Facial Motion Capture Editing by Automated Orthogonal Blendshape Construction and
Weight Propagation’]

Qing Li and Zhigang Deng

Department of Computer Science
University of Houston
Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-07-12

October 17, 2007

Keywords: Blendshape Animation, Facial Animation, Motion Capture, Data-Driven
Abstract

We present a novel data-driven 3D facial motion capture data editing system by automated construction of
an orthogonal blendshape face model and constrained weight propagation, aiming to bridge the popularized
facial motion capture technique and blendshape approach. In this work, 3D facial motion capture editing
problem is transformed to a blendshape animation editing problem. Given a collected facial motion capture
dataset, we construct a truncated PCA space spanned by retained largest eigen-vectors and a corresponding
blendshape face model for each anatomical region of the human face. As such, modifying blendshape
weights (PCA coefficients) is equivalent to editing their corresponding motion capture sequence. In
addition, a constrained weight propagation technique allows animators to balance automation and flexible
controls.

*This research has been funded by new faculty research start-up fund at University of Houston.

http://www.cs.uh.edu

Facial Motion Capture Editing by Automated
Orthogonal Blendshape Construction and Weight
Propagation’

Qing Li and Zhigang Deng

Abstract

We present a novel data-driven 3D facial motion capture data editing system by automated construction of an
orthogonal blendshape face model and constrained weight propagation, aiming to bridge the popularized facial motion
capture technique and blendshape approach. In this work, 3D facial motion capture editing problem is transformed
to a blendshape animation editing problem. Given a collected facial motion capture dataset, we construct a truncated
PCA space spanned by retained largest eigen-vectors and a corresponding blendshape face model for each anatomical
region of the human face. As such, modifying blendshape weights (PCA coefficients) is equivalent to editing their
corresponding motion capture sequence. In addition, a constrained weight propagation technique allows animators
to balance automation and flexible controls.

Index Terms

Blendshape Animation, Facial Animation, Motion Capture, Data-Driven

I. INTRODUCTION

Motion capture has became one of the popularized techniques for acquiring natural human motion with its intrinsic
subtlety these days. Due to the costly expense of motion capture, how to efficiently and intuitively edit pre-recorded
motion capture data for novel applications has been a hot research topic in computer animation community.

Striking research efforts have been pursued for efficiently editing recorded human body motion capture data;
however, there has been relatively little research on facial motion capture data editing. Different from body motion
capture data, the facial motion capture data do not have an obvious internal structure, and inverse kinematic models
cannot be directly applied to the facial motion capture data editing without considerable efforts.

o Automated Edited
Original Blendshape User Editing Output
Input Construction
) Region Controls
. p Weight Curves
4
Region-based PCA <
spaces -
A
L vl
= | Upper | | Lower
Pre-recorded |--eececcecadacanann- >
Facial Motion " Wéight Propagation *
. Database _

Fig. 1: Schematic overview of this facial motion capture editing system.

In this work, we present a data-driven 3D facial motion capture editing system by automated construction of
an orthogonal blendshape face model and a constrained weight propagation. First, given a collected facial motion

*This research has been funded by new faculty research start-up fund at University of Houston.

capture dataset, we perform a region-based PCA decomposition and construct a truncated PCA space spanned by the
largest eigen-vectors for each anatomical region of the human face (e.g. left eyebrow). An orthogonal blendshape face
model is accordingly constructed as follows: each eigen-vector of an anatomical region corresponds to a blendshape
basis, and its PCA coefficient is regarded as its blendshape weight. In addition, the headachy blendshape interference
issue [1] that greatly affects the efficiency of the blendshape approach is minimized in our constructed orthogonal
blendshape face model. Second, we transform each frame of a new facial motion capture sequence into blendshape
weights by projecting it into the above PCA spaces on a per-region basis. As such, modifying the blendshape
weights (PCA coefficients) is equivalent to editing the underlying motion capture sequence.

