Quaternion Space Sparse Decomposition for Motion Compression and Retrieval

SCA 2012

Mingyang Zhu, Huaijiang Sun, Zhigang Deng

Motivation

- Human motion has sparse nature in both the spatial domain and the temporal domain.
- How to find an efficient way to directly represent intrinsically sparse human motion data in quaternion space.

Related Work-Sparse Representation

• Sparse coding:

It calculates corresponding coefficients based on the given signals and dictionary. [MZ93;CBL89;DMZ94;CDS01]

• Dictionary learning:

It learns dictionary atoms based on the given signals and the sparse coding coefficients. [ERKD99;AEB06]

Matrix \mathbf{X} denotes the signal data, Matrix \mathbf{D} is the dictionary and \mathbf{A} is the sparse coefficient matrix.

Related Work-Motion Compression

- Human motion compression has been studied by many researchers recently. [LM06;CBL07;BPvdP07]
- Arikan [Ari06] uses spectral clustering and PCA to reduce the data size after motion trajectories are fitted with Bezier curves.
- Gu et al. [GPD09] proposed a pattern indexing scheme for motion capture data compression.
- Tournier et al. [TWC*09] use a principal geodesics analysis (PGA) based inverse kinematics technique to restore the motion.

Related Work-Motion Retrieval

- Human motion retrieval has been a hot topic in recent years with the availability of large-scale motion capture databases. [CMU11;MRC*07]
- Various algorithms were proposed for human motion retrieval: the hierarchical tree for key-frames [LZWP03], the match web structure [KG04], weighted PCA [FF05], a fuzzy search scheme based on the geometric features [MRC05;MR06], the hierarchical motion patterns [DGL09], and low-rank subspace decomposition for motion volume [CS11].

DENG, Z., GU, Q., LI, Q. 2009. Perceptually Consistent Example-based Human Motion Retrieval. *I3D 2008*

Main contributions

• (1) Quaternion combination.

We introduce a novel quaternion space sparse decomposition model by replacing *linear combination* with *quaternion combination*.

• (2) Motion compression and retrieval application. We apply our approach to two selected applications: human motion compression and content-based human motion retrieval.

Spares representation

• Problem: $\min_{D,A} ||X - DA||_2^2$, s. t. $\forall j ||A_j||_0 \le L$

- Algorithm:
- Step 1: Initialize D
- Step 2: Update A by any match pursuit methods by fixing D
- Step 3: Update D column by column based on SVD method
- Step 4: Repeat step 2,3 until converge

Quaternion combination

- Linear combination $(DA = D_1A_1 + \dots + D_nA_n)$ does not make sense for quaternions
- We define a meaningful combination between quaternion dictionary D and weight matrix A, such as $D \otimes A = D_1 \odot A_1 \oplus \cdots \oplus D_n \odot A_n$
- In our approach, we define $D_i \odot A_i$ as quaternion power $D_i^{A_i}$ and $D_i \oplus D_j$ as quaternion multiplication.
- However, it cannot be converted to linear form by logarithm rules, because quaternion multiplication is non-commutative.

Combination order

- However, since quaternion multiplication is noncommutative, the combination order should be given in the quaternion combination.
- In our approach, we define the combination order as the selection order in sparse coding stage.
- Match pursuit methods select dictionary items based on greedy algorithms which means the selection order is the order of sorting weight in a descending manner.

QSSD Problem

• By using the proposed quaternion combination, the QSSD problem can be stated as follows:

By given a quaternion signal matrix X, QSSD decomposes X into two parts: quaternion dictionary D and weight matrix A.

The quaternion combination ensures the atoms in D are valid quaternions, and weights in A indicates the importance of different atoms for reconstructing given data.

QSSD algorithm

- Fortunately, there is no quaternion multiplication involved but only quaternion power operation when updating one column of D. That means this stage could be converted into linear problem by logarithm rules.
- Therefore, general K-SVD algorithm is applied for our QSSD problem.

