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Abstract

In this work, a novel scheme is proposed to compress human motion capture data based on hierarchical structure
construction and motion pattern indexing. For a given sequence of 3D motion capture data of human body, the
3D markers are first organized into a hierarchy where each node corresponds to a meaningful part of the human
body. Then, the motion sequence corresponding to each body part is coded separately. Based on the observation
that there is a high degree of spatial and temporal correlation among the 3D marker positions, we strive to identify
motion patterns that form a database for each meaningful body part. Thereafter, a sequence of motion capture data
can be efficiently represented as a series of motion pattern indices. As a result, higher compression ratio has been
achieved when compared with the prior art, especially for long sequences of motion capture data with repetitive
motion styles. Another distinction of this work is that it provides means for flexible and intuitive global and local
distortion controls.
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human part (e.g. arm, leg, etc.) usually exhibits similar pat-
terns over the time. Figure 1 shows compression comparisons
between our approach and the state of the art techniques. The
major contributions of the proposed scheme include:

1. Introduction

Human motion capture data are increasingly used in many
applications such as 3D animations, digital films, interac-
tive games and medical simulations. Due to the rich styles
of human motion, it is extremely difficult for animators to
manually make up realistic human movements. Instead, in 1. Motion pattern indexing: The proposed motion pattern
practice animators find it convenient to directly apply the indexing technique greatly reduces the redundancy in
motion data captured from real human beings to 3D human motion capture data. As such, the larger the original mo-
models. The motion capture data, however, consume a huge tion database is, the higher compression ratio this scheme

number of data bits in their raw format. For instance, more
than 10 MB can easily be consumed by a 30-s motion se-
quence. In order to break the bottleneck of bandwidth and/or
storage, it is essential to efficiently compress the 3D motion
capture data.

In this work, we propose a novel motion data compression
scheme that greatly reduces the redundancy in a motion se-
quence by utilizing the fact that the motion of a meaningful
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can achieve, which is a distinction over the previous ap-
proaches that achieve approximately constant compres-
sion ratio, independent of the size of the original motion
capture database. The proposed motion pattern indexing
technique can also find applications in motion retrieval
and motion recognition.

2. Efficient coding performance: Due to the techniques of
hierarchical human body construction and motion pattern
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Figure 1: Results of our human motion compression approach and their comparisons with other approaches.

indexing, great rate-distortion and compression ratio ad-
vantages have been observed over the prior art, especially
for long sequences with repetitive motion styles.

3. Flexible and intuitive distortion control: In addition to
the global distortion control which only specifies the av-
erage reconstruction error of entire body, the proposed
scheme provides means for the local distortion control
of particular body parts, which facilitates feature-based
motion compression.

The remainder of this paper is organized as follows. A re-
view of related works is given in Section 2. The proposed mo-
tion compression scheme is described in Section 3. Section 4
describes the global and local distortion controls. Section 5
describes the parameter trade-offs in our scheme. Experi-
mental results are reported in Section 6. Finally, in Section 7,
concluding remarks are drawn and future research directions
discussed.

2. Related Works

Intensive research has been pursued on the compression
of static 3D models. The state-of-the-art works in static
3D model compression include [ADO1, AFSR03, GGHO02,
HPKGO06, KG02, KSS00, KSWO05, KV05, PK05, SK06]. In
these works, the spatial correlation among the vertices or
points in a 3D model is usually utilized to reduce the entropy
of data.

Later on, following the work by Lengyel [Len99], many
works were proposed to encode animated mesh sequences.
They typically utilize the spatio-temporal correlation in an
animated mesh sequence in order to achieve coding effi-
ciency. Works along this line include [ZO04, ZO05] that
use the octree-based motion representation, [IR03, YKLO02]
that perform vertex-wise motion prediction, [AMO00, KG04,
SSKO05] that employ the principal component analysis (PCA)
technique, BSM*03] that generalizes the geometry image
coding [GGHO02, GKO04] that adopts wavelet coding tech-
niques and [YKLO04, YKLO6] that support coding of non-
isomorphic animated mesh sequences. For a comprehensive
survey on 3D mesh compression and animated-mesh coding
technologies, we refer the readers to [PKKO05].