To automatically maintain the naturalness of the 3D face while a facial region is being edited, we extend the
motion propagation algorithm [2] to a constrained weight propagation technique that allows animators to optionally
specify which blendshape controls (and their weights) should not be affected by later user editing. Figure [I] shows
the schematic overview of this 3D facial motion capture editing system.

The major contributions of this work include: (1) it bridges the popularized facial motion capture technique and
the blendshape approach that is perhaps regarded as the most commonly employed technique in facial animation
practice, and (2) it proposes a new, fully automated technique to construct an orthogonal blendshape face model from
motion capture data and minimize the blendshape interference issue that often exists in hand-crafted blendshape
models.

To make this work distinguished from previous facial motion editing techniques, here we briefly compare our
approach with these methods. Data-driven statistical models [3]-[5] have proved their successes in learning high-
level semantic attributes (e.g. expression), however, the applicability of these learned statistical models to regional
facial editing has not been established and demonstrated.

Independent Component Analysis (ICA) based expressive facial motion editing technique [6] is essentially
performed on a whole-face basis, where each ICA component is not purely local and often affects facial movements
non-locally. As such, making local adjustments on specific facial regions is not well addressed in their work. Our
approach not only offers flexible editing functions on local facial region and sequence-level basis, but also maximally
maintains the global naturalness of the edited 3D face using a constrained weight propagation technique.

Comparing with the method of specifying explicit weights for hand-crafted blendshape models, our approach
is more intuitive and efficient: (1) intensive manual efforts are generally required for building a hand-crafted
blendshape model from a static 3D face model, even for skilled animator; however, while our approach constructs
an orthogonal blendshape model automatically from a static 3D face model. (2) In our approach, input is a recorded
facial motion capture sequence, and output is an edited facial motion capture sequence. Mappings between facial
motion capture sequences and the weights of our automated blendshape models are seamless in our approach.
However, if a hand-crafted blendshape model is used, the animators have to solve the mapping issue between the
weights of hand-crafted blendshape models and facial motion capture sequences, which is a challenging issue. The
work of [7] is not fully automatic in order to map facial motion capture data to existing, hand-crafted blendshape
models.

The work of [8] learns controls through a physically-motivated face segmentation of a given blendshape face
model and presents an algorithm to map a facial motion capture sequence to the blendshape face model. However,
their approach requires a processed blendshape face model as an input, while our approach does not have this
input requirement and adaptively constructs a blendshape face model from a static 3D face model. Furthermore, in
order to output edited facial motion capture data (sequences) in [8], a mapping algorithm from the weights of the
blendshape model to 3D marker motions is additionally required, which is not addressed in [8].

Our approach can lend itself well to facial animation practice. For example, synthesized facial animations
(represented as 3D facial marker motions) by various data-driven facial animation synthesis algorithms [9] may
not perfectly meet the needs of animators, and the animators want to further edit them (e.g. exaggerating marker
motions on certain facial regions). To our knowledge, there are few existing tools or algorithms for this editing
purpose. Our approach can be efficiently used for this application.

The remainder of this paper is organized as follows. A review of related work is given in Section [[I} Section
describes facial motion data acquisition and preprocessing. Section describes how to construct region-based
PCA spaces and a corresponding orthogonal blendshape face model. Section [V] describes the constrained weight
propagation algorithm that is used to automatically maintain the naturalness of the edited facial motion capture
sequences. Section |VI| details how to perform sequence-level editing operations based on the constructed blendshape

model. Experimental results are reported in Section Finally, in Section |VIII} concluding remarks are given and
future research directions are discussed.

II. RELATED WORK

Geometrically deforming 3D face models is a natural way to generate facial animations. However, manually
sculpting key faces every two to three frames is a painstaking process, and repeated manual work is needed to
produce realistic facial animations with fine details. Due to its efficiency and simplicity, the blendshape approach has
been widely used for keyframing facial animations, and significant research efforts were attempted. For example,
some recent efforts attempt to reduce blendshape interference by selected motion attenuation [1] and map facial
motion capture sequences to blendshape face models [7].