- Step 1: Initialize D (ensure the atoms are valid unit quaternions)
- Step 2: Select atoms by their importance and calculate the corresponding weights
- Step 3: Update dictionary items one by one based on SVD method
- Step 4: Repeat step 2,3 until converge

Validation via simulation data

We applied our QSSD algorithm to the generated simulation dataset: the dictionary contained 20 atoms and 500 samples were generated by combining 5 different atoms.

Application-Motion compression

- Step 1: Preprocessing
- Step 2: Multi-scale representation compression
- Step 3: QSSD decomposition
- Step 4: Arithmetic coding

Recovered quality

 In our experiment, in order to quantitatively evaluate the quality of recovered (decompressed) motion data, we use two error metrics that employed in previous work: *ARMS* metric [GPD09] and *distortion rate* [Kar04].

$$ARMS = \frac{\sum_{j=1}^{Mkr\#} \sqrt{(\sum_{i=1}^{Mkr\#} \|P_i - \hat{P}_i\|^2)/Mkr\#}}{Frame\#}$$

DistortionRate = $100 \frac{\|P - \hat{P}\|}{\|P - E(P)\|}$

Comparison results

• We extracted two test datasets from the CMU motion capture database: walk motion dataset and mixed motion dataset.

Dataset	Parameter	QSSD-based	K-SVD based	[GPD09]	[Ari06]
Walk motions (Original size: 111MB Total frame #: 145828 Total clip #: 121)	Compressed size(MB)	1.8	1.8	2.4	3.1
	Compression ratio	62	62	46	36
	ARMS (cm)	1.33	5.86	4.12	4.31
	Distortion rate	2.64	6.22	5.43	5.87
	Compression time (ms/frm)	42.5	23.9	2.7	0.9
	Decompression time (ms/frm)	0.8	0.7	0.7	1.0
Mixed motions (Original Size: 93.5MB Total frame #: 122846 Total clip #: 75)	Compressed size(MB)	1.7	1.7	2.5	2.7
	Compression ratio	55	55	37	35
	ARMS (cm)	1.92	6.25	5.32	5.87
	Distortion rate	2.91	8.70	6.36	6.55
	Compression time (ms/frm)	48.4	25	3.1	1.0
	Decompression time (ms/frm)	0.7	0.6	0.7	1.2

Compression ratio curves

• We compared our approach with the other two comparative approaches in terms of compression ratio with different size of motions.

Left: walking motion dataset; Right: mixed motion dataset

Review of recovered motions

Original [Ari06] [GPD09] QSSD-based

Application-Motion retrieval

Working pipeline

- Step 1: Preprocessing
- Step 2: QSSD for each motion data
- Step 3: Similarity computing based on dictionaries
- Step 4: Result ranking

Search accuracy

• We conducted an accuracy evaluation experiment by using each motion in the dataset as the query, then compute a true-positive ratio which is defined as the true percentage of the topN(=20) results. Finally, the average true-positive ratio of 7 motion categories are calculated.

Confusion matrix

• Confusion matrix is a widely used criterion to evaluate a classification algorithm. We conducted the experiment to reveal the confusion level between any two categories of motions of our approach.

Left: the confusion matrix of K-SVD on different motions *Right:* the confusion matrix of our approach on different motions

Discussion and Conclusions (1)

• We introduce a novel quaternion space sparse decomposition (QSSD) model that decomposes rotational human motion data into a dictionary part and a weight part.

Features:

- (1) More robust for decomposing rotational data by using quaternion combination to replace linear combination.
- (2) Benefit for human motion compression and retrieval.

Discussion and Conclusions (2)

• Limitations:

- (1) The QSSD model takes significant computational time, since the expensive computational cost of quaternion combination.
- (2) The decomposition results are less intuitive for certain applications such as human motion editing/ synthesis, because some important constraints (e.g., non-negativity and affinity) were not applied.

Thank you!

