival system[48].

3.1 Region-Based Reduced Facial Motion Repre-
sentation

In order to train our statistical quality model, we need to
transform the original, high-dimensional facial motion data
to a compact, low-dimensional representation. In this work,
we choose to transform the original 3D facial motion to a
region-based, reduced representation. Its basic idea is to
partition the whole face into different facial regions using
a physically-motivated facial segmentation scheme[49] and
then apply Principal Component Analysis (PCA) to motions
of the markers in each region, separately. The region-based
PCA representation encodes more intuitive correspondences
between PCA eigen-vectors and localized facial movements
than applying a single PCA to the whole face[50]. Figure
2 shows the facial region segmentation result in this work.

Fig. 2. Illustration of the facial region segmentation
result in this work. Different marker colors represent
distinct regions.

Based on the above facial region segmentation, we obtain
the following six facial regions: forehead, eye, the left
cheek, the right cheek, mouth, and nose. For each facial
region, we apply Robust Principal Component Analysis
(RPCA) [51] to reduce its dimension and construct a trun-
cated PCA space. Though a part-based PCA parameteriza-
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tion of facial motions is essentially linear, we choose PCA
parameterization over other forms of non-linear deformer
based facial motion parameterization schemes (e.g., face
rigging [27]) due to its efficiency and characteristic of
localized facial movement mapping[50; 46]. In this work,
to retain more than 95% of the motion variations, the
retained dimension is 4 for the forehead region, 4 for the
eye region, 3 for the left cheek region, 3 for the right cheek
region, 8 for the mouth region, and 5 for the nose region. In
this way, we can transform any facial motion capture frame
into a region-based, reduced representation. In follow-up
sections, our model mainly deals with this reduced facial
motion representation.

4 SELECTED DATA-DRIVEN ALGORITHMS
FOR EVALUATION

To increase the readability of this paper, we briefly describe
the three data-driven speech animation approaches chosen
in this work: the Anime-Graph approach[5], the eFASE ap-
proach[6], and 3D extension of the MMM-based approach
[10], as follows. For more technical details of the three
approaches, please refer to their original publications[5; 6;
10].

It is noteworthy that this work is only focused on speech
animation, and emotion is not its main focus. In addition,
among the three chosen algorithms, the MMM-based ap-
proach [10] cannot deal with “emotional visual speech”
while the other two[5; 6] can deal with it. Therefore, to
this end, in our implementations we intentionally did not
utilize the emotion part in the Anime-Graph and eFASE
approaches[5; 6] in order to have sound and fair evaluations
on the three algorithms. We are aware that evaluating the
quality of emotional visual speech would be an important
future research topic to explore.

• The Anime-Graph approach [5]: It first constructs a
large set of inter-connected anime-graphs from a pre-
collected facial motion dataset, and each anime-graph
essentially encloses aligned facial motion, acoustic
features, emotion label and phoneme information. Dur-
ing the synthesis process, given novel speech input,
its algorithm searches for an optimal concatenation of
anime-graphs using a greedy search strategy.

• The eFASE approach [6]: At the offline data pro-
cessing stage, it extracts facial motion nodes (or called
viseme segments) from a pre-collected facial motion
dataset, and each motion node represents the facial
motion of a phoneme. Then, its algorithm further
clusters and organizes the motion nodes based on their
phoneme labels. At runtime, its algorithm searches
for a minimal cost path to optimally concatenate
viseme segments through a constraint-based dynamic
programming algorithm, and various constraints can
be interactively specified by users.

• 3D extension of the MMM-based approach [10]:
The original MMM-based approach first trains a mul-

tidimensional morphable model (MMM) from a small
set of 2D talking face video clips. At runtime, a novel
trajectory (i.e. facial motion and texture parameters) in
the MMM space is optimized based on novel phoneme
sequence input. The original MMM-based approach is
only for 2D talking face generation. In this work, we
straightforwardly extend it from 2D to 3D for three-
dimensional lip-sync generation.

5 SPEECH ANIMATION QUALITY MODEL

In this section, we describe how we construct a phoneme-
based,Speech Animation Quality Prediction(SAQP) model
for data-driven speech animation. Assuming an inputted
phoneme sequence to a data-driven synthesis algorithm,
Ψ, is P = {P1,P2, ...,PT} and the used facial motion
dataset is denoted asM, we aim to construct a SAQP model
Q = FΨ(P,M) that can automatically predict the quality
of synthesized speech animation corresponding toP, based
on the training facial motion datasetM, by using the data-
driven speech animation algorithmΨ.

