COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1540

RESEARCH ARTICLE

AA-FVDM: An accident-avoidance full velocity
difference model for animating realistic street-level
traffic in rural scenes

Xuequan Lu', Wenzhi Chen', Mingliang Xu?, Zonghui Wang'*, Zhigang Deng?® and
Yangdong Ye?

1 Zhejiang University, Hangzhou, 310027, China
2 Zhengzhou University, Zhengzhou, China
S University of Houston, Houston, TX, USA

ABSTRACT

Most of existing traffic simulation efforts focus on urban regions with a coarse two-dimensional representation; relatively
few studies have been conducted to simulate realistic three-dimensional traffic flows on a large, complex road web in rural
scenes. In this paper, we present a novel agent-based approach called accident-avoidance full velocity difference model
(abbreviated as AA-FVDM) to simulate realistic street-level rural traffics, on top of the existing FVDM. The main distinc-
tion between FVDM and AA-FVDM is that FVDM cannot handle a critical real-world traffic problem while AA-FVDM
settles this problem and retains the essence of FVDM. We also design a novel scheme to animate the lane-changing
maneuvering process (in particular, the execution course). Through numerous simulations, we demonstrate that besides
addressing a previously unaddressed real-world traffic problem, our AA-FVDM method efficiently (in real time) simulates
large-scale traffic flows (tens of thousands of vehicles) with realistic, smooth effects. Furthermore, we validate our method
using real-world traffic data, and the validation results show that our method measurably outperforms state-of-the-art traffic

simulation methods. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traffic simulation techniques can play a key part in urban
development and planning, road network design, road sys-
tems, and roadside hardware. At the same time, it is also
of great importance in improving and completing traffic
laws, guidelines, and policies to explore the motion of traf-
fic flows. In addition to these, it is of growing need to
apply realistic street-level traffic to applications, for exam-
ple, virtual traffic driving for driving instructions, virtual
tourism, special effects for movies, racing games, and so
on. However, even though there are plenty of traffic simula-
tion models, most existing traffic simulators (e.g., [1]) uti-
lize a two-dimensional abstract representation and center
on urban-related traffic; therefore, a system for animating
realistic traffic in rural places is practically needed for its
critical role in society functioning.

Copyright © 2013 John Wiley & Sons, Ltd.

Although continuum-based methods [2-8] are fast and
efficient, they have limitations such as lack of diversity in
individualistic behavior and difficulty in handling scenes
with complicated road networks due to their inherent char-
acteristics and inflexibility. Therefore, agent-based meth-
ods (or microscopic methods) [9-17] have been the most
popular traffic simulation approaches in recent years.
Through a number of delicately designed rules, agent-
based methods are capable of simulating the following:
(i) detailed behavior including anisotropic drivers; and (ii)
individualistic behavior with complex dynamics.

Among various agent-based approaches, car-following
models have achieved noticeable successes in recent years,
such as the optimal velocity model (OVM) [12], the gener-
alized force model (GFM) [13], and the full velocity differ-
ence model (FVDM) [9]. In particular, FVDM [9], which
is built on top of OVM and GFM, has been proven to be an
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effective traffic simulation model and can simulate realistic
traffic in most cases. However, it fails to handle the fol-
lowing situation (called close-car-braking circumstance):
if the distance between the leading car and the following
car is small, their speeds are quite close, and the leading
car makes a sharp brake for an accident ahead or a red traf-
fic light at a crossroad, in this case, accidents often can be
avoided in the real world. However, in the FVDM simula-
tion, the two cars will collide after a few seconds (refer to
Figures 7 and 11 in Section 5). It should be noted that the
close-car-braking circumstance plays a pivotal role in the
operation of a realistic traffic system, as this phenomenon
often occurs in real-world traffic.

Motivated by the above problem, we propose a novel
approach called accident-avoidance FVDM (AA-FVDM)
that retains the essence of FVDM while elegantly han-
dling the aforementioned close-car-braking circumstance.
From a technical perspective, our approach essentially
introduces two force terms (“psychological force” and
“body force”) if the distance between the leading car
and the following car is within a pre-specified threshold.
Our approach generates suitable deceleration to the fol-
lowing vehicle, which can timely avoid unnecessary acci-
dents in the close-car-braking circumstance. On the other
hand, the lane-changing maneuver was mostly modeled as
either an instantaneous event [1,18-21] or an action with
uniform duration [22]. Moreover, existing lane-changing
models typically focus on making decisions and overlook
the execution of the maneuvering process [23]. In this
work, we introduce a novel scheme to animate the detailed
course of lane-changing behavior, particularly, the execu-
tion course covering dynamics and constraints of a lane-
changing vehicle.
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The contributions of this work are as follows:

(1) A novel approach to address an important yet
largely underexplored traffic simulation problem,
the “close-car-braking circumstance,” while pre-
serving the advantages of FVDM

(2) A new scheme to animate lane-changing maneu-
vering process in detail, especially the execution
course

With our method, we build a traffic simulation sys-
tem that can simulate large-scale lifelike rural traffic flows
Figure 1 at interactive rates in complex road networks
containing flyovers, suspension bridges, curving tunnels,
and many other road structures. To evaluate our approach,
firstly, we choose several scenarios including traffic
jams, close-car-braking circumstance, lane-changing behav-
ior, traffic at on/off ramps, and traffic in tunnels. Secondly,
we do some performance tests and parameter tests. To
validate our approach, we further compare real-world traf-
fic data with the simulation results of a variety of traffic
models (including our approach). The comparison results
demonstrate that our method can measurably outperform
many state-of-the-art models.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the related efforts that are most
relevant to this work. In Section 3, we present fundamental
definitions and formulations used in our methodology and
give a retrospect to previous car-following models. In
Section 4, we describe our proposed method in detail. In
Section 5, we present simulation results by our approach
and comparison results. Finally, remarks and future work
are presented in Section 6.

Figure 1. A snapshot of traffic flow in rural scenes simulated by our approach.
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2. RELATED WORK
2.1. Traffic Simulation Models

Visualization and animation of vehicles and traffic flows
have attracted increasing interests [7,24-27] in the com-
puter graphics community during the past decade. Techni-
cally speaking, there are three roughly classified categories
for traffic
simulation: microscopic, macroscopic, and mesoscopic.
Among the three categories, the least common method
is mesoscopic, which uses Boltzmann-type mesoscale
equations or other junction qualities in macroscopic and
microscopic methods. On the basis of the seminal work by
Prigogine et al. [28], researchers proposed various varia-
tions or extensions to further improve the work [29,30].

To date, agent-based techniques are the most pop-
ular methods for traffic simulation, where each vehi-
cle is regarded as an agent and a set of advanced
rules is employed to generate natural vehicular behaviors.
Gerlough [10] was among the first to discuss car-following
rules. Subsequently, Newell [11] further merged more
characteristics into agent-based models. Recently, Jiang
et al. [9] developed an FVDM to address several short-
comings in OVM [12] and GFM [13]. However, their
FVDM model (detailed in follow-up sections) could
result in unnecessary collisions in the close-car-braking
circumstance (described in Section 1). In addition, cellular
automata were also applied to the field of traffic dynamics
[16]. For more detailed descriptions of various agent-based
traffic simulation models, please refer to recent surveys
[14,15].

The macroscopic model is also called continuum based.
Lighthill ef al. [2] and Richards [3] did the earliest work
independently in this direction; thus, this model is often
called the LWR model. Because the LWR equation is a
scalar, nonlinear partial differential equation taking a den-
sity variable, vehicular velocity depends solely on traffic
density. In order to acquire a more complete model that
is not only based on traffic density, on top of the LWR
model, Payne er al. [4] created a second-order system of
equations called the PW model, where the second order
indicates that there are two distinct variables. However, the
PW model might predict negative velocities under some
circumstances. Later, researchers made various extensions
[5,6] to the PW model to remove this limitation.

2.2. Lane-changing Models

Most of existing lane-changing models typically focus on
agent-based traffic models. Nagel ef al. [31] summarized
different approaches for lane changing and proposed a
general scheme, with which realistic lane-changing rules
could be developed. Huang [32] used a cellular automa-
ton to model lane-changing behavior on multilane high-
ways. Hidas [22] developed a novel lane-change model to
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simulate vehicle interactions using intelligent agent con-
cepts. Kesting ez al. [21] presented a general lane-changing
model for car-following traffic models by minimizing over-
all braking induced by lane changes. Most of these exist-
ing lane-changing models center around drivers’ decisions
and generally overlook the execution of the lane-changing
procedure [23]. In contrast, in this work, we adopt a sim-
ple decision-making model and emphatically represent the
details of the lane-changing course.

3. PRELIMINARIES
3.1. Basic Definitions

Definition 1. The road network consists of a series of
roads, RN = J{R;|i =1,2,...}.

Definition 2. There are a few lanes on a single road, and
we describe lanes with several properties, for instance, the
maximum speed Vmax, the adjacent lanes s, and the roads
the lane belongs to R. The properties of lane j can be
described as Pj = {vmax. s, R}.