Essentially, the above approaches (geometric deformation or blendshape) are designed to simultaneously move
and edit a group of relevant vertices of face geometry. However, human facial motion is the consequence of subtle
skin deformation supported by the relaxation/contraction of tens of hidden facial muscles, and motions of different
facial regions are intrinsically correlated each other. Local-region based or global deformation approaches often
need users to switch editing operations on different facial regions in order to produce 3D facial animations with fine
details. Furthermore, it is extremely difficult to judge which facial pose is closer to a real human face. A number of
data-driven facial animation editing techniques [1], [2], [4]-[6], [8] were proposed to address this issue by exploiting
rich correlations enclosed in collected dataset. Chuang et al. [4] apply the bilinear model to transform an input
2D facial animation sequence to a new one with a different expression. Most recently the multilinear model was
also successfully applied for the purpose of facial animation transferring [5]. Cao et al. [6] apply the Independent
Component Analysis (ICA) algorithm to recorded expressive facial motion capture data, and then interpret certain
ICA components as expression or speech components, respectively. Based on a blendshape representation for 3D
face models, Joshi et al. [8] present an interactive tool to edit 3D face geometry by learning controls through a
physically-motivated face segmentation. A rendering algorithm for preserving visual realism in this editing was also
presented in their approach. The geometry-driven face image editing technique [2] generates expression details on
2D face images by constructing a PCA-based hierarchical face representation from a selected number of training 2D
face images. When users move one or several points on the 2D face image, the movements of other facial control
points are automatically computed by a motion propagation algorithm. Most recently Chang and Jenkins [10] present
a 2D sketch interface for posing 3D faces. In their work, users can intuitively draw 2D strokes that are used to
search for the optimal pose of the face.

III. FACIAL MOTION CAPTURE

In the data collection stage, we captured high-quality 3D facial motions using a VICON motion capture system
(the left panel of Fig. [2). An actress with 102 markers on her face was directed to speak a delicately designed
corpus (composed of hundreds of sentences) four times, and each repetition was spoken with a different facial
expression. In this data recording, total four basic facial expressions are considered: neutral, happiness, anger and
sadness.

The facial motion data were recorded with a 120 Hz sampling rate. We collected approximately 135 minutes
motion capture data. Because of tracking errors caused by rapid large head movement and the removal of unnecessary
facial markers, we used only 90 of 102 markers for this work. The 90 markers were fully tracked. After data capture,
we normalized the facial motion data by removing head motion from motion capture frames as follows. All the
markers were first translated so that a specific marker was at the local coordinate center of each frame, and then
the Singular Value Decomposition (SVD) based method [11] was used to calculate head motion. The middle panel
of Figure [2| shows the 102 facial marker layout and the 90 kept markers.

IV. REGION-BASED PRINCIPAL COMPONENT ANALYSIS

In this section, we describe how to apply principal component analysis on a per-region basis to construct an
orthogonal blendshape face model.

As mentioned in Section [[II, each facial motion capture frame is composed of 90 facial markers. 3D positions
of all these markers (of a facial motion capture frame) are concatenated in certain order to form a 270 dimensional
facial motion vector. If a single truncated PCA space is constructed for these facial motion vectors, in order to keep

Fig. 2: The left shows a facial motion capture system, the middle panel shows the used facial marker layout, and the
right panel shows the region-dividing scheme used in this work. In the middle panel, blue and red points together
represent the total 102 captured markers, and the red points are the ninety markers used for this work.

--

(-43.68, -5.75) (-13.70, -5.75) (-10.37, -5.75) (-1.48, -5.75)
(-43.68,16.92) (-13.70, 16.92) (-10.37,16.92) (-1.48, 16.92)

Fig. 3: Illustration of the first and second most dominant PCA coefficient controls for left eyebrow region. Duples
in the figure show the PCA coefficients. As we can see from this figure, when the first PCA coefficient is increased,
the left eyebrow is raised.

more than 90% of the variation, their retained dimensionality is still higher than twenty. Furthermore, since PCA is
essentially a global transformation/reduction, there are no explicit and clear correspondences between PCA eigen-
vectors and facial region movements. In other words, if users want to edit a specific facial region, it is extremely
difficult for them to know how and which PCA coefficients should be adjusted. As such, facial motion editing in
the single truncated PCA space is not intuitive for animators.

