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Abstract
Natural head motion is important to realistic
facial animation and engaging human-computer
interactions. In this paper, we present a novel
data-driven approach to synthesize appropriate
head motion by sampling from trainedHidden
Markov Models (HMMs). First, while an
actress recited a corpus specifically designed
to elicit various emotions, her 3D head motion
was captured and further processed to con-
struct a head motion database that included
synchronized speech information. Then, an
HMM for each discrete head motion repre-
sentation (derived directly from data using
vector quantization) was created by using
acoustic prosodic features derived from speech.
Finally, first order Markov models and in-
terpolation techniques were used to smooth
the synthesized sequence. Our comparison
experiments and novel synthesis results show
that synthesized head motions follow the tem-
poral dynamic behavior of real human subjects.

Keywords: Head motion synthesis, prosody,
HMM, facial animation, data-driven, spherical
cubic interpolation
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1 Introduction

The development of new human-computer in-
terfaces and exciting applications such as video
games and animated feature films has motivated
the computer graphics community to generate
realistic avatars with the ability to replicate and
mirror natural human behavior. Since the use of
large motion capture datasets is expensive, and
can be only applied to delicately planned sce-
narios, new automatic systems need to be used
to generate natural human facial animation. One
useful and practical approach is to synthesize
animated human faces driven by speech.

The straightforward use of speech in facial
animation is in lip motion synthesis, in which
the acoustic phonemes are used to generate vi-
sual visemes that match the spoken sentences.
Examples of these approaches include [1, 2, 3,
4, 5, 6, 7]. Also, speech has been used to drive
human facial expression, under the assumption
that the articulation of the mouth and jaw modify
facial muscles, producing different faces poses.
Examples of these approaches are [8, 9]. Sur-
prisingly, few efforts have focused on natural
generation of rigid head motion, which is an im-
portant ingredient for realistic facial animations.
In fact, Munhall et al. [10] reported that head
motion is important for auditory speech percep-
tion, which suggests that appropriate head mo-
tion can significantly enhance human-computer
interfaces.



Although human head motion is associated
with many factors, such as speaker style, id-
iosyncrasies and affective states, linguistic as-
pects of speech play a crucial role. Kuratate et
al. [9] presented preliminary results about the
relationship between head motions and acous-
tic prosodic features. They concluded based on
the strong correlation (r=0.8) that these two are
somehow correlated, but perhaps under indepen-
dent control. This suggests that the tone and the
intonation of the speech provide important cues
about head motion and vice versa [10]. Notice
that, here, it is more importanthow the speech
is utteredrather than justwhat is said. There-
fore, prosodic features (e.g. pitch and energy)
are more suitable than vocal tract-based features
(e.g. LPC and MFCC). The work of [11] even
reports that about 80% of the variance observed
in the pitch can be determined from head mo-
tion.

In this paper, an innovative technique is pre-
sented to generate natural head motion directly
from acoustic prosodic features. First, vec-
tor quantization is used to produce a discrete
representation of head poses. Then, aHidden
Markov Model(HMM) is trained for each clus-
ter, which models the temporal relation between
the prosodic features and the head motion se-
quence. Given that the mapping is not one to
one, the observation probability density is mod-
eled with a mixture of Gaussians. The smooth-
ness constraint is imposed by defining a bi-gram
model (first order Markov model) on head poses
learned from the database. Then, given new
speech material, the HMM, working as a se-
quence generator, produces the most likely head
motion sequences. Finally, a smoothing oper-
ation based on spherical cubic interpolation is
applied to generate the final head motion se-
quences.

2 Related Work

Researchers have presented various techniques
to model head motion. Pelachaud et al. [12]
generated head motions from labeled text by
predefined rules, based on Facial Action Cod-
ing System (FACS) representations [13]. Cas-
sell et al. [14] automatically generated appro-
priate non-verbal gestures, including head mo-

Figure 1: Audio Visual Database

tion, for conversational agents, but their focus
was only the “nod” head motion. Graf et al.
[15] estimated the conditional probability dis-
tribution of major head movements (e.g. nod)
given the occurrences of pitch accents, based
on their collected head motion data. Costa et
al. [8] usedGaussian Mixture Model(GMM)
to model the connections between audio fea-
tures and visual prosody. The connection be-
tween eyebrow movements and audio features
was specifically studied in their work. Chuang
and Bregler [16] presented a data-driven ap-
proach to synthesize novel head motion corre-
sponding to input speech. They first acquired
a head motion database indexed by pitch val-
ues, then a new head motion sequence was
synthesized by choosing and combining best-
matched recorded head motion segments in the
constructed database. Deng et al. [17] presented
a new audio-driven head motion synthesis tech-
nique that synthesized appropriate head motion
with keyframing control. After a audio-head
motion database was constructed, given novel
speech input and user controls (e.g. specified
key head poses), a guided dynamic program-
ming technique was used to generate an optimal
head motion sequence that maximally satisfies
both speech and key frames specifications.