We use the following main steps to construct the SAQP
model (refer to Figure 1).

1) As described in follow-up Section 5.1, we first con-
struct aSpeech Animation Trajectory Fitting(SATF)
metric (denoted asT ) to quantify the speech ani-
mation synthesis trajectory fitting error,Epm, of any
inputtedP based on the givenM. The SATF metric
does not depend on any specific speech animation
synthesis algorithm since it is computed solely based
on the inputtedP and the used training datasetM.
Hence,Epm = T (P,M).

2) We also compute the ground-truth speech animation
synthesis qualityQpm of the inputtedP based on
the givenM as the root mean-squared-error (RMSE)
between the pre-recorded facial motions (i.e., ground-
truth) and synthetic motions by the data-driven algo-
rithm Ψ.

3) Then, as described in Section 5.2, given a
small number (n) of training samples randomly
selected from the pre-recorded facial motion
dataset, we learn aGaussian Process Regression
(GPR) model, FΨ, to connect the SATF
metric, E = {E1,E2, ...,Epm, ...,En}, and the
ground-truth speech animation synthesis quality,
Q = {Q1,Q2, ...,Qpm, ...,Qn}. In other words,
Q = FΨ(E).

4) Finally, FΨ can be employed to predict the speech
animation synthesis quality,Q′, of any new inputted
phoneme sequence,P ′, based on a new facial motion
training dataset,M′, that is,Q′ = FΨ(T (P′,M′)).
Note thatM′ is expected to be captured on the same
subject as the one inM, with the same facial marker
layout.
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5.1 Speech Animation Trajectory Fitting Metric

Our Speech Animation Trajectory Fitting (SATF) metric
is built on the concept of speech animation synthesis
trajectory fitting. Specifically, we modify the trajectory
fitting technique proposed by Ezzatet al. [10] to compute
the SATF metric due to the following reasons: (1) It does
not depend on any specific speech animation synthesis
algorithm, and (2) it is phoneme-based so that phoneme
contexts can be naturally exploited in the SATF metric.

The goal of speech animation trajectory fitting is to quan-
tify the synthesis error of an inputted phoneme sequence
P based on the givenM (the training facial motion
dataset).P is a stream of phonemes{Pi} that represent
the phonetic data of the utterance. Since the audio and
facial motion are aligned, we have all the region-based
PCA coefficients/parameters (Section 3.1) for any particular
phoneme. Inspired by the Ezzat et al.’s work[10], we
represent the facial motion characteristics of each phoneme
Pi mathematically as a multidimensional Gaussian with
mean and variance of all the facial motion frames.

A viseme is defined as the visual representation of a
phoneme (i.e., the motion subsequence of a phoneme). In
this work, the means and variances of all the visemes in
P are computed based on a given datasetM as follows.
The middle frame of a viseme, precisely, the region-based
PCA representation of the middle frame (Section 3.1),
is chosen as the viseme’srepresentative sample. Since
the mean and variance of each viseme depend on its
phoneme context (i.e., its preceding/following phonemes),
its means and variances are computed by only considering
its representative samples with the same phoneme context.

In this work, two basic phoneme contexts are considered:
triphoneand diphone. To compute the mean and variance
of a phonemePi, we first find and compute the mean and
variance of all the visemes ofPi with the triphone context
(Pi−1,Pi,Pi+1) in M; otherwise, consider its diphone
context (Pi,Pi+1); and, the last alternative would be its
flat mean and variance (considering all the representative
samples ofPi regardless their phoneme contexts).

Basically, the trajectory fitting problem can be mathemati-
cally formed as a regularization problem[52]. As described
in the work of [10], for a given phoneme sequenceP, the
following objective function (Eq. 1), called the SATF metric
in this work, is minimized to find the best fitting facial
motion sequence,y.

Epm = (y − U)T DT V−1 D (y − U) (1)

+λ yT WT W y

Here D is the time duration matrix for all the phonemes
in P; W is a difference operator (i.e., a matrix) used for
smoothing the fitted result,y; U and V are the mean
and variance matrices estimated from the facial motion

sequences of phonemes, and the coefficientλ balances the
trade-off between the fitting errors of individual phonemes
and the smoothness of phoneme transitions. How to con-
structU, V, D, andW and how to solve fory are detailed
in follow-up section 5.1.1. Finally, we can obtainEpm by
pluggingy into the above Eq. 1.