We adopt an anatomical segmentation scheme to divide the whole face (so its facial markers) into ten different
regions (the right panel of Fig.). The ten facial regions are forehead, left eyebrow, right eyebrow, left eye, right
eye, left cheek, right cheek, upper lip, lower lip, and jaw. For the markers in each of the ten regions, we construct
a separate PCA space. We experimentally set the reduced dimensionality to three, because reducing dimensionality
to three keeps more than 90% of the variation of the motions of every facial region.

In our experiments, we found that because PCA is applied to the motions of a specific facial region, increasing
or decreasing the weights of its largest three eigen-vectors often corresponds to perceptual movements of the facial
region. For example, when users increase the weight (PCA coefficient) of the largest eigen-vector for the left
eyebrow region, the left brow is accordingly raised. Figure 3] and] show two examples of how these retained
eigen-vectors approximately correspond to perceptual movements for certain facial regions.

(-2.37,21.00) (7.12,21.00) (16.62, 21.00) (22.70, 21.00)

(-2.37,-36.20) (7.12,-36.20) (16.62, -36.20) (22.70, -36.20)

Fig. 4: Illustration of the first and second most dominant PCA coefficient controls for the lower lip region. Duples
in the figure show the PCA coefficients. As we can see from this figure, when the first PCA coefficient is increased,
the lower lip is more opener.

A. Automated Orthogonal Blendshape Construction

From the above region-based PCA decompositions, an orthogonal blendshape face model with 30 blendshape
basis (each region has three blendshape basis and total ten regions) is automatically constructed as follows: a
retained eigen-vector of any facial region corresponds to a blendshape basis, and its projected PCA coefficient is its
weight. Eq. |1 describes the constructed blendshape model. Changing these retained PCA coefficients (equivalent to
moving the sliders of blendshape weights) leads to the change of the underlying facial motion capture frame. In the
remaining description of this paper, (blendshape) weights and PCA coefficients, blendshape basis and region-based
PCA eigen-vectors, are used interchangeably.

10 3
MrkMotion = MeanM otion + Z Z Cijx EigV; (1)
i=1j=1
The blendshape approach often suffers from the blendshape interference problem due to non-orthogonal blend-
shape basis [1]. In this work, the constructed blendshape basis are orthogonal, because motion markers in different
facial regions do not intersect each other, and retained eigen-vectors in a facial region are orthogonal each other.
As such, the blendshape interference is avoided or at least minimized in our system.
Now given a facial motion capture sequence as the input of an editing task, we project every frame of this
sequence to the region-based truncated PCA spaces and obtain corresponding weights for all blendshape basis. In
time domain, these continuous weight curves can be further edited by animators (Section |VI).

V. AUTOMATED WEIGHT PROPAGATION

In this section, we describe how the weights of other blendshape basis are automatically adjusted when one or
several blendshape weights are manipulated by users, in order to maximally maintain the global naturalness of the
edited 3D face.

As illustrated in Figs [3] and [changing the weights of individual blendshape basis directly affects only the
movement of certain facial regions. However, as discussed in Section [[I} the motions of different facial regions are
intrinsically correlated each other. Based on the hierarchical PCA based motion propagation algorithm proposed in
[2], we develop a constrained weight propagation technique to adjust weights automatically while offering flexible
user controls.

We use a hierarchical principal component analysis [2] for blendshape weight propagation. Initially, we divide
the face into ten leaf nodes (each corresponds to a divided region in the right panel of Fig. [2), and then construct
two intermediate nodes (the upper face and the lower face). Finally, the whole face is considered as the root of this
hierarchy. Fig. 5| shows the constructed hierarchical face structure.