Definition 3. Every lane j has a number of cars,
Carsj = \J{cili =1,2,3,...}. Because our model is
agent based, we need some further information to depict
its state, including position (center of a car), velocity,
length, detecting radius (Definition 4), and vehicle types.
For simplicity, we denote it as ¢; = {xj, v, l;, i, tj}.

Definition 4. There is a virtual ellipse encircling each
car, and we regard its semimajor axis as the vehicle’s
detecting radius r; and use an upper limit of 3 for y in
this work.

ri =yli,y €(1,3] (1)

Definition 5. Before vehicles’ behavior is actually ani-
mated, it is necessary to set the initial and boundary condi-
tions including position, velocity, type, length, and so forth.
The boundary conditions include the length of lanes and
how to handle cars that come and go across the boundary
of the simulation area.

3.2. Previous Car-following Models

3.2.1. The Optimal Velocity Model.

In 1995, Bando et al. [12] proposed a microscopic traf-
fic model termed OVM, the main idea of which is that
each vehicle adapts to a distance-dependent optimal veloc-
ity. The following OVM equation describes the movement
of vehicles.

dv;
—; =l —vi] )
Here,
si = |xi—1 —xi| = (Ui—1+1;) /2 (3)
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The optimal velocity function is determined by the head-
way distance as follows.

V(s;) = V1 + Vatanh(Cys; — C2) 4)

where « is a sensitivity constant, s; denotes the netto dis-
tance (net spacing) between the car i and the front car i —1,
and /;_ is the length of vehicle i — 1.

Helbing et al. [13] used empirical data to calibrate the
parameters of the optimal velocity function. The resulting
optimal parameter values are k = 0.85s~1, V] = 6.75 m/s,
V> =7.91m/s,C; =0.13m™ !, and C; = 1.57. The OVM
can describe many properties of real traffic flows and is eas-
ily interpretable, despite its simplicity and few parameters.
However, the comparison with the field data indicates that
an unrealistically high acceleration and a similar problem
in deceleration turn up in OVM [13].

3.2.2. The Generalized Force Model.

To eliminate the shortcomings of OVM, Helbing ef al.
[13] came up with a GFM inspired by the social force con-
cept from pedestrian dynamics [33]. Its original equation
is

dv,- U?
— . 5
dt 7 +fl,l 1 ( )

where v? is the desired speed the vehicle i prefers, t; is
the acceleration time, and f; ; 1 is the repulsive force that
enables car i to keep a safe distance from the front cari —1.

According to the social force concept, the temporal
change of velocity (i.e., acceleration) is given by a sum
of forces (v? /i can also be interpreted as a social force).
So please note that f; ;1 in Equation (5) is a social force,
which is different from the traditional force concept, and
the unit of f; ;1 is the acceleration unit.

In GFM, the force f; ;1 is as follows:

V(si) —v?
fiici=—7"—L
T
_ AviOAV) [5;—s@n)/R]

4

Q)

Here, V (s;) is the optimal velocity function described in
OVM, Av; = v; —v;_ is the velocity difference between
the following car i and the leading car i —1. ® is the Heavi-
side function, and it should contribute only if the following
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car is faster than the leading vehicle. Ignoring the negative
velocity difference leads to several disadvantages, such as
poor delay time.

The GFM could be written in the following form, which
is more convenient for discussion.

% =K [v?—vi] +« [V(si)—v?]

— AO(Av;)Av

)

3.2.3. The Full Velocity Difference Model.

In 2001, an FVDM was presented by Jiang et al. [9] who
considered the negative velocity difference based on GFM.
So, the derivation process of the FVDM is like this:

% =K [v? — vi] +x [V(si) — v?]
—20(Av)Av; —AO(—Av) Ay, B
=k[V(si) —vi] — AAv;

Here, A is chosen as a step function as follows.

a s <sc
l=§ )

b si>sc

where k = 0.4157!1,a =0.5571, b =0, and 5, = 100 m.
FVDM behaves better than OVM and GFM in spite of
its simplicity, as it takes more factors into account in car-
following rules. However, there are still a few weaknesses
in describing some pressing traffic conditions of FVDM.

4. OUR METHOD

4.1. Overview

As illustrated in Figure 2, in our approach, given a
time step, the following steps are executed to simulate
vehicular flows.

Step 1: Before the simulation, we must specify the initial
and boundary conditions, including initialization
of position, velocity, and so on.

Step 2: We use our introduced AA-FVDM method to
compute acceleration for each vehicle except the
leading one and then compute the new velocity for
the next time step.