Although there is no explicit dynamic modeling of co-
articulation effect in the phoneme sequence, theV (vari-
ances) matrix implicitly generates coarticulation effect. As
reported in the work of[10], a small variance indicates
that the synthesized trajectory for a particular phoneme is
more likely to only pass its own parameter space, and thus
this phoneme has little co-articulation effect. Meanwhile, a
large variance indicates that the synthesized trajectory for
the phoneme is more likely to pass through the neighboring
phonemes’ parameter spaces, and thus the co-articulation
effect of this phoneme can be modeled.

5.1.1 Computing Means and Variances of Visemes
through Trajectory Fitting

Assuming P is the inputted phoneme sequence andM

is a given facial motion dataset, the computed mean and
variance elements of all the visemes inP are diagonally
packed into vectorU and matrixV, respectively.U is a
vertical concatenation of the mean vectorUi for Pi in
phoneme sequence, and eachUi vector is a concatenation
of the 27 region-based PCA coefficients (described in
Section 3). HereK is the total number of the used PCA
coefficients (K=27 in this work).
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V is a diagonal concatenation of the variance matrixVi

(for Pi in the phoneme sequenceP). EachVi matrix is
K × K.
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After U andV are obtained, we compute the fitted result,
y, by minimizing Eq. 1 (i.e., setting∂Epm/∂y=0). At the
end, we obtain the following Eq. 4.

(DT V−1 D + λ WT W)y = DT V−1 D U (4)

Since all the frames are represented as region-based PCA
coefficients; therefore,y is a vertical concatenation of the
region-based PCA coefficient vectoryi at each time step
(refer to Eq. 5).
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The time duration matrixD is a diagonal duration-
weighted matrix that emphasizes shorter phonemes and de-
emphasizes longer ones[10]. The purpose of the duration-
weighted matrix is to relieve the impact of extremely long
phonemes. In this work, we use the following form for
each diagonal element ofDi in the time duration matrixD:
√

1 −
DPi

DP

(Here,DPi
denotes the duration ofPi in time

frames, andDP denotes the length of the entire utterance
P in time frames), and eachDi is K × K. Thus,D is
formulated as follows:
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The matrix W is the first order difference operator[53]
(Section 5.1.2 describes how we determine the optimal
order ofW is 1), and it is used to smooth the fitted result
y. EachI is a K × K identity matrix.
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The coefficientλ in Eq. 4 balances the trade-off between the
fitting errors of individual phonemes and the smoothness of
phoneme transitions. In this work, we experimentally set it
to 0.5. How to determine the optimalλ as well as the order
of W is described in follow-up Section 5.1.2.

5.1.2 Determining Optimal Parameters

In the aboveW, higher orders of smoothness are formed
by repeatedly multiplyingW with itself: second order
WTWT WW, third orderWTWTWT WWW, and so
on. Figure 3 shows how the cross-validation Root Mean
Squared Error (RMSE) is changed when the order ofW

and the coefficientλ in Eq. 1 are varied (also refer to
Section 5.3). As shown in Figure 3, for all the three chosen
approaches[5; 6; 10], the optimal order ofW is 1 (that
is, the optimalW is a matrix corresponding to the first-
order difference operator) and the optimalλ is 0.5, thus
we empirically setλ to 0.5 in this work.

Fig. 3. Illustration of how the cross-validation RMSE
error is changed when λ and the order of W are
varied: the anime-graph approach [5] (Top), the eFASE
approach [6] (Middle), and the 3D extension of the
MMM-based approach [10] (Bottom).
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In order to understand how the combination of triphones,
diphones, and mono-phones in the inputted phoneme se-
quenceP could affect the trajectory fitting error of the
constructed SATF metric, we randomly select and analyze
six test sentences. Table 1 shows the detailed phoneme
contexts of the six selected test sequences and their average
(per phoneme) fitting errors computed by our introduced
SATF metric (i.e.,Epm/T ). As shown in this table, since
the percentages of combined triphones and diphones in the
six test sentences are close, their resultant fitting errorsare
numerically close accordingly. Also, the direct correlation
between triphone/diphone combination and the resultant
fitting error is not straightforward. However, quantitatively
analyzing and modeling this issue could be an interesting
future study.

Sentence Triphone Diphone Monophone Average
# Percentage Percentage Percentage Fitting Error
1 30% 53% 17% 0.134
2 34% 48% 18% 0.180
3 37% 45% 18% 0.146
4 39% 42% 19% 0.153
5 41% 41% 18% 0.163
6 44% 40% 16% 0.155

TABLE 1
The phoneme contexts of the six selected test

sentences and their average (per phoneme) fitting
errors computed by our introduced SATF metric.