In 3D animation production, human motion capture data
are widely used to generate realistic sequences of animated
meshes. In this context, it is often more economical to com-
press the motion data rather than the animated mesh se-
quences. Besides, the stored motion data can be reused to
generate other animated mesh sequences. A number of tech-
niques have been proposed to efficiently compress human
motion capture data [Ari06, BPvdP07, CBL0O7, CCW*04,
LMO6]. Arikan [Ari06] proposed the seminal work in mo-
tion capture data compression. In his work, Bezier curves
are used to represent motion clips, and clustered principle
component analysis applied to reduce their dimensionality
with minor loss of visual quality. Environmental contacts
are encoded separately based on the discrete cosine trans-
formation (DCT). Liu and Mcmillan [LMO06] proposed a
data-driven approach that first segments a motion data se-
quence, then applies PCA to each motion data segment such
that an approximation with reduced dimensionality is derived
and coded. In addition, they employed key frame selection
to find the frame with sharpest coordinates change of mo-
tion and spline interpolation techniques to further improve
the coding performance. Motion data indexing concept was
also exploited for the purpose of retrieval [CCW*04, FF05,
MRO6] or compression [CBLO7]. Forbes and Fiumes [FFO05]
use a K-means clustering approach for the purpose of motion
retrieval. In this approach, the clustering is performed at a
weighted-PCA space, not on semantic separate human parts.
In the work proposed by Chattopadhyay et al. [CBLO7],
based on the statistical distribution of the floating point num-
bers in a motion matrix, each floating point number is repre-
sented as an integer index, which takes much less data bits.
This algorithm is good for low-resolution coding of motion
capture data, and achieves fast decoding with quick table
lookups. However, when higher resolutions are demanded,
the R-D performance deteriorates quickly.

In the above-mentioned human motion capture data com-
pression algorithms, the structure of a human body is not
explicitly exploited, and no means are provided for local dis-
tortion control, (e.g. the 3D residuals cannot be controlled
for specific markers.) In our work, we propose to explic-
itly utilize the human body structure, and thereafter identify
motion patterns corresponding to each body part in order to
reduce the data entropy. Because of the explicit utilization
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Figure 2: Pipeline of the encoding/decoding procedure of our approach.

of human structure, local distortion control, in addition to
global distortion control, is achieved.

3. Our Approach

Figure 2 shows the pipeline of the encoding and decoding
procedures of our approach. In the encoding procedure, first
a hierarchical structure will be constructed, where each node
contains motion markers corresponding to a meaningful part
of the human body. For each node in the hierarchy, the mo-
tion paths of all markers in it form a motion sequence specific
to that node. Then, for each node, the corresponding motion
sequence is partitioned into motion segments at certain chop-
ping points that are determined by an adaptive segmentation
algorithm. After that, a normalization procedure transforms
all motion segments using a time-warping technique such
that they have the same number of frames. In the motion
pattern extraction step, the adaptive K-means clustering is
performed which treats a normalized motion segment as a
high-dimensional vector (obtained by concatenating 3D po-
sitions of all markers in all frames) and calculates the mean
of each motion segment cluster. Each of the mean values
resulting from the K-means clustering process is stored as a
motion pattern in a motion pattern database. Thereafter, each
motion segment is represented by an index to the motion pat-
tern database. Finally, the resulting index sequences and the
motion pattern database are are compressed using entropy
coding techniques. The decoding procedure (as illustrated in
Figure 2) is basically the reverse of the encoding procedure.

3.1. Hierarchy construction

In general, the original motion data acquired from a motion
capture system contain absolute 3D coordinates of markers at
each frame as ASCII text files, which are often of big magni-
tude and therefore not good for efficient storage. In addition,
the absolute coordinate representation is formed in the global
world frame, instead of directly oriented for motion pattern
identification. For instance, when a person walks, although
the absolute coordinates of the markers on an arm can be
highly variant, their coordinates relative to the main body
typically exhibit highly repetitive patterns. Furthermore, if
we only focus on the motions of a certain body part, the
probability of finding similar local motion patterns in dif-
ferent motion sequences is significantly increased. Figure 3
shows a specific example of two different human motion se-
quences with high local similarity at two arms. As such, a
better way to store the data is to represent the data in a struc-
tural scheme. In this work, a hierarchical structure is built to
represent the motion data, where each node corresponds to
a meaningful part of the human body and typically contains
multiple motion markers. The positions of all markers in a
node are represented as coordinates relative to a reference
marker in their parent node.

