IEEE Transactions on Visualization and Computer Graphics (TVCG) 2013

Marker Optimization for Facial Motion Acquisition and Deformation

[†]Binh Huy Le, [‡]Mingyang Zhu, and [†]Zhigang Deng

[†]UNIVERSITY of **HOUSTON**

[‡] Nanjing University of Science and Technology

- Motivation
- Problem Formulation
- Algorithm
- Results & Validations
- Discussion
- Q&A

MOTIVATION

Marker-based

➤ Low spatial resolution→ Body capture

Image Courtesy of Wikipedia

Markerless

✓ High spatial resolution→ Facial capture

Image Courtesy of Beeler et al.

Marker-based

- Low spatial resolution
- ✓ Robust tracking

- ✓ High spatial resolution
- × Drifting

Marker-based

- × Low spatial resolution
- ✓ Robust tracking
- ✓ Large working volume
- ✓ Face + body capture

- ✓ High spatial resolution
- × Drifting
- More limited setup
- × Face or body capture only

Marker-based

- × Low spatial resolution
- ✓ Robust tracking
- ✓ Large working volume
- ✓ Face + body capture
- ✓ You might have one already

- ✓ High spatial resolution
- × Drifting
- More limited setup
- Face or body capture only

Marker-based

- × Low spatial resolution
- ✓ Robust tracking
- ✓ Large working volume
- ✓ Face + body capture
- ✓ You might have one already
- → Still good for facial capture

- ✓ High spatial resolution
- × Drifting
- More limited setup
- Face or body capture only

How many markers should be put on the face?

- Putting more → time consuming
- Putting less → data loss

How many markers should be put on the face?

- Putting more → time consuming
- Putting less → data loss

How to put markers?

- Guidance is not as clear as with body capture
- Hard to quantify how good a layout is

How many markers should be put on the face?

- Putting more → time consuming
- Putting less → data loss

How to put markers?

- Guidance is not as clear as with body capture
- Hard to quantify how good a layout is

How many markers should be put on the face?

- Putting more → time consuming
- Putting less → data loss

How to put markers?

- Guidance is not as clear as with body capture
- Hard to quantify how good a layout is

Can we do something more than acquisition?

- Animation?
- Data compression?

PROBLEM FORMULATION

Main Idea

- Use performance capture data to explore optimal layout
 - Different facial poses

Main Idea

- Use performance capture data to explore optimal layout
 - Different facial poses
 - Different subjects

Main Idea

- Use performance capture data to explore optimal layout
 - Different facial poses
 - Different subjects
- Marker based capture as discrete sampling of facial surface
 - Given performance capture data (animated 3D mesh sequence)
 - Find markers' locations and deformation model to estimate input best
 - Some constraints, e.g. markers are on facial surface

• Minimizing elastic energy: $-k_s\Delta d + k_b\Delta^2 d = 0$ stretching bending

Minimizing elastic energy: $-k_s\Delta d + k_b\Delta^2 d = 0$ Discretization: $(-k_s\mathcal{L} + k_b\mathcal{L}^2)d = 0$

Laplacian matrix

- Minimizing elastic energy: $-k_s\Delta d + k_b\Delta^2 d = 0$
- Discretization: $(-k_s\mathcal{L} + k_b\mathcal{L}^2)d = 0$
- Constraint some vertices (markers \mathcal{H}): $\hat{A}d = \hat{B}d^{\mathcal{H}}$

- Minimizing elastic energy: $-k_s\Delta d + k_b\Delta^2 d = 0$
- Discretization: $(-k_s\mathcal{L} + k_b\mathcal{L}^2)d = 0$
- Constraint some vertices (markers \mathcal{H}): $\hat{A}d = \hat{B}d^{\mathcal{H}}$