Animation

Adopt AA-
FVDM

Changes

Initiate Lane

Update State
Information

o

Boundary Conditions

I Next time step

—_—,— e ——— —_—— —

Figure 2. The overview for our system.
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Step 3: If there are vehicles that meet the lane-changing
rules, we start those lane changes.

Step 4: We advance cars to the next time step using the
computed information and update the network
state; we jump to step 2, and another cycle begins.

4.2. Accident-avoidance full velocity
difference model

Our AA-FVDM is inspired by the GFM [13], the FVDM
[9], and crowd dynamics [33,34]; hence, we start from a
force perspective. To cope with the close-car-braking cir-
cumstance, we assume there is an elliptic range embracing
each vehicle. Each car and its corresponding ellipse have
the same center point on the horizontal plane. The semima-
jor axis r; has a relation with the length of the correspond-
ing car /;, which is r; = yl;,y € (1,3]. If the distance

di j—1 = |xj—1 — x;| between the two cars i and i — 1
nearest to each other is smaller than the combined radii
rii—1 = ri + ri—1 of their semimajor axes, there will

exist two kinds of interaction forces called psychological
force f»(i,i — 1) and body force f3(i,i —1). fo(i,i —1)
describes that a driver will have a psychological tendency
to keep away from another car if the distance between
them is smaller than the safe interval. f3(i,i — 1) coun-
teracts the body compression of two neighboring ellipses
in a lane. As a consequence, we add these two force terms
into Equation (8) as follows.

dvi— . _— S — .
W—K[V(St) v;] = AAv; (10)

+ G-+ f36G.i-1)

Both f> and f3 should increase with decreasing distance
d; ;1 but disappear if the distance d; ;1 > r; ;1. This
strategy is consistent with real-world traffic: the follow-
ing vehicle will decelerate strongly to avoid an accident if
the distance between it and the leader is small; the smaller
the distance is, the larger the deceleration becomes. A lin-
ear function is usually used to describe compression and
stretching forces such as spring forces and f3. Addition-
ally, an exponential expression for f> enables a timely
response for vehicles by adapting the force exponentially.
The overall acceleration is given by a sum of social forces
(not only a single force). If one following vehicle wants to
avoid oscillation, a probable way is to change the velocity
of the headmost vehicle in the same lane along with time.

Letzjj—1 =rii—1 —dji—1,80

falisi = 1) ==CO(z ;_p)e@i-D/P (1)

S3i,i—1)=—kO(z;,;—1)H(zii-1) (12)
and ©(x) is the Heaviside function
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() X) = 3
O Otherwise

together with
H(x)=x (14)

C, D, and k are positive constants, and in a traffic simu-
lation, we set C € (0,1], k € (0,1], D = max(r; j—1) —
min(d; ;—1).

From our observation and the description of Helbing
et al. [13], the deceleration capabilities of vehicles are
greater than their acceleration capabilities; thus, our
approach is consistent with real-world scenario.

From Equation (10), we can tell that our AA-FVDM
degenerates to FVDM if there are no psychological force
and body force and reduces to GFM regardless of the neg-
ative effect of velocity difference and if no added force
terms are in effect. It also degrades to OVM if A = 0,
fai,i—1)=0,and f3(i,i — 1) =0.

4.3. Handling Lane Changes

4.3.1. Decision Making on Lane Changes.

Inspired by empirical observations, we propose an effi-
cient method in light of visual information, which is, to
a certain extent, similar to existing rules or models on
decisions of whether performing a lane change.

Generally speaking, drivers try to make lane changes for
various reasons, for example, overtaking slow traffic, going
to off-ramps, avoiding other cars, slowing down, making
turns, road narrowing, and so on. In this work, we simply
select overtaking and taking off-ramps as the main incen-
tives. Besides, when changing to other lanes, the safety
criterion (i.e., no collisions) should be guaranteed. We first
introduce some variables before formulating the incentive
criterion and safety criterion.

As illustrated in Figure 3, vrh is the velocity of the lead-
ing car on the right-hand lane, vlh is the velocity of the
ahead vehicle on the left-hand lane, v and pos are the speed
and position of the car that considers making a lane change,
v" is the speed of the car ahead of the current car, and 1 and
J are critical coefficients (typically larger than 1).

Preference factor § represents the preference of taking
off-ramps when meeting an exit, and vmax is the maximum
speed on a certain lane. We set 7 =1 s.

Incentive criterion: vf‘ > nvh, vlh > nvh, vrh > v,
and vlh > uv (overtaking incentive);
§ > 0.8 (exit ramp stimulation).