5.2 Statistical Quality Prediction Model

We split the pre-recorded facial motion dataset (describedin
Section 3) into a training subset,Mt (80%, 189 sentences),
and a test/validation subset,Mv (20%, 48 sentences). Then,
we useMt to train the SAQP statistical model that can
predict speech animation synthesis quality based on the
SATF metric. We detail its modeling procedure in this
section.

The construction of our SAQP model is based on the cross-
validation mechanism. As illustrated in Figure 4, we first
split the whole training motion dataset (Mt) into 10 folds,
and each fold has less than 20 sentences. In this phase,
we keep the split ofMt in a phoneme-balanced manner.
In other words, each of the folds covers facial motions
for all the phonemes used in this study. Subsequently, we
randomly pick and combinek folds (1 ≤ k ≤ 9) into a
sub-motion dataset,SMj . In this work, a total of 56 sub-
motion datasets are constructed. Then, for each of the sub-
motion datasets,SMj , we useMt − SMj as the training
data to compute the SATF metric for each sentence in
SMj based on Eq. 1. In other words, if theith sentence
(i.e., phoneme sequence) inSMj is denoted asSMi

j , and
its corresponding SATF metric is denoted asEi

j , then
Ei

j = T (SMi
j,Mt − SMj). In this way, we obtain a total

of 484 SATF metrics. For the sake of a clear explanation,
we use{E1,E2, ...,En} (n=484) to denote these obtained
SATF metrics.

Fig. 4. Illustration of the SAQP modeling process.

Meanwhile, for each of the above 484 synthesis tasks
such asEi

j, we also know its corresponding pre-recorded
(ground-truth) facial motion inMt. As such, we can
compute its ground-truth synthesis error,Qi

j , by calculating
the RMSE error between the synthesized facial motion and
the pre-recorded ground truth.

The used RMSE error is determined by computing the
differences of both the positions and velocities between
the synthesized facial motion and the pre-recorded ground
truth. In this work, we choose a set of facial markers over
the whole facial geometry to compute the RMSE error due
to the following main reasons: (1) 3D facial meshes of
various persons or even the same person typically have
different topologies (i.e., the number of vertices) such asthe
widely used multi-resolution mesh representation. Thus, if
the RMSE error is computed based on the difference of all
the deformed facial mesh vertices, it will directly depend
on the used facial mesh representation (as an additional
factor to the SAQP model). By contrast, the marker-based
RMSE error is independent to the used facial mesh. (2)
Computing the marker-based RMSE error is much more
efficient than computing all the mesh vertices based RMSE
error. In addition, marker-driven facial deformation (e.g.,
the thin-shell linear deformation model[54; 21]) has been
proven to be effective to soundly produce realistic and high-
fidelity facial deformations. In this work, we also choose
the thin-shell linear deformation model to deform the face
mesh based on the displacements of a set of markers.

Specifically, to compute the RMSE error in this work, we
consider not only the first-order effect (positions of facial
markers), but also the second-order effect (velocities of
facial markers) towards and away from the targets. Eq. 8
gives the formula to compute the RMSE errorQi

j as the
ground-truth synthesis error:
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Qi
j = λ1

√

∑

t (ω(XS
t − XG

t ))2

F

+λ2

√

∑

t (ω(ẊS
t − ẊG

t ))2

F
(8)

Here F denotes the total frame number of thei-th facial
motion sequence in the training dataset;XS

t andXG
t denote

the marker positions of thet-th frame of the synthesized
facial motion and the pre-recorded ground truth motion,
respectively;Ẋt denotes the marker velocities of thet-th
facial motion frame;ω denotes the weights/importances of
facial markers; andλ1 and λ2 are the weights to balance
the position part and the velocity part. In this work, we
empirically setλ1 andλ2 to 0.64 and 0.36, respectively.

When computing the aboveQi
j , we apply a higher weight

to the facial markers in the mouth region than those in
other facial regions. Its underlying rationale is that when
perceiving lip-sync animations, humans tend to put more
attention/emphasis on the mouth region than other facial
regions. As such, we assign a higher weight,ωm, to the
markers in the mouth region, while assign 1 as the default
weight to the other facial markers. In Section 5.3, we
will describe how to determine the optimalωm via cross-
validation. Figure 5 illustrate how the facial markers are
partitioned to two categories (the mouth region and the
other) for weight assignment.

Fig. 5. The used facial marker partition scheme for
weight assignment.