- Minimizing elastic energy: $-k_s\Delta d + k_b\Delta^2 d = 0$
- Discretization: $(-k_s\mathcal{L} + k_b\mathcal{L}^2)d = 0$
- Constraint some vertices (markers \mathcal{H}): $\hat{A}d = \hat{B}d^{\mathcal{H}}$
- Solution: $d = \hat{A}^{-1}\hat{B}d^{\mathcal{H}} = Wd^{\mathcal{H}}$
- Solve weights $W = \hat{A}^{-1}\hat{B}$ by Cholesky decomposition $\hat{A} = L^{\mathsf{T}}L$

- Minimizing elastic energy: $-k_s\Delta d + k_b\Delta^2 d = 0$
- Discretization: $(-k_s\mathcal{L} + k_b\mathcal{L}^2)d = 0$
- Constraint some vertices (markers \mathcal{H}): $\hat{A}d = \hat{B}d^{\mathcal{H}}$
- Solution: $d = \hat{A}^{-1}\hat{B}d^{\mathcal{H}} = Wd^{\mathcal{H}}$
- Solve weights $W = \hat{A}^{-1}\hat{B}$ by Cholesky decomposition $\hat{A} = L^{\mathsf{T}}L$

 \hat{A} computed from rest pose & markers set ${\cal H}$

$$\mathcal{H} \to W$$

Objective

Minimizing reconstruction error

Objective

Minimizing reconstruction error

$$\min_{\mathcal{H}=\{h_1,\dots,h_M\}} E = \min_{\mathcal{H}} \|X - HW^{\mathsf{T}}\|_2^2$$

s. t.:
$$H_{i,j} = X_{i,h_j}, \forall i,j \rightarrow \text{Markers are on the facial surface}$$
 $W = \hat{A}^{-1}\hat{B} \rightarrow \text{Thin-shell deformation}$

ALGORITHM

Overview

 Repeated update the markers' positions one by one to reduce the objective function (reconstruction error)

Overview

 Repeated update the markers' positions one by one to reduce the objective function (reconstruction error)

Overview

- Repeated update the markers' positions one by one to reduce the objective function (reconstruction error)
 - Update one marker

Trajectory

Minimizing objective function

Trajectory

Minimizing objective function

Trajectory

• Minimizing objective function w.r.t. $\overline{H_j}$

Trajectory

• Minimizing objective function w.r.t. $\overline{H_j}$

→ Linear least squares

Step 2: Relocate Marker

to vertex with trajectory $X_{ar{i}}$ closet to the expected $\overline{H_j}$ (L2-norm)

Step 3: Updating Weight Matrix

Marker on vertex j move to vertex j'

- \rightarrow Update $W = \hat{A}^{-1}\hat{B}$
- \rightarrow Update Cholesky decomposition $\hat{A} = L^{\mathsf{T}}L$

Step 3: Updating Weight Matrix

• Update 2 rows + 2 columns of \hat{A} (use CHOLMOD)

Step 3: Updating Weight Matrix

• Update 2 rows + 2 columns of \hat{A} (use CHOLMOD)

- Symmetry
 - Mirror input data

- Symmetry
 - Mirror input data
 - Enforce makers' positions

- Symmetry
 - Mirror input data
 - Enforce makers' positions
- Multi-resolution
 - Fix a subset of markers

- Symmetry
 - Mirror input data
 - Enforce makers' positions
- Multi-resolution
 - Fix a subset of markers
- Boundary
 - Add fixed virtual markers on boundary

- Symmetry
 - Mirror input data
 - Enforce makers' positions
- Multi-resolution
 - Fix a subset of markers
- Boundary
 - Add fixed virtual markers on boundary
- Prohibited regions, e.g. eyes, lips
 - Remove vertices from input meshes

- Symmetry
 - Mirror input data
 - Enforce makers' positions
- Multi-resolution
 - Fix a subset of markers
- Boundary
 - Add fixed virtual markers on boundary
- Prohibited regions, e.g. eyes, lips
 - Remove vertices from input meshes