Face

Upper Lower

Right Right
Eyebrow
Left Left
Eyebrow Eye Right Loyver
Cheek Lip

Forehead

Fig. 5: Illustration of the face hierarchy for weight propagation.

For each node in Fig. [5| we construct a truncated PCA space. In this work, for the root node (the whole face),
the most dominant twenty eigen-vectors (corresponding to the largest twenty eigen-values) are retained. For the
two intermediate nodes (the upper face and the lower face), the most dominant ten eigen-vectors are retained. For
the ten leaf nodes, the most dominant three eigen-vectors are retained.

The rules for this weight propagation procedure are 1) it chooses to move upward prior to downward in the
hierarchy and 2) it visits each node only once. The propagation works as follows: first, when users change the
weight of a blendshape basis, the propagation starts at the lowest hierarchy which is one of the ten left-nodes. Then,

it propagates upward to the middle of the hierarchy (the upper or the lower face node). Then, it moves upward to
the root node (the entire face). After that, it moves downward again to the middle node that it has not visited yet
and it keeps going upward and downward until all nodes are visited. For each node it visits, it projects the facial
markers contained in the node to the PCA subspace spanned by the retained principal components of the node. In
other words, the projection is the best approximation of the propagated motions in the PCA subspace of the node.
For more details about this propagation algorithm, please refer to [2]. Figures [6] and [7] show two examples of how
this weight propagation technique automatically adjusts weights to make the edited 3D face more natural.

To make this section more readable, we briefly summarize basic steps of the motion propagation algorithm [2]
in Algorithm I} In the following algorithm description, F' represents any node in the hierarchy, dV represents the
displacement vector of all markers, and Proj(dV, Fx) denotes the projection of the F'x part of 6V to the truncated
PCA space of the node F'x.

Algorithm 1 WeightPropagation
Input: F'x, the selected node in the hierarchy.

1. set h to the hierarchy level of F'x.;
2: if hasBeenProcessed(F'«) then

3: return;

4: end if

5: Compute Proj(6V ,F'x);
6: Update 6V with Proj(0V ,Fx);

7. Set hasBeenProcessed(F'x) to be true;

8: for V F' C (level(F) =h—1 and F'N Fx = NonEmpty) do
9: WeightPropagation(F);

10: end for

11: for V F' C (level(F') = h+1 and F N Fx = NonEmpty) do
12: WeightPropagation(F);

13: end for

Fig. 6: Illustration of the weight propagation results. The left panel shows the initial face (before editing), the middle
panel shows the edited 3D face (the editing operation is the lower lip stretching, just before the weight propagation
starts), and the right panel shows its propagated results (after weight propagation). Comparing the middle panel
with the right panel, we can clearly see the weight propagation process properly adjusted the weights to make the
whole face look more natural.

A. Constrained Weight Propagation

To automatically maintain the naturalness of the face, the above weight propagation algorithm affects all the facial
regions when the weights (controls) of a facial region are being edited. However, in some scenarios, automated
propagation results may not be exactly what users need, for example, they want to exaggerate the expressiveness
of the edited 3D face or keep current configurations of certain facial regions as stationary as possible (not spoiled
by later editing). Here is a specific example: animators put the mouth to the right shape (e.g. synchronized with a
phoneme), but they want to edit the expressiveness of left/right cheeks to make the face look happier. In this case,

Fig. 7: Illustration of the weight propagation results. The left panel shows the initial face (before editing), the
middle panel shows the edited 3D face (the editing operation is the right eyebrow raising, just before weight
propagation starts), and the right panel shows the propagated results (after weight propagation). Note that after
weight propagation, not only the right eyebrow is properly adjusted, the mouth is automatically adjusted accordingly
- from fully close to slightly open.

if they move cheek controls, the above weight propagation algorithm will automatically adjust the mouth shape,
which is not desired by the animators.