Finally, we use a linear mapping to transform the computed
RMSE errorQi

j to the range of 1 to 5 in order to make it
consistent with the five-point Likert scale (employed in the
user study described in Section 6), where 1 represents the
worst quality and 5 represents the best quality. This linear
mapping can be constructed straightforwardly: assuming
the largest synthesis error in our dataset isξ, then the
mapped value ofQi

j is 5 − 4 ∗ (Qi
j/ξ).

5.2.1 Gaussian Process SAQP Model

Given the above obtained SATF metrics,E
(={E1, ...,Ei, ...,En}), and their corresponding ground-
truth synthesis errors,Q (={Q1, ...,Qi, ...,Qn}), we train

a Gaussian Process Regression (GPR) model to learn the
mapping fromE to Q. We choose the GPR model for this
learning due to the following reasons: First, the GPR model
is non-parametric, so it does not require extensive manual
efforts for parameter tuning to achieve good training
results. Second, the GPR model is context-dependent;
hence, it is capable of automatically and robustly handling
SATF metrics with different characteristics.

Mathematically, a GPR model is characterized by its hyper-
parameter vectorθ that includes a characteristic length-
scale parameterθ1 and a signal magnitude parameterθ2.
Training a GPR model is to learn the hyper-parameter vec-
tor θ. In this work, we learn the hyper-parameter vectorθ by
optimizing the following marginal log-likelihood function
(Eq. 9).

LGP = − log P (Q|E, θ)

=
1

2
log |K + σ2 I| +

1

2
QT (K + σ2 I)−1Q

+
N

2
log 2π (9)

HereLGP is the negative log-posterior of the model,σ2 is
the variance of noise (0.014 in this work), andK is a used
kernel function. In this work, the used kernel function is
an ARD covariance function[55] (refer to Eq. 10).

Ki,j = k(Ei,Ej) = θ2 exp(−
1

2θ1
2
||Ei − Ej ||

2) (10)

Then, Rasmussen’s minimization algorithm[56] is chosen
to optimize LGP due to its efficiency. The maximum
number of iterations is experimentally set to 1024. After
θ is optimally solved, the trained GPR model yields a
likelihood function for any predicted output. Concretely,
for any new SATF metric (i.e., a scalar value),e, we
can compute a probabilistic distribution of its predicted
synthesis quality error,q. In addition, we can evaluate the
negative log probability of the predicted output. This log-
likelihood function is shown in Eq. 11.

LS = − log P (q|e, θ)

=
1

2
log(2π(V (e) + σ2)) +

||q − U(e)||2

2(V (e) + σ2)
(11)

U(e) = κ(e)T(K + σ2I)−1Q

V (e) = k(e, e) − κ(e)T(K + σ2I)−1κ(e)T

Here κ(e) is a vector in which theith entry is k(e,Ei),
function U returns the mean of the posterior distribution
of the learned model given new inpute, and functionV
returns the variance of the learned posterior distribution. In
sum, we just need to minimizeLS to obtain the predicted
outputq.
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Fig. 6. Plotting of how the cross-validation RMSE is
changed when ωm is increased.

5.3 SAQP Model Cross-Validation

We validate the accuracy of our SAQP model by applying it
to three chosen data-driven speech animation synthesis al-
gorithms[5; 6; 10]. Specifically, in the model training step,
each of the three chosen algorithms is used to generate its
own set of ground-truth synthesis errors{Q1,Q2, ...,Qn}
(n=484, refer to Section 5.2), though the same SATF
metrics{E1,E2, ...,En} are used. We train three different
SAQP models for the three algorithms, respectively.

As mentioned in Section 5.2, the facial motion subset
Mv (total 48 sentences) is specifically retained for cross-
validation purpose. Therefore, in the validation step, we first
compute the SATF metrics of the 48 validation sentences,
{Ev1

,Ev2
, ...,Ev48

}. Meanwhile, each of the three chosen
algorithms[5; 6; 10] is used to compute its own set of
speech animation synthesis errors (ground-truth) for the
48 validation sentences, denoted as{Qv1

,Qv2
, ...,Qv48

}.
Finally, we use the trained GPR model to predict the speech
animation synthesis qualities based on the inputtedEvi

(1 ≤ i ≤ 48), that is,Q̂vi
= FΨ(Evi

).

Our cross-validation procedure consists two steps: the
first step determines the optimalωm (i.e., the weight for
facial markers in the mouth region, refer to Eq. 8) via
cross-validation, and the second step performs the cross-
validation comparison over the selected test sentences by
using the determined optimalωm. The reason is that the
learned GPR hyper-parameters in the SAQP model depends
on the chosen value of theωm parameter, and thus it is
necessary to determine the optimalωm in the first step.