In this work, we construct a five-level hierarchical struc-
ture as illustrated in Figure 4. First, a specific marker close to
the centre of body is chosen as the root marker. In this work,
the marker behind the top spine is chosen as the root marker,
and its absolute position is recorded for each frame in the
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Figure 3: Two different motion sequences with high local similarity at two arms. Both motion capture sequences are taken from

the CMU motion capture database [cmu07].

sequence. In the hierarchy, the root node of the hierarchy only
contains the root marker; the second-level nodes contain the
markers corresponding to the head, the left shoulder, the torso
and the right shoulder, respectively; the third-level nodes con-
tain the markers corresponding to the left arm, the left hip,
the right hip and the right arm, respectively, and so forth.
The parent—child relationship between nodes are illustrated
in the right part of Figure 4. In real human movements, the
movement of a child node is typically constrained by the po-
sition of its parent node. In our work, we choose as the ref-
erence marker, for each node, the one close to the joint with
the child node(s). The positions of markers in a node are
represented as coordinates relative to the reference marker
of the parent node. It should be noted that the above hierar-
chy construction process is manually performed based on the
first frame in the motion sequence. An automatic hierarchy
construction algorithm, although generally more efficient,
often leads to less semantic accuracy and hence less cod-
ing efficiency. Therefore, a manual approach is adopted in
this work, driven by the goal of high coding efficiency. In-
terestingly, manual interaction is also adopted in [Ari06] to
specify the environment contacts for a better visual quality
of the reconstructed motion.

NS
J L\_.&é&@

Figure 4: Hierarchy structure for the human body skeleton.

3.2. Segmentation and normalization of motion data

For a given motion sequence corresponding to a node in the
hierarchy as constructed in Section 3.1, we first partition it to
shorter motion segments at chopping points that correspond
to sharp changes in the human motion. By doing this, we
expect that each resultant segment contains smooth motion,
and that a high degree of similarity in motion exists among
the resultant segments. In this work, an adaptive algorithm
is used to automatically detect optimal chopping points in a
motion sequence. Basically, a metric is introduced to measure
the smoothness of motion change when the next frame is
considered. If the metric is larger than a predefined threshold,
then a chopping point is detected and a new motion segment
isinitiated; otherwise the frame is added to the current motion
segment. Algorithm 1 describes the details of this algorithm.
Here, AveFrameDIiff (S;) is the averaged difference between
two consecutive frames of the ith motion segment S;, and
LastFrm(S;) is the last frame of the ith motion segment S;.

Algorithm 1 Motion Data Partition

Input: F[1...N], motion frames for one motion node.
Input: W, a weight vector (for markers).
Input: 6, a predetermined threshold.

Output: Sy, S», .. .S, outputed motion segments
1:idx =1;
2: Sigy = {Fl}§

3:fori =2toNdo

4 e < 6 then
S Sidx = Siax + {F}
6: else
7. Output Sigy;
8: idx = idx + 1;
9:  Six={F};
10: endif
11: end for
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The above partitioning algorithm takes as parameters the
threshold 6 and the weight vector W. A smaller 6 value typi-
cally results in a larger number of resulting motion segments,
which costs more coding bits but leads to better approxima-
tion quality, and vice versa. Hence, this parameter is used to
balance the trade-off between compression ratio and com-
pression quality. The weight vector W controls the relative
importance of markers. If a marker is particularly important,
it can be assigned a higher weight, and its motion will be
better preserved in the decoded motion data. Section 4 will
describe in details how to use this parameter to perform lo-
cal distortion control. It is noteworthy that the above motion
segmentation algorithm runs separately for each hierarchical
node. In other words, different nodes can have different sets
of chopping points.