The boundaries [pos — T vmax, pos +
vT] ensure a safe range on the tar-
get lane (i.e., the right lane or the left
lane) with the current position pos of

the vehicle taken into account.

Safety criterion:

Note that if there is a long enough distance without any
vehicles on the target lanes, it may be reasonable for the
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Figure 3. An illustration for making decisions of lane changes. The black car meets the safety criterion on the left lane, and it will
change to the left lane if it further satisfies the incentive criterion and is willing to perform a lane change.

current car to perform a lane change. Under this situation,
we usually initiate a lane change.

We assign each vehicle a probability P when these
criterion are met. In other words, a car has a probability
of 1 — P to stay in the current lane. In our implementa-
tion, P > ¢ (¢ €[0.7, 1.0]) is stochastically prescribed for
some cars that decide to perform lane changes. Only both
criteria are satisfied, and there is a high probability P that
a driver can make a lane change. In the simulation, if lane
changes for a single vehicle are frequent, we can decrease
the chance of lane changes for this lane-changed vehicle by
lowering the probability P.

4.3.2. Execution of the Lane-changing Course.

We aim to generate lifelike traffic animation, and a lane
change needs several seconds according to real-life experi-
ence. An effective way is to approximate the lane-changing
trajectory by a series of short lines. In this section, we
present the process of lane changes at great length. The pre-
ceding scheme is an illustration describing the dynamics of
a car that performs a lane change (Figure 4).

First of all, it is necessary to make some derivations
using a discretization method within a time step Af.

Ad_ Av

A
Ad _ Av_ AR (15)
At At

a, =
At

where At is the time step length, Ad denotes the length
of a small path segment during the lane-changing pro-
cedure, Av indicates the velocity difference, Af is the
steering angle difference, and d, v, and B are the tra-
versed path length, the velocity, and steering angle of a car,
respectively.

On the basis of the real-world traffic or lane-changing
reasons, the velocity v, acceleration a, and the steering
speed w are all limited: v € (0, vmax], @ € [0, @max],
and @ € [—Wmax, Wmax]. The positive velocity assures that
the current vehicle should only move forward. The corre-
sponding acceleration is non-negative such that the car can
make a lane change smoothly and steadily.

Figure 4. The dynamics of a lane-changing car. « is the direction
relative to the X-axis, B is the steering angle, and ¢ and R are
the curvature and the radius of the traveled path, respectively.

Regarding the length of the path segment Ad, we use it
to compute the homologous curvature, several trigonomet-
ric functions, the new steering angle a(d + Ad), and the
new coordinate values x(d + Ad), y(d + Ad).

Ao tan

N ol i

Ad L

N . (16)
— =coso, —— =sinw

Ad d

Here, the computation of the curvature ¢ complies with
its inherent definition; B is the steering angle with |B| <
Bmax> and L is the distance between the rear axle and
the front line of a vehicle (Figure 4); Ax and Ay are the
length variations with respect to the segment length along
the X -axis and Y -axis, respectively; « is the lane-changing
direction relative to the X -axis; x, y are coordinate values
along the X, Y -axes.
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Figure 5. Alane-changing curve and its corresponding curvature

whose derivative is constant. (a) The relation between lateral

displacement and longitudinal displacement over a lane change.
(b) The curvature varies along with the lane-changing path.

Note that a lane-changing curve Figure 5 is symmetric
in its midpoint, because of the reversibility of the changing
course. The curvature is zero at three points: the start point,
the midpoint, and the end point. There are two maximal
curvatures: one is positive and the other is negative.

5. RESULTS

All the results are collected on an Intel Core™ i7-3770
3.40-GHz CPU with a high-end independent graphics
card. The road network is extracted from the real world,
including flyovers, tunnels, and suspension bridges.

5.1. Scenarios

We simulate traffic congestion and the scenario described
in the close-car-braking circumstance (see the numerical
simulation in Section 5.2.1), lane-changing behavior, traf-
fic at on/off ramps, and tunnel traffic passing through
mountains. Please see the complementary videos (Support-
ing Information).

5.1.1. Traffic Jams.
From a practical perspective, jams usually occur when
the leading vehicles decelerate for certain reasons. We sim-

Animating traffic flows

ulate traffic congestion on this basis (Figure 6). A stop-
and-go phenomenon also takes place along with traffic
congestion.

5.1.2. Close-car-braking Scenario.

As described earlier, FVDM cannot handle a close-car-
braking circumstance; however, our method is able to cope
with this problem. We animate the same traffic flow with
FVDM and our technique. The visual results are presented
in Figure 7.

5.1.3. Lane Changes.

We merge the lane-changing behavior into our system,
and Figure 8 shows the visual effects of the lane-changing
behavior.