In this paper, we propose to use HMMs
to capture the close temporal relation be-
tween head motions and acoustic prosodic fea-
tures. Also, we propose an innovative two-step
smoothing technique based on bi-gram models,
learned from data, and spherical cubic interpo-
lation.



Figure 2: Head poses using Euler angles

3 Data Capture and Processing

3.1 Database

The audiovisual database used in this work was
recorded from an actress, with 102 markers on
her face (left of Fig. 1). She was asked to read
a custom, phoneme-balanced corpus four times,
expressing different emotions (happiness, sad-
ness, anger and neutral state). A VICON motion
capture system with three cameras (right of Fig.
1) was used to capture her facial expressions and
head motions. The sampling frequency was set
to 120Hz. The recording was made in a quiet
room using a close talking SHURE microphone
at the sampling rate of 48 kHz. The markers’
motions and the aligned audio were captured by
the system simultaneously. In total, 633 sen-
tences were used in this work. Note that the ac-
tress did not receive any instruction about how
to move her head.

After the motion data were captured, all the
markers were translated to make a nose marker
at the local coordinate center of each frame. A
neutral pose was chosen as a reference frame,
which was used to create a 102× 3 matrix, y.
For each frame, a matrixxi was created, using
the same marker order as the reference. After
that, theSingular Value Decomposition(SVD),
UDVT , of matrix yTxi was calculated. Finally,
the product ofVUT gave the rotation matrix,R,
which defines the three Euler angles of the head
motion of this frame [18] (Fig. 2).

yTxi = UDVT (1)

R= VUT (2)

To extract the prosodic features, the acoustic
signals were processed by theEntropic Signal
Processing System(ESPS), which computes the
pitch (F0) and the RMS energy of the audio. The

window was set to 25-ms with an overlap of 8.3-
ms. Notice that the pitch takes values only in
voiced region of the speech. Therefore, to avoid
zeros in unvoiced regions, a cubic spline inter-
polation was applied in those regions. Finally,
the first and second derivatives of the pitch and
the energy were added to incorporate their tem-
poral dynamics.

3.2 Canonical Correlation analysis

To validate the close relation between head mo-
tion and acoustic prosodic features, as suggested
in [9], Canonical Correlation Analysis(CCA)
[19] was applied to our audiovisual database.
CCA provides a scale-invariant optimum linear
framework to measure the correlation between
two streams of data with different dimensions.
The basic idea is to project both feature vec-
tors into a common dimensional space, in which
Pearson’s correlation can be computed.

Using pitch, energy and their first and second
derivatives (6D feature vector), and the angles
that define the head motions (3D feature vector),
the average correlation computed from the au-
diovisual database isr=0.7. This result indicates
that useful and meaningful information can be
extracted from the prosodic features of speech
to synthesize the head motion.

4 Modeling Head Motion

In this paper, we use HMMs, because they pro-
vide a suitable and natural framework to model
the temporal relation between acoustic prosodic
features and head motions. HMMs are used to
generate the most likely head motion sequences
based on the given observation (prosodic fea-
tures). The HTK toolkit is used to build the
HMMs [20].

The output sequences of the HMMs cannot be
continuous, so a discrete representation of head
motion is needed. For this purpose, the Linde-
Buzo-Gray vector Quantization (LBG-VQ) al-
gorithm [21] is used to defineK discrete head
poses,Vi . The 3D-space defined by the Euler an-
gles is split intoK Voronoi regions (Fig. 3). For
each region, the mean vectorUi and the covari-
ance matricesΣi are estimated. The pairs(U,Σ)
define the finite and discrete set of code vectors



Figure 3: 2D projection of Voronoi regions us-
ing 32-size vector quantization

called codebook. In the quantization step, the
continuous Euler angles of each frame are ap-
proximated with the closest code vector in the
codebook.

For each of the clusters,Vi , an HMM model
will be created. Consequently, the size of the
codebook will determine the number of HMM
models.