Combining Data from Multiple Subjects

- One dataset as reference
- Map other datasets to the reference
 - Non rigid registration on rest poses
 Constructing dense correspondences for the analysis of 3d facial morphology [Mao et al. 2006]
 - Vertex to vertex correspondence across datasets found by nearest point search on registered rest pose

Combining Data from Multiple Subjects

- One dataset as reference
- Map other datasets to the reference
 - Non rigid registration on rest poses
 Constructing dense correspondences for the analysis of 3d facial morphology [Mao et al. 2006]
 - Vertex to vertex correspondence across datasets found by nearest point search on registered rest pose
- Optimization
 - Update only one marker layout on reference dataset then map to others
 - Different weights matrix for each dataset

RESULTS & VALIDATIONS

With Different Constraints

With Different Constraints

With Different Constraints

With Different Data Sources

Combine 5 datasets and map to Model #1

40 markers 60 markers 80 markers 100 markers

RMSE = 1.632 RMSE = 1.345 RMSE = 1.109 RMSE = 0.934

Deformation Error

- Simulation data
 - Random markers on the rest pose
 - Random markers' motion

- Simulation data
 - Random markers on the rest pose
 - Random markers' motion

- Leave one out cross model validation
 - 4 models as training, 1 model as testing

- Leave one out cross model validation
 - 4 models as training, 1 model as testing

RMSE ≈ 1mm

Comparisons

Reconstruction error of the input data

Comparisons

Reconstruction error of the input data

(refer to our paper for more results)

DISCUSSION

Applications

- Select key points $\{h_j\}$ for animated facial mesh sequenc<u>e</u> X
 - Compression
 - Editing
 - Linear Blend Skinning

Applications

- Select key points $\{h_j\}$ for animated facial mesh sequenc<u>e</u>X
 - Compression
 - Editing
 - Linear Blend Skinning

X = HW

$$s.t.H_j = X_{h_j}$$

 $-\,$ Compare to matrix factorization: No need to store & transfer W

Applications

- Select key points $\{h_j\}$ for animated facial mesh sequenc<u>e</u> X
 - Compression
 - Editing
 - Linear Blend Skinning

 $X = HW^{\mathsf{I}}$

$$s.t.H_j = X_{h_j}$$

- $-\,$ Compare to matrix factorization: No need to store & transfer W
- More precise approximation
 - EigenSkin Correction (EC) [Kry et al.]
 - Key Point Subspace Acceleration (KPSA) [Meyer and Anderson]

Parameters		RMSE _(Compression Ratio)		
# Mkrs	Rank	Ours	Ours + EC	KPSA
40	20	$1.598_{(106.8)}$	$0.255_{(16.3)}$	$0.771_{(17.1)}$
60	30	$1.256_{(98.1)}$	$0.157_{(11.3)}$	$0.656_{(11.7)}$
80	40	$1.080_{(90.6)}$	$0.113_{(8.7)}$	$0.626_{(8.9)}$
100	50	$0.865_{(84.2)}$	$0.085_{(7.1)}$	$0.502_{(7.2)}$

(results on model #1 only, refer to our paper for more)

Conclusions

- ✓ Quantitative approach to optimize marker layouts
 - With optional constraints: symmetry, boundary, multi-resolution
- ✓ Applications with better performance than state of the art methods:
 - Animated mesh sequence compression: LS-meshes, MSLS meshes
 - Facial data compression: Key Point Subspace Acceleration

Conclusions

- ✓ Quantitative approach to optimize marker layouts
 - With optional constraints: symmetry, boundary, multi-resolution
- ✓ Applications with better performance than state of the art methods:
 - Animated mesh sequence compression: LS-meshes, MSLS meshes
 - Facial data compression: Key Point Subspace Acceleration
- Data dependent (data driven approach)
- × Linear deformation model
- × Local optimum only

Acknowledgements

- Hao (Richard) Zhang for helps and discussion
- Li Zhang, Derek Bradley, and Thabo Beeler for providing datasets
- Anonymous reviewers for giving comments and suggestions