5.1.4. Traffic at On/Off Ramps.

In reality, ramp traffic is very common for choosing
different driving directions (Figure 9). In our road web,
there are eight on-ramps and eight off-ramps; please see
complementary videos (Supporting Information).

5.1.5. Traffic in Tunnels.

Tunnel traffic is ubiquitous in rural places where moun-
tains always lie. In this work, we also animate tunnel traffic
passing through mountains (Figure 10).

5.2. Performance

5.2.1. Comparison with Full Velocity
Difference Model.

The simulation scenario is described as follows: the
velocities of the leader and the follower are 20.0 and
20.0 m/s at the beginning, and the initial netto interval (net
spacing) between them is 10 m; the leading car deceler-
ates at —6 m/s” until it completely stops and keeps stop-
ping for several seconds before speeding up to 21 m/s. We

(a) Traffic jams.

(b) Jams disappear.

Figure 6. Two snapshots about traffic congestion. (a) Leading cars decelerate for traffic lights or accidents in front, and jams occur.
(b) Traffic flow becomes fluent again because leaders begin to accelerate and there is no block.

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
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(a) Using FVDM.

(b) Using our AA-FVDM.

Figure 7. Simulating scenarios for the close-carbraking circumstance with the full velocity difference model and our method
under the same initial conditions. (a) Produces collisions. (b) Avoids collisions. FVDM, full velocity difference model; AA-FVDM,
accident-avoidance full velocity difference model.

Figure 8. A car (enclosed in a red rectangle) performing a lane-changing behavior.

conduct two experiments under the same initial condition,
employing FVDM and our method.

In such a situation, we can observe that FVDM is not
capable of avoiding collisions or accidents, as it generates
negative netto distance between the leading vehicle and the
following vehicle, while the velocity of the follower is still
positive. The leader and the follower get into an accident at
4.6 s in the FVDM (Figure 11).

We also test our method under the same situation as
described earlier. The simulation results prove that the
AA-FVDM is able to cope with such a problem with-
out producing accidents (Figure 12). We can see from
Figure 12 that the minimal netto distance is roughly 2 m

over the whole process. The follower with a small interval
can timely decelerate to zero and avoid collisions when the
leader brakes steeply for an accident ahead.

5.2.2. Performance Tests.

First, we test the update frequency of our method with
frames per second and memory usage. Then, we investi-
gate how the percentage of lane-changing vehicles varies
along with traffic density. Finally, we choose two typical
parameters and perform some parameter tests, involving
the probability variable ¢ (Section 4.3.1) and the combined
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(a)

(b)

Figure 9. (a) A car (enclosed in a red rectangle) entering a ramp. (b) A car (enclosed in a red rectangle) exiting a ramp.

Figure 10. Vehicular traffic in tunnels passing through mountains.

radii r; ;1 (Section 4.2). Each test has been run for a
constant period for 80 times.

Without taking lane-changing behavior into account
(Figure 13), our method may update more than 185,000
vehicles in real time. The usage of memory increases lin-
early with the number of vehicles. An analogous linear
growth can also be observed from Figure 13; however,
when lane changes are considered, the maximum number
of vehicles that can be updated at interactive rates is around
85,000, which is much smaller than that in Figure 13(a).

From real-world experience, we know that dense traf-
fic will bring little opportunity for vehicles to perform lane
changes. Our simulation results live up to this experience,
which can be validated by Figure 14.

The first parameter we test is the probability variable ¢
(Section 4.3.1). We set the boundaries of ¢ as [0.7,1.0] in
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this study, and we test ¢ = 0.7, ¢ = 0.8, ¢ = 0.9, and
g = 1.0. It is not hard to see that if ¢ = 0.7, only vehicles
assigned P > 0.7 can perform lane changes (these vehicles
must meet the safety and incentive criteria). If ¢ = 1.0, it
means that vehicles whose probability must be P = 1.0
may make lane changes. Therefore, a smaller ¢ results in
a larger percentage of vehicles that perform lane-changing
behavior (Figure 14).

The second parameter that we choose is the combined
radii r; ;1. The difference of r; ;1 leads to different
results. From our method, we can realize that a larger
1 i—1 implies earlier repulsive forces between the two cars
nearest to each other in the same lane. We test this idea in
the same scenario, and the result (Figure 15) reveals that a
larger r; ;1 leads to a greater gap between the leader and
the follower.
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Figure 11. Simulations for the full velocity difference model

(FVDM) in the close-car-braking circumstance. (a) Velocity of the

leading vehicle, (b) deceleration of the following car, (c) speed of

the following car, and (d) the netto interval between the leader
and the follower.
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Figure 12. Simulations for our method—accident-avoidance full

velocity difference model. With our method, the velocity of the

follower is able to decelerate to zero to avoid collisions with the

leader. The following car will accelerate if the leading vehicle
moves again.

