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Abstract—Advances in computational methods and hardware platforms
provide efficient processing of medical imaging data sets for surgical
planning. In the case of neurosurgical interventions that are performed
via a straight access path, planning entails selecting a pathway, from
the scalp surface to the targeted area, that is of minimal risk to the
patient. We propose a GPU-accelerated approach to enable quantitative
estimation of the risk associated with a particular access path at inter-
active rates. It heavily exploits spatially accelerated data structures and
efficient implementation of algorithms on GPUs. We evaluate the com-
putational efficiency and scalability of the proposed approach through
extensive performance comparisons, and show that interactive rates can
be achieved even for high-resolution meshes. Through a user study,
and feedback obtained from domain experts, we identify some of the
potential benefits that our high-speed approach offers for pre-operative
planning and intra-operative replanning of straight access neurosurgical
interventions.

Index Terms—GPU Acceleration, Neurosurgical Interventions, Risk
Maps, and Straight Access

1 INTRODUCTION

Planning of interventional procedures from pre-
operative imaging has led to the development of
new effective interventional paradigms. Among the
procedures that benefit from such pre-operative
planning are neurosurgical interventions such as
deep brain stimulation, biopsies, and shunt and
insertion of external ventricular drains (EVD). Planning,
often, entails processing of multi-contrast and multi-
modal imaging (MRI/CT) to map anatomical and
pathophysiologic features. A common practice is
manual selection and assessment of the suitability of
different entrance positions on the scalp surface of the
patient in order to select an appropriate insertion path.
To process, visualize and manipulate large volumes
of 3D imaging datasets, automated surgical planning
methods have been proposed in recent years [1], [2],
[3], [4], [5], [6]. The current trend is to move as much
of the planning tasks as possible into the operating
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room to avoid errors that can appear because of
the discrepancies between pre-operative images and
intra-operative images. In this context, techniques for
integrating MRI, CT imaging, and surgical procedures
are being actively investigated [7], [8].

Recently, Herghelegiu et al. [9] proposed a multi-level
framework for planning biopsies of deep-seated tumors.
The system is meant to assist planning at all stages
from the selection of the target point within tumors, to
the selection of a safe entry point that minimizes the
risk of hit with vital structures. After selection of the
target point, the neurosurgeon defines a set of regions
on the surface of the skull, and the system displays a
color-coded map that defines the risk associated with
the paths within the region. The system also assists the
neurosurgeon in the validation of the path by displaying
information about regions in the path that require closer
inspection, specifically, the regions in which the path is
closer to any point in the brain vasculature. In terms of
visualization, the system displays a set of 2D slices and
volume rendered 3D views to assist the neurosurgeon in
the planning and validation of the selected pathway.

All the aforementioned works describe approaches to
find the optimal path for neurosurgical interventions
either automatically [4] or by assisting the decision-
making process of the neurosurgeon [5], [6], [9]. State-of-
the-art approaches use criteria defined by the operator
to generate color-coded projections of internal structures
of the brain on the scalp surface. The input includes a
geometrical representation of vital tissue (e.g., meshes
[2] or segmented volumetric data [3], [10]) that should
not be traversed by the path from a point on the scalp
surface through which the operator may insert a surgical
tool to the target point in the region of interest. With
those approaches, the operator needs to select the target
point carefully and precisely since the time required
by the algorithms for computing optimized paths is
generally long (e.g., [2]). Moreover, in most cases the
target (i.e., the vital structure) is not a single point but
rather a three dimensional (3D) structure or surface.
Therefore, accessing all different possible targeted points
within or on the region of interest requires orders of
magnitude longer processing time than the single target
point case [3], [2]. The possibility of performing this
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Fig. 1. Risk maps obtained using weights k1 = 0.1,
k2 = 0.9. The computed risk values are normalized to
the range of [0, 1]. Blue, white and red regions represent
regions of low, medium and high risk, respectively. Black
regions depict impermissible insertion areas. (a) Interac-
tive planning by moving the target point within a region.
Our high performance approach opens the possibility
of interactive intra-operative visualization for computer
assisted re-planning. (b) Moving the target point along
a selected path. The shown risk maps are computed by
placing the current target at the tip of the needle. The
horizontal bar shows the normalized risk as a function
of the percentage of covered pathway (i.e. 50% means
that the needle is currently at half of the total length of the
selected safe path). The insertion velocity can be planned
according to the risk function along the selected path.

process in real-time or near real-time allows interactive
visualization and planning, which would significantly
reduce the planning time and thus allow effective intra-
operative re-planning of neurosurgical interventions if
needed.

In this article, we propose a GPU-accelerated method
to process, visualize and plan neurosurgical interven-
tions at the interactive or near real-time speed as it
is required for intra-operative re-planning. It consists

of two main components: (i) Embedding the geometrical
structures that represent critical tissue areas, pertinent to
the procedure, into spatial data structures. This speeds up
computation of the geometric queries involved in the
estimation of the risk associated with paths. (ii) Im-
plementing those algorithms onto graphics processing units
(GPUs). This exploits the parallel nature of the problem,
while effectively handling the involved irregular work-
load. Through various comparisons (e.g., between our
approach and the CPU-based baseline implementation,
and between our approach and an existing voxel based
method), we demonstrate that besides its robustness
and interactive speed (e.g., two orders of magnitude
higher than the conventional method), our approach can
generate safer straight access paths for neurosurgical
interventions.