4.1 Learning Natural Head Motion

The posterior probability of being in clusterVi ,
given the observationO, is modeled according
to Bayes rule as

P(Vi/O) = c·P(O/Vi) ·P(Vi) (3)

wherec ia a normalization constant. The like-
lihood distribution,P(O/Vi), is modeled as a
Markov process, which is a finite state machine
that changes state at every time unit accord-
ing to the transition probabilities. A first or-
der Markov model is assumed, in which the
probabilistic description includes only the cur-
rent and previous state. The probability den-
sity function of the observation is modeled by
a mixture ofM Gaussian densities which han-
dle, up to some extent, the many-to-many map-
ping between head motion and prosodic fea-
tures. Standard algorithms (Forward-backward,
Baum-Welch re-estimation) are used to train the
parameters of the HMMs, using the training data
[22, 20]. Notice that the segmentation of the
speech according to the head poses clusters is
known. Therefore, the HMMs were initialized

Figure 4: Head motion synthesis framework

with this known alignment (force alignment was
not needed).

The prior distribution,P(Vi), is used to im-
pose a first smoothing constraint to avoid sud-
den changes in the synthesized head motion se-
quence. In this paper,P(Vi) is built using bi-
gram models, which are learned from data (sim-
ilar to standard bi-gram language models used
to model word sequence probabilities [20, 23]).
The bi-gram model is also a first order state ma-
chine, in which each state models the proba-
bility of observing a given output sequence (in
this case, a specific head pose cluster,Vi). The
transition probabilities are computed using the
frequency of their occurrences. In our train-
ing database, the inter-cluster transitions are
counted and stored, and the statistic learned is
used to reward transitions according to their ap-
pearances. Therefore, in the decoding step, this
prior distribution will penalize transitions that
did not appear in the training data.

4.2 Synthesis of Head Motion

Figure 4 describes the procedure to synthe-
size head motion. For each testing sample,
the acoustic prosodic features are extracted and
used as input to the HMMs. The model
will generate the most likely sequence,V̂ =
(V̂t

i ,V̂
t+1
j . . .), whereV̂t

i is defined by (Ui ,Σi).
The mean vectorUi will be used to synthesize
the head motion sequences.

The transitions between clusters will intro-
duce breaks in the synthesized signal, even if
their cluster means are close (see Fig. 5). There-
fore, a second smoothing step needs to be im-
plemented, to guarantee continuity of the syn-
thesized head pose sequences. A simple solu-
tion is to interpolate each Euler angle separately.
However, it has been shown that this technique



is not optimal, because it introduces jerky move-
ments and other undesired effects such asGim-
bal lock [24]. As suggested by Shoemake, a
better approach is to interpolate in the quater-
nion unit sphere [24]. The basic idea is to trans-
form the Euler angles into quaternions, which
are an alternative rotation matrix representation,
and then interpolate the frames in this space.

In this paper, we used spherical cubic interpo-
lation [25], squad, which is based on spherical
linear interpolation, slerp. For two quaternions
q1 andq2, the slerp function is defined as:

slerp(q1,q2,µ) =
sin(1−µ)θ

sinθ
q1 +

sinµθ

sinθ
q1 (4)

wherecosθ = q1 · q2 and µ are variables that
range from 0 to 1 and determine the frame po-
sition of the interpolated quaternion. Given four
quaternions, the squad function is defined as:

squad(q1,q2,q3,q4,µ) = (5)

slerp(slerp(q1,q4,µ),slerp(q2,q3,µ),2µ(1−µ))

After the Euler angles are transformed into
quaternions, key-points are selected by down-
sampling the quaternions at a rate of 6 frames
per second (this value was empirically chosen).
Then, spherical cubic interpolation is used in
those key-points by using the squad function.
After interpolation, the frame rate of the quater-
nions is 120 frames per second, as the original
data. The last step in this smoothing technique
is to transform the interpolated quaternions into
Euler angles. Figure 5 shows the interporlation
result for one of the sentences. The resulting
vectors are denoted̂Ui . The readers are referred
to [25] for further details about spherical cubic
interpolation.

Finally, the synthesized head pose,x̂t , at time
t will be estimated as:

x̂t = (α,β ,γ)T = Ûi +Wi (6)

whereWi is a zero-mean uniformly distributed
random white noise. Notice that̂xt is a blurred
version ofVi ’s mean.

If the size of the codebook is large enough, the
quantization error will be insignificant. How-
ever, the number of HMMs needed will increase

Figure 5: Spherical cubic interpolation

and the discrimination between classes will de-
crease. Also, more data will be needed to train
the models. Therefore, there is a tradeoff be-
tween the quantization error and the inter-cluster
discrimination.

4.3 From Euler Angles to Talking Avatars

A blend shape face model composed of 46 blend
shapes is used in this work (eye ball is controlled
separately). To create a realistic avatar, lip and
eye motion techniques are also included. For
novel text/audio input, the speech animation ap-
proach presented in [6, 26] was used to generate
synchronized visual speech. Then, eye motion is
automatically synthesized by a texture-synthesis
based approach [27]. Hence, appropriate blend
shape weights are calculated for each frame. Af-
ter that, the same audio is used to generate cor-
responding natural head motion using the pro-
posed approach. The generated head motion Eu-
ler angles,̂xt , are directly applied to the angle
control parameters of the face model. This ani-
mation procedure is applied to each frame. Be-
sides the animation, the face modeling and ren-
dering are also done in Maya.