5.3. Validation with Real Traffic Data

In order to validate our method, we compute the stan-
dard deviations between simulation results and real-world
traffic data for different traffic models and make a compar-
ison with the outcomes. The Next Generation Simulation
(NGSIM) project [35] is used as the real-world dataset
source to firstly calibrate the parameters with respect to
various traffic models including the GFM, FVDM, intel-
ligent driver model [36], MITSIM (a well-known traffic
simulator [37]), and our method—AA-FVDM. Secondly,

X. Lu etal

the minimal standard deviation can be obtained for each
model by fitting the simulation results to real-world data.

The NGSIM program was initiated by the US Depart-
ment of Transportation Federal Highway Administration
in the early 2000s and collected high-quality primary traf-
fic and trajectory data. We utilize an effective calibration
method called the trust region algorithm [38] because it
provides a numerical solution to the problem of minimizing
a function, generally nonlinear, over a space of parame-
ters of the function and achieves an optimal parameter set.
After the calibration process, it is necessary to make some
comparison with the calibration results.

In our work, the US 101 dataset is a promising choice
in the NGSIM datasets, because the data are collected
on a segment of the US Highway 101 (Hollywood Free-
way) in the Universal City neighborhood of Los Angeles,
California, which matches our scenarios quite well. The
vehicle trajectory data contain vehicle ID, frame ID,
time, position, velocity, acceleration, preceding vehicle ID,
space headway, and other information for each vehicle at a
frame rate of 10 fps; see an example in Table 1.

In the following, we make a simple introduction for the
calibration problem.

E(0)= f(e1,e2,...em:&1,62.....6n)
L, = (17
~1(#:7)

where @ = (e1,€2,....em), e1,e2, ..., ey are independent

. —
variables, £ = (£1,&2,....&n), &1, &2, ..., &, are the popu-
lation values of parameters, and E (o) is the expected value
of the dependent variable o.

—
Our aim is to achieve the parameter values ¢ =
(1,82, ...,&1), so we need a set of empirical datum pairs

of independent and dependent variables (¢, —S)) so that the

sum of the deviation squares S( £ ) becomes minimal.

— N —\ 12
SE =Y [oi-f(2.F)] (1)

i=1

We set the initial values for parameters before the first iter-
ation, and the iteration details can be referenced from [38].
The iteration will continue until there is a convergent value.

To evaluate the results of different traffic models, we
bring in the standard deviation, which is also named root
mean square error (RMSE). A smaller RMSE indicates a
better agreement with real traffic data. RMSE is computed
as

N (E(or)—o:
RMSE:\/Zi=1(E(Gl) %i)° (19)
N-1

where N denotes the sample size; in this study, we choose
the vehicles’ velocity as o;; E(0;) is the computed value
using traffic simulation models. Given the same initial
information (position, velocity, etc.) as real-world vehi-
cles and a traffic model, traffic evolves by itself. We know
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Figure 13. Frames per second and approximate memory usage without and with lane changes. (a) Frames per second and approxi-

mate memory usage for updating various numbers of vehicles without lane-changing behavior. The update frequency is about 45 fps

when there are 185,000 vehicles. (b) Frames per second and memory usage for differing numbers of vehicles with lane-changing
behavior. The update is roughly 25 fps when the number of vehicles is 85,000.
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Figure 14. (a) The percentage of vehicles that perform lane changes along with traffic density. Vehicles performing lane changes
occupy a greater percentage when traffic becomes sparse. (b) The impact of g (probability) on the percentage of vehicles that make
lane changes. A larger probability leads to a smaller lane-changing percentage of total vehicles.

that v(r + At,) = () + aAt’; in the US 101 datasets,
the time step is 0.1 s, which only induces a small varia-
tion in velocity; therefore, we choose 1 s as the time step
size (At/ = 1 s). Table 2 shows the RMSE of differing
traffic models, and Table 3 exhibits the resulting optimal
parameters for our method.