Figure 6 shows how the cross-validation RMSE error is
changed whenωm varies. In this figure, X axis denotes
ωm, and Y axis denotes the averaged cross-validation error
(total 48 cross-validation sentences). As clearly shown in
Figure 6, the optimalωm for both [6] and [10] is 3, and
the optimalωm for [5] is 4. The constructed SAQP model
in the remaining writing uses the optimal values ofωm.

Figure 7 plots the SATF metricsEv versus the cross-
validation RMSE errorsQv by the three chosen approaches

and the ground-truth RMSE errors of the cross-validation
dataset. From this figure, we can observe that the overall
trend of the three approaches is approximately close to the
ground-truth, although noticeable fluctuations exist.

Figure 8 shows cross-validation comparison results (Qvi

versusQ̂vi
) of the retained 48 validation sentences (the

above optimally determinedωm is used). As shown in this
figure, we can observe that the predicted speech animation
synthesis qualities of the three chosen approaches[5; 6;
10] are measurably close to the ground-truth, considering
the intrinsic difficulty of this problem. Note that in Figure8,
in order to make the plotting easier to understand, we
intentionally rearrange the animation clip indexes by the
ground-truth synthesis quality in the ascending order.
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Fig. 7. Plotting of the SATF metrics Ev versus the
cross-validation RMSE errors Qv by the three chosen
approaches and the ground-truth RMSE errors. The
bottom panel is a zoomed version of a selected portion
in the top panel.

6 RESULTS AND EVALUATIONS

In this work, we conducted a user study to evaluate the
effectiveness of our proposed SAQP model. In the effective-
ness user study, we choose three recent representative data-
driven speech animation approaches[5; 6; 10] to evaluate
its effectiveness (refer to Section 4). In the above Section
5.3, we performed cross-validation on the three approaches.
However, it still remains unclear whether the proposed
SAQP model can be soundly accurate and robust when
arbitrary texts from real-world applications or voices from
different subjects (i.e., different from the subjects whose
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Fig. 8. Cross-validation comparison results of all the
48 sentences in our validation dataset: the Anime-
Graph based approach [5] (Top), the eFASE approach
[6] (Middle), and 3D extension of the MMM-based
approach [10] (Bottom).

facial motion data are acquired for SAQP model training,
refer to Section 3) are inputted. In particular, in many online
or interactive applications, it is technically infeasibleto
acquire the ground-truth speech motions in advance (e.g.,
via pre-planned facial motion acquisition). As such, we
focus on quantifying the performance of the SAQP model
in these scenarios.

6.1 Effectiveness User Study

We first randomly extracted 17 sentences from CNN News,
Yahoo News, and Internet speech as the test sentences, and
then recorded the voice of a male human subject when
he spoke the chosen 17 sentences. Note that this male

subject is different from the motion capture female subject
in Section 3. After that, we used the Festival system[48]
to extract their corresponding phoneme sequences with
timing information from the recorded voices. Based on
the obtained 17 phoneme sequences, each of the three
chosen data-driven speech animation approaches[5; 6;
10] was used to generate 17 speech animation clips (in
other words, a total of 51 synthetic speech animation clips
with aligned audio) by using the same facial motion dataset
as detailed in Section 3. In our user study, the resolution
of all the synthetic speech animation clips is 640×480.
Figure 9 shows four randomly selected frames in one
synthetic clip. To suppress the potential influences of other
visual factors on user perception, eye gaze in these clips
stays still (looking straight ahead), and there is no head
movements in the clips. For animation results, please refer
to the enclosed demo video.

We conducted a user study on the above 51 clips. A
total of 16 student volunteers participated in the study and
they were specifically instructed to only rate the “lip-sync
quality” (that is, not other visual factors such as rendering,
eye movements, and head movements) of the clips one by
one. We used a five-point Likert scale, where 1 represents
“extremely poor”, and 5 represents “realistic like a real
human”. In particular, the participants were allowed to
assign any real number (not restricted to integer numbers,
e.g., he/she can give a 4.3 rating) between 1.0 and 5.0
as their rating. To counter balance the display order of
the visual stimuli in the study, the animation clips were
displayed in a random order for each participant.

Fig. 9. Four selected frames in one synthetic speech
animation clip used in our user study.

6.2 Analysis of User Study Results

We analyze the user study results using two different ways.
First, we statistically analyze the obtained user ratings to
check the rating consistency. Second, we perform compari-
son analysis on the user-rated (i.e., ground-truth) outcomes
and the algorithm outcomes predicted by our SAQP model
in order to evaluate its accuracy and robustness.