Due to the adaptivity of the above motion data partition al-
gorithm, the thus-generated motion segments typically have
different numbers of frames. In preparation for our motion
pattern extraction algorithm as detailed in Section 3.3, we ap-
ply a normalization procedure on all motion segments such
that they will have the same number of frames, which we
call reference frame number, after the normalization. In this
work, the average number of frames in each motion segments
is taken as the reference frame number. Linear interpolation
and linear smoothing are applied to generate new frames
during the process of motion segment normalization.

3.3. Motion pattern extraction

A motion pattern is essentially a representative motion seg-
ment for a node in the hierarchy as constructed in Section 3.1
(corresponding to a meaningful part of the human body). In
order to adaptively construct a motion pattern database for
each node, we need to measure the difference between the
corresponding motion segments and calculate the represen-
tative motion segment. As mentioned in the above sections,
normalized motion segments have the same frame num-
ber. We convert a normalized motion segment to a high-
dimensional vector by concatenating the 3D positions of
markers of all frames in the motion segment.

Our motion pattern extraction algorithm, essentially a vec-
tor quantization algorithm, can be described as follows: start-
ing from an initial K value, the K-means clustering algorithm
[HRFO1] is applied to a group of high-dimensional vectors
(normalized motion segments), and then an error metric is
computed to measure the quality of the clustering. If the
error is larger than a specified threshold, then the number
of clusters, K, is increased and the K-means clustering is
applied again. This iteration process continues until the er-
ror goes below the threshold. The statistical average of each
cluster will be stored as one motion pattern in a database.
Two options can be adopted as the error metric: the first is
the average clustering error (Eq. 1), and the second is the
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Figure 5: Motion pattern extraction through an adaptive
K-means clustering for the left leg motion. The red point
(motion segment) will be stored as a motion pattern.

maximum clustering error (Eq. 2).
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In the above equations (Egs. 1 and 2), u; is the cluster mean,
C; represents the set of the ith cluster, x; is a data point of
the cluster C;, and Num(C;) is the number of data points
enclosed in the cluster C;. In our experiments, we found that
the maximum error metric works better although it is slightly
more time-consuming. In addition, the maximum error metric
provides a natural way for local distortion control (as detailed
in Section 4). Figure 5 illustrates the idea of motion pattern
extraction using the adaptive K-means clustering for the left
leg.

After the motion pattern database for each node in the
human body hierarchy is generated, each motion segment of
that node is represented as an index into the database and the
number of original frames it contains before normalization.

3.4. Motion sequence coding

In this work, we employ the arithmetic coding technique —
one type of entropy coding techniques — to compress both
the motion database and the motion pattern indices. Typi-
cally, an entropy coding technique uses different numbers
of bits to represent different symbols in an input sequence,
with more/less bits assigned to less/more frequent symbols.
According to Shannon’s source coding theorem, the optimal
number of binary coding bits for an input symbol is — log,
P where P is the probability of that input symbol. Huffman
coding and arithmetic coding are two commonly used en-
tropy coding techniques, of which arithmetic coding often
approaches the optimal code length more closely. For the de-
tail of Shannon’s source coding theorem and entropy coding
techniques, please refer to [Mac02].
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For each node in the human body hierarchy, the cor-
responding motion sequence is encoded in several steps.
First, all motion patterns in the corresponding motion pat-
tern database are encoded; then, the absolute coordinates of
the root marker in all the frames are encoded; finally, for each
motion segment, the motion pattern index and the number of
original frames are encoded.

The work-flow of the motion pattern coding process is il-
lustrated in Figure 6. For a motion pattern that is composed of
multiple motion frames, we first entropy code the 3D marker
coordinates in the first frame. Then, we compute a delta frame
for each pair of adjacent motion frames, which is composed
of delta coordinates of all the 3D markers. Next, we perform
a uniform quantization to all the delta coordinate values in all
the delta frames, and the corresponding quantization param-
eters are entropy coded. In this work, eight-bit quantization
is applied to the delta coordinates. Finally, the quantized
delta coordinate values are entropy coded. Any motion pat-
tern in the motion pattern database is encoded in the same
way.