In this system, we introduce a constrained weight propagation technique to achieve this flexibility. It works as
follows. First, animators specify which facial region(s) are the constrained regions (e.g., left/right eyebrows) that
will not be affected by later weight propagations, and based on the pre-defined mappings between markers and
regions, special flags are set to the markers of the constrained facial regions. Finally, we need to modify the above
weight propagation procedure (Algorithm [I)) accordingly: the leaf nodes of the constrained facial regions (in this
example, left/right eyebrow nodes) are exempted from processing, and when their parent nodes (in this example,
the upper face node and the whole face node) are processed (Proj(6V, Fx)), markers with special flags will not
be updated.

The constrained weight propagation provides an accessible tool for animators to balance the trade-off between
user controls and automation. Figures [§] and [9] show two specific examples of the constrained weight propagation.
As shown in Fig. |8] its left panel shows an original face (deformed based on a 3D facial motion capture frame),
and its middle panel shows the edited results when users raise the left/right cheeks. Notice that in the middle panel,
the mouth is automatically opened by the weight propagation procedure without constraints. Its right panel shows
the result of the constrained weight propagation - three regions (the upper lip, the lower lip, and jaw) are set as the
constrained regions. Notice that in the right panel, the mouth and jaw are perfectly kept while cheeks are moved
to the right place.

Fig. [9] shows another application of constrained weight propagation. Its left panel shows an original face, and its
middle panel shows the edited results when users close the mouth. Notice that in the middle panel, the eyebrows/eyes
are affected (from anger-like expression to neutral-like expression) by the weight propagation procedure without
constraints. Its right panel shows the result of the constrained weight propagation - five facial regions (the forehead,
the left eyebrow, and the right eyebrow, the left eye, and the right eye) are set as the constrained regions. Notice that
in the right panel, the eyebrows/eyes are perfectly kept while the mouth is moved to the expected close position.

Fig. 8: The first example of the constraint weight propagation application. The left panel shows an original face,
the middle panel shows the edited result with weight propagation, and the right panel shows the edited result with
constrained weight propagation.

VI. MOTION SEQUENCE EDITING

In this section, we describe how to perform sequence-level facial motion capture editing. Besides modifying
blendshape weights frame by frame, animators can also conveniently edit a sequence of frames by directly ma-
nipulating corresponding weight curves: a Catmull-Rom spline is first fitted based on the weight sequence of each
blendshape control, and then the animators can edit control points of the Catmull-Rom spline. The Catmull-Rom
spline is chosen in this work mainly due to its smooth interpolation and local control properties. This motion
sequence editing tool can be effectively used for keyframing animations.

Fig. 9: The second example of the constraint weight propagation application. The left panel shows an original face,
the middle panel shows the edited result with weight propagation, and the right panel shows the edited result with
constrained weight propagation.

VII. RESULTS AND EXPERIMENTS

We developed this 3D facial motion capture data editing system using VC++ on Microsoft Windows XP system.
Figure [10] shows a snapshot of the running system. As shown in Fig. [I0] its interface is composed of four panels:
the top-left panel is a blendshape control window where users can select a facial region and then move its weight
sliders, the bottom-left panel is the edited results without weight propagation, the top-right panel shows the original
facial motion capture sequence, and the bottom-right panel shows the edited facial motion sequence (the final
output) after constrained weight propagation is applied.

In three of the above panels (bottom-left, top-right, and bottom-right), facial motion capture data can be displayed
in two different modes: point rendered (each marker is rendered as a 3D point) or a deformed 3D face. In the
deformed 3D face display, a feature-point based deformation technique [12] is used to deform a static 3D face
model based on 3D facial motion capture data.

We have conducted numerous facial motion capture data editing experiments using our system, including im-
proving the animation quality of some initial synthesized or captured facial motion sequences, and exaggerating
the expressiveness of some existing facial motion sequences.

VIII. DiSCUSSION AND CONCLUSIONS

In this paper, we present a 3D facial motion capture editing system by automated orthogonal blendshape
construction and constrained weight propagation. The success of this data-driven editing system is mainly due
to the fact that it exploits rich correlations enclosed in a pre-recorded facial motion capture dataset. Based on a
collected facial motion capture dataset, a region-based principal component analysis is applied to build an orthogonal
blendshape face model. As such, we formalize the 3D facial motion capture editing problem to a blendshape
animation editing problem. Our work bridges the popularized facial motion capture technique and the blendshape
approach that is perhaps regarded as the most commonly employed technique in facial animation practice.