Statistics of the ground-truth (user-rated) perceptual
outcomes: The averaged user ratings of the 51 (=17*3)
synthetic clips are called theground-truth perceptual out-
comesin this work. As shown in Figure 10, we observe
that despite some outliers, most of the participants had
certain agreements on the perceptual ratings of all the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY 2012 11

synthetic clips. In particular, such a rating consistency is
more obvious at those lowly rated and highly rated clips.

We also computed the standard deviations of the obtained
ground-truth perceptual outcomes. Figure 11 plots the stan-
dard deviations as blue error-bars. We can observe that,
only 8 (i.e., 23.53%) out of the used 51 clips have their
standard deviations larger than 0.5, and only 1 out of 51
has its standard deviation larger than 0.7. This indicates
majority of the obtained user ratings are consistent, to a
certain extent.

Fig. 10. The obtained user ratings (the ground-truth
perceptual outcomes) of the 51 synthetic speech ani-
mation clips: the anime-graph approach [5] (Top), the
eFASE approach [6] (Middle), and the 3D extension
of the MMM-based approach [10] (Bottom). To better
visualize the user ratings, we rearrange the animation
clip indexes by the averaged ground-truth perceptual
outcomes in the ascending order.

Comparison analysis of the user study results: In this

writing, the quality outcomes computed/predicted by our
SAQP model (Section 5.2) are called thepredicted per-
ceptual outcomes. Figure 11 plots the comparison between
the ground-truth and the predicted perceptual outcomes. As
shown in this figure, we can observe that regardless which
of the three algorithms[5; 6; 10] is used, at most cases,
the predicted perceptual outcomes computed by the SAQP
model are sufficiently close to the ground-truth perceptual
outcomes (user ratings).

We also computed the quantitative errors of our predictions.
Table 2 shows the computed RMSE errors. As shown
in the table, for the three chosen approaches[5; 6; 10],
the quantitative errors of our SAQP model are reasonably
small: RMSE for [5] is 0.44, RMSE for[6] is 0.39, and
RMSE for[10] is 0.48. We also used Canonical Correlation
Analysis (CCA)[57] to measure the correlation between the
ground-truth perceptual outcomes and the predicted percep-
tual outcomes. The computed CCA coefficients:r1 = 0.86
for [5], r2 = 0.90 for [6], and r3 = 0.87 for [10], are
reasonably close to 1.0 (perfectly linear). This shows there
is an approximately linear correlation between the ground-
truth perceptual outcomes and the predicted outcomes by
our SAQP model.

In sum, through the quantitative analysis of the prediction
errors by our SAQP model (i.e., RMSE and CCA), our
user study results showed that the proposed SAQP model
is able to soundly predict the qualities of synthetic data-
driven speech animations, and the algorithm predictions
are measurably close to the ground-truth user ratings. We
believe, with relatively minor modifications, the proposed
SAQP model can be generalized and used as a quanti-
fied quality predictor for other existing data-driven speech
animation approaches such as the work of[3; 4; 5; 11;
7].

[Cao et [Deng and [Ezzat et
al. 05] Neumann 06] al. 02]

RMSE 0.44 0.39 0.48
CCA 0.86 0.90 0.87

TABLE 2
Summary of the quantitative prediction errors by the

proposed SAQP model.

7 DISCUSSION AND CONCLUSIONS

In this paper, we introduce a novel speech animation quality
prediction (SAQP) model that can robustly predict the qual-
ity of synthetic speech animations dynamically generated
by data-driven approaches. Its core element is a trained
statistical regression model that bridges the Speech Anima-
tion Fitting Trajectory (SATF) metric with the ground-truth
synthesis measure.

To the best of our knowledge, this work is the first reported,
automated, quantitative quality predictor for data-driven
speech animation approaches. In particular, at runtime it
does not need to conduct offline, costly, and tedious user
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studies. Our user study results showed that the SAQP model
is able to soundly predict the synthesis quality of data-
driven speech animation approaches and the predictions are
reasonably close to the ground-truth user ratings. More-
over, we also believe with straightforward modifications
or extensions, our SAQP model can be plausibly gener-
alized and used as a quantified quality predictor for other
existing data-driven speech animation approaches[3; 4; 11;
7].