Having encoded the motion pattern database, we then en-
code the root marker positions in all the motion frames, and
for each motion segment we encode its motion pattern index
and its original frame number. As illustrated in Figure 7, the
bitstream of the encoded motion patterns (EMP, ~ EMPy)
is followed by that of the encoded root marker positions
(Root; ~ Rooty), where K and M are the total number of
motion patterns and the total number of motion frames, re-
spectively. Thereafter, for each of the N motion segments,
two integral numbers, MPIdx; and #OrigFrm;(1 < i < N),

Q. Gu et al. / Compression of Human Motion Capture Data Using Motion Pattern Indexing

are entropy coded where MPIdx; and #OrigFrm; stand for
the motion pattern index and the number of original frames,
respectively. In this work, the adaptive arithmetic coding al-
gorithm in [ari07] is used as our entropy coder.

3.5. Motion reconstruction and smoothing

The decoding and motion reconstruction process is essen-
tially a reverse of the encoding process as described in
Section 3.1. For each node in the human body hierarchy,
the corresponding motion pattern database is first decoded;
then the sequence of root marker positions are decoded which
are used to restore the global positions of the other markers;
finally a pair of (MPIdx;, #OrigFrm;) is decoded for each
motion segment, from which the corresponding motion data
pattern is retrieved from the database at index MPIdx; and
denormalized to have #OrigFrm; frames.

In the decoding procedure (Figure 2), when reconstructed
motion segments are concatenated together, there might exist
non-smooth jumps between two motion segments due to the
lossy nature of the encoding process. As such, a spline filter
[BWO5] is applied to the boundary area of two neighbouring
motion segments as a smoothing operator.

4. Distortion Control

Distortion control is, in general, an important issue in the
context of lossy data compression. This proposed scheme
is a lossy compression scheme, because several intermedi-
ate steps will cause information loss, including the normal-
ization/denormalization, the clustering, and the motion data
quantization. In order to achieve high level intuitive controls
over the compression loss in the encoding/decoding proce-
dures, the proposed scheme provides means for both global
and local distortion controls.

Rate-distortion is a widely adopted metric of coding per-
formance in the literature of data compression, which mea-
sures the distortions of decoded data, as compared with the
original, at different bit rates. In our work, distortion is mea-
sured as the average distance between the reconstructed and
the original positions of each 3D motion marker . Global
distortion is obtained by measuring the distortion over all
the 3D motion markers placed on a human body, while local
distortion is obtained by measuring over a subset of the 3D
motion markers.

In order to find the optimal balance between compression
quality and compression ratio, our global distortion controls
are provided through the threshold parameters in motion data
partition and motion segment clustering steps. These param-
eters can control the overall compression quality: tightening
these threshold parameters can increase the quality of recon-
structed motion, with sacrificed compression ratios, and vice
versa.
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However, these global distortion controls take effects from
a general perspective, and they do not provide fine controls
over the accuracy of the reconstructed motions of a particular
human part or a particular group of markers. In human body
motion capture applications, often users need accurate con-
trols over certain human parts or markers, e.g. contact con-
straints. For example, in human walking motion sequences,
it is generally required that the feet exactly touch the floor
at some frames. This scheme provides fine local distortion
controls to maintain contact constraints. As mentioned in
the motion data partition step, the weight vector can control
the importance of different markers. Increasing the weights
of contact markers can improve the accuracy of their re-
constructed motions. In the segment clustering step, users
can use the MaxError metric (instead of the AverageError
metric) to adaptively cluster motion segments, which es-
sentially specifies the maximum distortion tolerance in this
step. In our experiments, we found that the AveError metric
(Eq. 1) is a good distortion metric for relatively simple mo-
tions like walking and running. When long, complicated mo-
tion sequences are involved, we found that the MaxError
metric provides a better distortion metric since the offset be-
tween any single outlier and its centre is taken into account.

Figure 8 shows an example how local distortion controls
affect compression quality. From this comparison figure, we
can see that, by increasing the weight of a marker or a group
of markers, the reconstruction accuracy of the markers is
measurably increased (more closer to the original trajectory).

In general, by assigning higher weights for certain mark-
ers, we can achieve better visual reconstruction results for
specific markers with slightly sacrificed overall compression
ratios. In rare cases, however, if the reconstruction accuracy
of certain markers needs to strictly enforced, these markers
can be singled out and compressed separately using the Dis-
crete Cosine Transform technique, at the expense of extra
storage [Ari06].