The traditional blendshape approach often suffers from the blendshape interference problem due to the non-
orthogonal blendshape basis. Our system automatically avoids or at least minimizes this issue by constructing
orthogonal blendshape basis. Furthermore, the employed constrained weight propagation provides powerful and
flexible controls that minimize user interventions. When animators do local changes on a facial region, motions
of other facial regions are self-configured based on the hierarchical principal component analysis based weight
propagation. To offer flexible controls in the editing procedure, the constrained weight propagation empowers the
animators further editing without spoiling previous editing efforts.

[Ele Edit Wew ‘Window Help = SLX
=y = %

timeline: — 95

face region: ’m ﬂ ﬂ

controll: | -49 |-7BEC

contral2: -28 |1016

control3: | A21 |83
Reset

< >

Fig. 10: A snapshot of the running facial motion capture editing system.

In the future, we plan to look into how to extend this data-driven system for editing and animating pre-designed
blendshape face models, and its key issue would be the mappings between pre-designed blendshape face models
and automatically constructed ones.

(1]
(2]
(3]
(4]
(5]
(6]
(71
(8]
(9]
(10]
(11]

[12]

REFERENCES

J. Lewis, J. Mooser, Z. Deng, and U. Neumann, “Reducing blendshape interference by selected motion attenuation,” in Proceedings of
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I13DG), 2005, pp. 25-29.

Q. Zhang, Z. Liu, B. Guo, and H. Shum, “Geometry-driven photorealistic facial expression synthesis,” in Proc. of Symposium on
Computer Animation, 2003, pp. 177-186.

V. Blanz and T. Vetter, “A morphable model for the synthesis of 3d faces,” in Proc. of ACM SIGGRAPH’99, 1999, pp. 187-194.

E. S. Chuang, H. Deshpande, and C. Bregler, “Facial expression space learning,” in Proc. of Pacific Graphics’2002, 2002, pp. 68-76.

D. Vlasic, M. Brand, H. Pfister, and J. Popovi¢, “Face transfer with multilinear models,” ACM Trans. Graph., vol. 24, no. 3, pp.
426433, 2005.

Y. Cao, P. Faloutsos, and F. Pighin, “Unsupervised learning for speech motion editing,” in Proc. of Symposium on Computer Animation,
2003.

Z. Deng, P. Chiang, P. Fox, and U. Neumann, “Animating blendshape faces by cross mapping motion capture data,” in Proceeding of
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, March 2006, pp. 43-48.

P. Joshi, W. Tien, M. Desbrun, and F. Pighin, “Learning controls for blend shape based realistic facial animation,” in Symposium on
Computer Animation, 2003, pp. 35-42.

Z. Deng and U. Neumann, “eFASE: Expressive facial animation synthesis and editing with phoneme-level controls,” in Proc. of
Symposium on Computer Animation. Vienna, Austria: Eurographics Association, 2006.

E. Chang and O. Jenkins, “Sketching articulation and pose for facial animation,” in Proc. of Symposium on Computer Animation (SCA),
2006.

C. Busso, Z. Deng, U. Neumann, and S. Narayanan, “Natural head motion synthesis driven by acoustic prosody features,” Computer
Animation and Virtual Worlds, vol. 16, no. 3-4, pp. 283-290, July 2005.

S. Kshirsagar, S. Garchery, and N. M. Thalmann, “Feature point based mesh deformation applied to mpeg-4 facial animation,” in Proc.
Deform’2000, November 2000, pp. 23-34.

	Introduction
	Related Work
	Facial Motion Capture
	Region-based Principal Component Analysis
	Automated Orthogonal Blendshape Construction

	Automated Weight Propagation
	Constrained Weight Propagation

	Motion Sequence Editing
	Results and Experiments
	Discussion and Conclusions
	References