Fig. 11. Comparisons between the ground-truth per-
ceptual outcomes (the averaged user ratings) and the
predicted perceptual outcomes by our SAQP model:
the anime-graph approach [5] (Top), the eFASE ap-
proach [6] (Middle), and the 3D extension of the MMM-
based approach [10] (Bottom). To better visualize the
results, we rearrange the animation clip indexes by
the ground-truth perceptual outcomes in the ascending
order. The blue lines in the figure denote the standard
deviations.

As in general automatically predicting the visual quality

of synthetic animations (in particular, facial and character
animations) is a challenging problem, our current work has
a number of limitations, described as follows.

• First, the accuracy of the current SAQP model still
needs to be further improved. For example, as shown
in Figure 11, the predictions by the SAQP model
are less accurate when the ground-truth perceptual
qualities of synthetic speech animations are low.

• Second, since the used SATF metric utilizes phoneme
contexts, a reasonably large training dataset would
be needed to construct and train a well-behaviored
SAQP model. For instance, if the training facial motion
dataset cannot provide a good coverage of various
diphones and triphones, then the constructed SAQP
model might not be able to make accurate predic-
tions when the inputted phoneme sequence contains
a significant portion of uncovered diphone or triphone
contexts.

• Third, in our current work, the RMSE error is used
to measure the ground-truth synthesis error (quality)
in the SAQP model construction step (refer to Section
5.2). However, we are aware that the RMSE error may
not be the ideal metric to represent ground-truth per-
ceptual outcomes of those synthetic speech animation
clips. Ideally, extensive subjective user studies need to
be conducted to consistently rate the hundreds (about
500 in this work) of visual speech animation clips to
obtain the true perceptual outcomes, and if such ob-
tained user ratings (not the computed RMSE errors in
the current work) are used to train the proposed SAQP
model, we anticipate that the prediction accuracy of
the SAQP model could be significantly improved.
Nevertheless, in reality, such large-scale user studies
are often impractical. Therefore, our current work
selects the RMSE error as the economical alternative
to the user-rated perceptual outcome.

• Fourth, if our proposed SAQP model is trained based
on one subject’s facial motion dataset, without model
retraining, it cannot be directly used as a quality pre-
dictor for data-driven synthetic speech animations that
are based on another different subject’s facial motion
dataset. The main reasons include: 1) in reality, it is
practically difficult to put the identical facial marker
layout for different motion capture subjects; 2) even if
the facial marker layouts of different motion capture
subjects are identical, different subjects typically have
distinct facial geometries (that is, the transformed
region-based PCA representation based on one subject
cannot be directly used to describe another subject)
and have idiosyncrasies of mouth movements even
when speaking the same utterance (that is, different
persons typically have distinct sets of visemes and
expressions). Therefore, both the region-based PCA
representation and the computed ground-truth synthe-
sis error essentially depend on the idiosyncrasy of the
particular subject in the training dataset, while both
of them are used in the SAQP model training step
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(Section 5.2). In addition, the optimized SAQP model
parameters (e.g., those optimized in Section 5) might
be also dataset-specific, to a certain extent.

Another potential application of the proposed SAQP model
is to on-the-fly compare and evaluate the online perfor-
mance of various data-driven speech animation algorithms.
For example, assuming a number of different data-driven
speech animation algorithms run at the back end, and
then based on the SAQP predictions, an online system
(e.g., taking arbitrary text or speech input from users and
generate a corresponding talking avatar) can automatically
pick and display the best animation clip among all the clips
generated by those back end algorithms.

Along a similar direction, our proposed SAQP model
could also be potentially used to compare different data-
driven speech animation approaches in a systematic manner.
For example, researchers can input the sentences in some
widely used corpora (e.g., the UPenn LDC Corpora[58])
to some existing data-driven speech animation approaches
and then quantitatively compare the quality of the synthetic
speech animations by those approaches, based on our SAQP
model. In this way, those different data-driven approaches
can be systematically compared and analyzed.

In the future, we plan to evaluate the SAQP model in
real-world online applications such as online news virtual
presenters, and thus we will be able to further quantify
and improve the current model such as dynamically re-
learning the statistical model based on online user feedback.
Second, as the future work, we are interested in exploring
the direction of expanding and generalizing the current
model. For example, it could be extended to predict the
quality of synthetic speech animations generated not only
by data-driven techniques, but also by any other speech
animation approaches such as traditional yet well-liked
key viseme based or blendshape animation techniques.
In addition, eyebrow movement could be an important
factor to the realism of synthetic speech animation, and we
plan to explore how to effectively incorporate the eyebrow
movement as well as emotional visual speech into statistical
quality prediction models in the future.
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