5. Parameter Trade-Off

In our scheme, several major parameters are used for the pur-
pose of balancing compression ratio and quality (reconstruc-
tion accuracy). Here, we describe the trade-off and practical
considerations on these parameters.

1. Key-frame selection threshold: This parameter is used
in the adaptive key-frame selection step. If the differ-
ence between current motion frame and previous key-
frame is larger than this threshold, the current motion
frame will be considered as a new key-frame and the
start of a new motion segment. However, it’s not fea-
sible for users to preset a fixed value to this parameter
due to the variety of the coordinate systems used in
different motion sequences. Thus, our algorithm auto-
matically evaluates the Average Diagonal Distance of
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Figure 8: The Z-trajectories of a reconstructed marker (a
shoulder marker). Here, different weights are assigned to this
particular marker (to emphasize its importance). ‘Uniform
weight assignment’ means all markers has the same weight
(=1), ‘lowerweight assignment’ means this marker is given a
lower weight (=0.1) and other markers keep the same weight
(=1), and ‘higher weight assignment’ means this marker is
given a higher weight (=10). Other key parameters used
for this comparison are: key-frame selection threshold =0.1,
initial number of clusters = 10, and clustering distortion
threshold = 3. This motion capture sequence is taken from
the CMU motion capture data library [cmu07].

the Head (ADDH) by computing the average distance
between diagonal head markers for the initial frames
(e.g. 200 frames) of any given motion sequence. There
are four markers on the head (square distribution) for
every capture subject. We use two markers on the diag-
onal, and compute the average distance between them
over time, as our segmentation metric due to the fact that
these distances on the head always have least variance
from the entire motion. Based on the ADDH, users
just need to set a coefficient to determine the thresh-
old parameter. For example, if this coefficient is 0.5,
it means the key-frame selection threshold is a half of
the ADDH. In the paper, we set this parameter to 0.1
as shown in result figures. In our experiments, setting
this coefficient between 0.05 and 0.5 generally yields
visually convincing results as well.

2. K-means clustering parameters: These parameters in-
clude the initial number of clusters and the cluster-
ing distortion threshold. The iterative process of mo-
tion segment clustering starts with an initial number
of clusters and ends when the clustering error is be-
low the clustering distortion threshold that is defined
as the upper bound of distance (MaxError defined in
Eq. 2) between any data point and its corresponding
cluster centre. A larger number of initial clusters and/or
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Table 1: ARMS error of various test motion capture data sets using our approach.

Motion sequence Original size (MB) Segments Clusters Compressed size (MB) ARMS error Compression ratio
Short jumping motion 10.12 2724 121 0.41 6.35 25
Long jumping motion 530.12 154262 3816 12.62 4.12 42
Short combined motion 10.30 3017 154 0.45 6.48 23
Long combined motion 592.42 169 845 6126 21.16 5.32 28

The combined motion is mixed with different types of motion sequences, such as walking, jumping, climbing, dangling and sit drop. All the
motion sequences are taken from the CMU motion database [cmu07]. Number of Segments and Number of Clusters include the results from all
body parts. Here, the used parameters are: key-frame selection threshold =0.05, initial number of clusters = 10, clustering distortion threshold

= 1, and even distortion control weights.

a smaller clustering distortion threshold tend(s) to pro-
duce higher visual quality and lower compression ratio
due to the increased size of the motion pattern database,
and vice versa. Based on our experiments, an initial
number of clusters in the range of 10-100, and a value
of clustering distortion threshold in the range of 1-5%
(relative to the ADDH) lead to high compression ratios
with visually convincing quality as well.

3. Distortion control weights: The weight distribution
over markers controls the accuracy of reconstruction
for different human parts. In Algorithm 1, given a fixed
value of the threshold 6 on the right hand side, if the
weight for a certain marker is larger, the absolute co-
ordinate change of this marker (the second operand on
the left hand side including numerator and denomina-
tor) has to be smaller to satisty the segmenting criterion
(), which means shorter length for each segment but
larger amount of segments. Thereafter, more indexes
are created during clustering to identify the compressed
motion. As a result, higher reconstruction accuracy will
be achieved at the expense of more storage requirement.
By default, the weights of all markers are the same.