5 Results and Discussion

5.1 HMM configuration

The topology of the HMM is defined by the
number and the interconnection of the states.
The most popular configurations are the Left-to-
Right topology (LR), in which only transitions
in forward direction between adjacent states



are allowed, and the ergodic topology (EG), in
which transitions between all the states are al-
lowed. The LR topology is simple and needs
less data to train its parameters. The EG topol-
ogy is less restricted, so it can learn a larger set
of state transitions from the data. In this par-
ticular problem, it is not clear which topology
gives better description of the head motion dy-
namics. Therefore, eight HMM configurations,
described in table 1, with different topologies,
number of models,K, number of states,S, and
number of mixtures,M, were trained. Notice
that the size of the database is not big enough
to train more complex HMMs with more states,
mixtures or models than those described in table
1.

As mentioned before, the pitch, the energy
and their first and second derivatives are used
as acoustic prosodic features to train each of the
proposed HMM configuration. Eighty percent
of the database was used for training and twenty
percent for testing.

5.2 Objetives evaluation

To evaluate the performance of our approach,
the prosodic features from the test data were
used to generate head motion sequences, as de-
scribed in previous section. For those samples,
the Euclidian distance,deuc, between the Euler
angles of the original frames and the Euler an-
gles of the synthesized data,x̂t , was calculated.
The average and the standard deviation of all the
frames of the testing data, is shown in table 1
(D). Notice that the synthesized head motions
are directly compared with the original data (not
its quantized version), so the quantization error
is included in the values of the table. As men-
tioned in the introduction, head motion does not
depend only on prosodic features, so this level
of mismatch is expected.

Table 1 also shows the canonical correlation
analysis between the synthesized and original
data. As can be observed the correlation was
aroundr=0.85 for all the topologies. This re-
sult strongly suggests that the synthesized data
follow the behavior of the real data, which vali-
dates our approach.

As can be seen from table 1, the perfor-
mance of the different HMM topologies are sim-
ilar. The Left-to-Right HMM, with a 16-size

HMM config. D CCA
Mean Std Mean Std

K=16 S=5 M=2 LR 10.2 3.4 0.88 0.11
K=16 S=5 M=4 LR 9.3 3.4 0.87 0.11
K=16 S=3 M=2 LR 9.1 3.6 0.87 0.12
K=16 S=3 M=2 EG 9.1 3.4 0.87 0.10
K=16 S=3 M=4 EG 9.5 3.4 0.83 0.12
K=32 S=5 M=1 LR 12.8 4.0 0.83 0.14
K=32 S=3 M=2 LR 10.7 3.3 0.86 0.12
K=32 S=3 M=1 EG 10.4 3.1 0.86 0.11

Table 1: Results for different configurations

Figure 6: Synthesized data, side view

codebook, 3 states and 2 mixtures achieves the
best result. However, if the database were big
enough, an ergodic topology with more states
and mixture could perhaps give better results.
The next experiments were implemented using
this topology (K=16 S=3 M=2 LR).

5.3 Head motion animation results

We also recorded sentences, not included in the
corpus mentioned before, to synthesize novel
head motion using our approach. For each
recorded audio, the procedure described in this
paper was applied. Figures 6 and 7 show four
frames of the synthesized data. For animation
results, please refer to the accompanying video.

Figure 7: Synthesized data, front view



6 Conclusions

This paper presents a novel approach to syn-
thesize natural human head motions driven by
speech prosody. HMMs are used to capture the
temporal relation between the acoustic prosodic
features and head motions. The use of bi-
gram models in the sequence generation step
guarantees smooth transitions from the discrete
representations of head movement configura-
tions. Furthermore, spherical cubic interpola-
tion is used to avoid breaks in the synthesized
signal.

The results show that the synthesized se-
quences follow the temporal dynamic behavior
of real data. This proves that the HMMs are
able to capture the close relation between speech
and head motion. The results also show that the
smoothing techniques used in this work can pro-
duce continuous head motion sequences, even
when only a 16 word sized codebook is used to
represent head motion poses.

In this paper we show that natural head mo-
tion animation can be synthesized by using just
speech. In future work, we will add more com-
ponents to our system. For example, if the emo-
tion of the subject is known, as is usually the
case in most of the applications, suitable models
that capture the emotional head motion pattern
can be used, instead of a general model.
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