In Figure 16, we can observe that all models except
MITSIM compare well with real traffic data. MITSIM has
remarkable overshoots, which indicate too large accelera-
tions. Our method has a similar trend as FVDM, because
ours is on top of it. It is interesting that our method
outperforms FVDM, even though there is little differ-
ence, as shown in Table 2. Table 3 demonstrates that the
parameters from the optimal velocity function (V (s;)) have
analogous values to those in Helbing’s work [13], which
further validates our method.
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6. CONCLUSION AND
FUTURE WORK

We have set up a rural road web with diverse road
structures including flyovers, suspension bridges, curv-
ing tunnels, and other straight or curved roads. Currently,
our system simulates but not limited to different types
of medium-size vehicles, allows for diverse speed lim-
its on various road segments, and supports lane-changing
behavior. Please note that our method can simulate dif-
ferent sizes of vehicles, as vehicle sizes do not make
any difference. Our method can simulate but not limited
to rural traffic and can also simulate urban traffic if we
do some other work, for example, intersection control,
calibration of model parameters using real-world urban
traffic data.
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(C) Lijn = 250

(d) i = 30.0

Figure 15. Parameter tests with different r; ;—1; a longer r; j—; results in a larger gap between the leading and following vehicles.

Table 1. A random extract from the US 101 dataset of vehicle
trajectory data.

Data Value
Vehicle ID 196
Frame ID 829
Total frames 474
Local X (ft) 18.937
Local Y (ft) 1560.577
Vehicle length (ft) 16.0
Vehicle width (ft) 6.4
Vehicle velocity (ft/s) 50.71
Lane 2
Preceding vehicle 184
Following vehicle 203
Spacing (ft) 103.82

On the basis of FVDM, we present a novel method
inspired by the force concept [33,34] and is able to address
some emergency—the close-car-braking circumstance. A
force perspective makes those two force terms easy and
clear to interpret. However, the cost is that the new method
may lead to overshooting deceleration when an emergency

Table 2. Minimal values of RMSE between real traffic data and
simulation results that were reached for various traffic models
by the trust region algorithm.

Model
Ours FVDM IDM GFM MITSIM
RMSE 0.479 0.504 0.590 0.604 1.007

FVDM, full velocity difference model; IDM, intelligent driver model;
GFM, generalized force model; RMSE, root mean square error.

occurs. It is inevitable because when there is an emer-
gency ahead, only with strong deceleration can the cur-
rent car cut its speed quickly and avoid accidents. We
also represent simple rules, the kinetics, and constraints
on lane-changing behavior. While believable and realistic
lane-changing behavior can be simulated with our tech-
nique, one restriction is that we do not consider vehicles’
types when performing a lane change, for example, a truck
should need a longer lane change than a small car.

Then, we conducted different experiments to test the
AA-FVDM. Because of the agent-based property of our
method, the update duration is much longer than that for
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Table 3. The optimal parameter values for our method (accident-avoidance full velocity difference model).
Parameters
k(s7h)  Vi(m/is)  Vp(m/s) G (m™T) C; Als™") ri—q(m)  C(m/s?)  k(s7?)
Values 0.486 8.31 9.87 0.155  1.212 0.421 27797 0.544 0.1
20 = (Grant 2012M520067 and 2013T60706), Research Fund
---Real traffic data . i .
—Our method for the Doctoral Program of Higher Education of China
18 —MITSIM (Grant 20124101120005), and the Open Project Program
R —IDM of the State Key Lab of CAD&CG at Zhejiang University
L gl —CFM (grant A1209).
=
©
% 141 A
= REFERENCES
12
1. Sumo—simulation of urban mobility, 2012. http://
10 sumo.sourceforge.net/.
0 10 20 30 40 50

Figure 16. Comparison of real-world traffic data and simulated

velocity using different traffic models. FVDM, full velocity dif-

ference model; IDM, intelligent driver model; GFM, generalized
force model.

continuum-based models. However, our method can sim-
ulate anisotropic drivers and individualistic behavior with
complex dynamics. Furthermore, the performance is fairly
efficient, and it is able to simulate tens of thousands vehi-
cles with our method at interactive rates. Besides, we val-
idate our method using real-world traffic data and com-
pare with other traffic methods. The matching results show
that our method remarkably outperforms others (FVDM,
intelligent driver model, GFM, and MITSIM). However,
there are still some limitations in our current framework.
In line with the reality that passing rules are different in
diverse areas such as the USA, China, and Germany, lane
changes can be classified into two classes: asymmetric and
symmetric. We plan to simulate both types in different
scenarios. Another limitation is that our current approach
does not support path planning for an individual vehicle,
and vehicles choose random directions at intersections.
Although some efforts were carried out to simulate both
pedestrians and traffic flows [39], they primarily focused
on pedestrians and only presented simple traffic flows. As
a future work, we plan to investigate novel schemes to sim-
ulate both crowds and vehicles in great detail in complex
dynamic environments.
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