6. Results

To measure the reconstruction errors caused by our compres-
sion scheme, we first define an average RMS error metric —
ARMS (Eq. 3). Table 1 shows ARMS error of various test
motion capture data sets. As we can see from this table, our
scheme is quite stable in terms of ARMS error. In Table 1,
more than 900 motion capture sequences from the CMU
motion capture database [cmu07] (530 MB for single type
motions and 592 MB for complex motions) were used as our
test data set.

FrmNum

s o o O b By MrkNum

FrmNum

(3)

Various motion capture sequences of multiple subjects (to-
tal size is 529 MB) from the CMU public motion capture

data library [cmu(Q7] were used as our test data set. Based on
the reconstructed motion trajectory curves, we compared the
ARMS error of our approach with other motion compression
approaches including global PCA method and the state of the
art compression technique [Ari06] in Figure 9. In the global
PCA method, the number of retained PCA coefficients is
determined by the sum of retained corresponding eigen val-
ues (in this comparison, the sum of retained corresponding
eigen values is greater than 95% of the sum of all eigen
values). Furthermore, we also compared the compression ra-
tio among the above approaches, sub-sampling method, and
two popularized data compression tools (WinZip and RAR).
Figure 10 illustrates the results from processing human mo-
tion data concatenated by various human motion types from
CMU subject 1, 2, 5, 6, 9, 12, including walk, jump, climb,
dangle and tai chi. The sub-sampling method uses 12 as a
sub-sampling factor, i.e., every 12 frames, one frame will be
kept in the compressed files.

As we can see from Figure 10, the compression ratio
achieved by our approach is pleasing, furthermore, when
the size of original motion capture database becomes larger
(along X axis), the compression ratio achieved by our scheme
climbs up. Meanwhile, the compression ratios achieved by
some other approaches (sub-sampling, ZIP and RAR) ap-
proximately keep at a constant level. When the size of motion
database is small, our method is comparable to the Arikan’s
method [Ari06], in terms of compression ratio and recon-
structed visual quality. However, when the size of motion
database is increased, our method tends to achieve higher
compression ratios without sacrificing its visual quality. This
distinctive feature (higher compression ratio for larger mo-
tion database) is particularly useful when compressing huge
human motion capture database.

We also performed another comparison experiment on
the single type of human motion data (e.g. playing vio-
lin). Since most single-type motions are quite short in the
CMU database, we duplicate the short motion clips and ap-
pend them to the original one to create a long motion un-
til it reaches the same size with the previous mixed type
motion, 60 MB in this scenario. As shown in single-type
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Figure 9: Reconstructed motion trajectory comparisons be-
tween our approach and other techniques (the motion se-
quence is object #30 from the CMU motion capture database
[cmu07]). The global PCA retains 95% of the motion vari-
ation. Key parameters used for the Arikan’s method [Ari06]
in this comparison are: the number of clip frames (K) = 24,
reconstruction error bound =0.1, and the number of clusters
for CPCA = 10. The key parameters used for our approach
in this comparison are: key-frame selection threshold =0.1,
initial number of clusters = 10, clustering distortion thresh-
old = 5, and default (even) weight distribution. By using
these default parameters, our result appears most similar to
the original curve (ARMS error 5.32), slightly better than
Arikan’s result (ARMS error 5.87), and much better than
traditional Global PCA (ARMS error 38.54).
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Figure 10: Compression ratio comparisons between our ap-
proach and other compression approaches on the mixing of
various motion data (one of them is the object 12 of the
CMU motion capture database [cmu07] — ‘tai chi’). The
sub-sampling factor used in the sub-sampling method is 12,
and the parameters of other methods are the same with in
Figure 9.

Figure 11 (comparing with Figure 10), the compression ratio
achieved by our approach climbs up more quickly when the
size of motion database is increased, due to the fact that there
is a larger probability to encounter the occurrences of mo-
tion patterns and gain higher compression ratios for the same
type of human motion data set. In real-world applications,
the motion database may contain various sequences includ-
ing mixed type motions and single type ones. However, our
method deals with each motion sequence separately before
clustering (segmentation, normalization, etc.). In the cluster-
ing step, complicated motions will contribute more motion
patterns (cluster centres) in the clustering step whereas sin-
gle type motions such as walking and jumping will contribute
less patterns. Therefore, the final combined compression ra-
tio will be between the results of Figures 9 and 10, depending
on the distribution of motion types in the database.

We tested many motion capture sequences taken from the
CMU motion data library [cmu07]. The following Figure 12
compares original motion capture frames and reconstructed
motion capture frames side-by-side. As we can see in these
two example sequences, the quality of the reconstructed mo-
tion capture frames are very close to that of the original
motion capture frames.

7. Discussion and Conclusions

In this paper, we propose a human motion compression
scheme based on hierarchical structure construction and mo-
tion pattern indexing. The key assumption of this scheme is
that there is a high degree of temporal and spatial similar-
ity in human motion based on hierarchy body structure, and
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Figure 11: Compression ratio comparisons between our
approach and other compression approaches on the same
type of motion data (object 79 of the CMU motion capture
database [cmu07] — ‘playing violin’). The parameters used
for this comparison is the same as those in Figure 10. Note
that a distinctive feature of our approach is that when dealing
with a single pattern motion, it achieves higher compression
ratio when the size of original motion database is increased.

those motion patterns can be identified to form a database
of motion patterns. As such, a motion capture sequence can
be converted as a motion pattern index sequence. This work
achieves higher compression ratio as the size of the original
motion database becomes larger, because comparing with
previous work [Ari06], it is more efficient at exploiting re-
dundant motion patterns in a large amount of motion data set.
This scheme also provides means for flexible global distor-
tion controls and fine local distortion controls via parameter
control.

The success of this scheme is partly due to the reason that
the inherent structure information in motion capture data
is exploited for the purpose of efficient compression. Com-
pared with previous methods, our hierarchy construction is
proved to be effective in finding local similarity which is
in turn utilized to reduce the data redundancy. The adaptive
segmentation followed by normalization can efficiently ex-
tract smooth motion clips which become better clustering
candidates than simply segmenting the whole motion se-
quence through uniform clip length, as done in [Ari06]. As
an inevitable disadvantage suffered by all the compression
methods that use marker coordinates as metric, this approach
will, more or less, modify the lengths of bones during com-
pression and reconstruction. However, in our experiments,
we found that more accurate clustering (e.g. increasing the
number of clusters) can greatly reduce this negative effect
to provide visually acceptable reconstruction results. Fur-
thermore, if strict/absolute accuracy is required, global IK
reconstruction can be applied to solve the problem at the ex-
pense of longer processing time. In our experiment, the time
of compressing single 5 MB motion sequence is about one
second. The increase rate of time consumption, however, is
above the linear increase of the input size due to the non-
linearity of K-mean clustering, e.g. 30 min for 500 MB input
motion.

In the future, we plan to extend this work in the following
aspects. First, the proposed manual hierarchy construction
may be prone to error amplification from root markers to
leaf markers, such as hands and feet. One simple solution
is giving smaller threshold to root part and larger thresh-
old to the leaf parts. However, this solution could be very
time-consuming and inflexible. Therefore, we plan to inves-
tigate automatic algorithms to adaptively build optimal hier-
archical structure from motion capture data. The proposed
key-frame selection procedure may also be improved by
adopting other sophisticated pre-processing methods, such as
[BSP*04, BvdPP07, FMJ02]. Plus, a multi-step clustering in-
cluding inter-object and intra-object clustering is in progress

Figure 12: Side by side comparison between original motion frames (top row) and reconstructed motion frames by our approach
(bottom row). The test sequence is a motion capture sequence of playing basketball, from the CMU motion data library object
78 [emu07].
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to reduce the prohibitive clustering time consumption of ex-
tremely large input motion data. Furthermore, we are aware
that only human body motion capture data were extensively
experimented on this scheme so far, we plan to extend our
scheme to process as well other types of motion capture data,
such as facial motion capture data and skin deformation cap-
ture data. In addition, the current work cannot perform online
compression —compression of motion capture data on the fly,
frame by frame. As future work, we plan to look into effec-
tive techniques for online compression of motion capture
data.
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