In practical terms, existing surgical planning ap-
proaches (e.g., the multilevel planning framework de-
scribed in [9]) could benefit from a high-performance
approach such as the one we propose, as it will open
the possibility of intra-operative planning. In addition,
the computational power might be beneficial in a pre-
operative scenario by allowing to explore and visualize
much larger planning spaces through fast processing,
and further avoid possible complications in the pro-
cedure. For instance, our high performance approach
would allow to include additional information and plan-
ning constraints (e.g. additional vital structures such
as functional brain regions, and consider the angle of
intersection of the tool with the targeted regions) with
no large increases in computation time.

To the best of our knowledge, this work is the first
to enable interactive estimation and visualization of
risk in straight access neurosurgical interventions with
mesh-based tissue representation. Our current clinical
workflow for using the herein proposed approach entails
interactively modifying (with a pointing device such as
a mouse) the location of the target point and visualizing
the effects on the risk maps. As a benefit of the high
speed of our approach, the operator can interactively
explore a much larger number of possible paths and
target points, thereby enhancing the effectiveness and
efficiency of the decision-making process involved in
neurosurgical interventions.

1.1 Applicability

Fig. 1(a) illustrates an example of how the proposed
approach can assist the operator to select both an optimal
insertion and a target point. In this particular paradigm,
the operator selects a target point within a pre-defined
region (e.g., into the core or onto the surface of a tumor)
and interactively visualizes the resulting risk map (color-
coded) to guide the selection of an optimal insertion
point. After a target point and an insertion point are se-
lected, the operator can also view the risk map associated
with the current position of the advancing needle (Fig.
1(b)). Such dynamic risk maps can significantly facilitate
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Fig. 2. Schematic view of the proposed approach. The
operator can interactively visualize the risk associated to
particular paths, and explore the effect of changing the
position of the target point.

decision-making for the operator. When the operator
selects a path, the path is usually further analyzed
and inspected by looking at imaging planes (MR slices)
orthogonal to the insertion path (also known as bird’s-
eye view). For stereotactic robot-assisted neurosurgical
interventions, such as in the NeuroArm and NeuroMate
systems, the velocity of the tooltip during insertion can
be controlled based on the risk function along the path.
The horizontal bar in Fig. 1(b) shows a visualization of
the current risk at each point in the selected pathway.
Each risk value along the pathway is computed by
setting the needle tip as current target. The risk along the
pathway increases non-linearly as the needle advances
and reaches the maximum at the final target position.
If the environment changes are known (when the tool
is near the vital tissue, etc.), the operator can adjust the
velocity of the insertion tool to advance more cautiously.
Indeed, as shown in Fig. 1(b), the high (interactive)
speed of this method allows the operator to see the exact
risk from the surrounding tissue when the tool is being
inserted, by simply placing the target point along the tip
of the tool and recomputing the risk map at each step.

2 METHODOLOGY

2.1 Definition of Planning Risk Maps
In the formulation of our problem, selection of safe
straight access paths entails minimizing a function that
quantifies their associated risks. We define such a func-
tion based on the following criteria: (1) the paths cannot
intersect any critical tissue, otherwise, this may result
in unacceptable patient injury; (2) the paths should be
as distant as possible from the critical tissue; and (3)
the path length (i.e. the distance between the entry
point and the target) should be as short as possible. In
general, additional selection criteria can be seamlessly
incorporated into this function, based on the particular
needs of the procedure.

Inspired by [2], we also represent structures seg-
mented from imaging as triangular meshes. Specifically,
we represent the scalp surface as a triangular mesh
ms = (VS , TS) and the critical tissue as another triangular

mesh mc = (VC , TC). We consider the set of candidate
paths as the line segments that extend from the vertices
of ms to a pre-defined target point p. To obtain the set
of permissible paths, we discard all the unsafe paths
that intersect with any triangle in mc. Then, the risk
associated with a particular path (belonging to the set
of the permissible paths) starting at a vertex v ∈ VS , is
computed as:

Risk(v, p) = k1||v − p|| − k2 min
v′∈VC

d(vp, v′) (1)

d(vp, v′) =


||v′ − p|| if (v − p) · (v′ − p) < 0
||v′ − v|| if (p− v) · (v′ − v) < 0
||(v−p)×(p−v′)||

||v−p|| otherwise
(2)

Here k1 ≥ 0, k2 ≥ 0 are user-specified weighting
parameters (see Fig. 3 for a visualization of the effect
of varying these parameters). All the risk map visualiza-
tions in this writing were created using weights k1 = 0.1
and k2 = 0.9, unless otherwise noted. The first term in
Eq. 1 accounts for the total length of the path, and the
second term accounts for the proximity of the path to
the critical tissue. As such, larger values of k1 enforce
the selection of short paths, while larger values of k2

enforce the selection of paths that are farther away from
critical structures. Brute-force computation of the set of
permissible paths, as well as the risks associated with
all the paths, turns out to be computationally-expensive
even for low-resolution meshes. In order to efficiently
perform the computation, we build acceleration spatial
data structures from the geometric primitives of the criti-
cal tissue mesh. This significantly reduces the amount of
computation required to obtain the risk map. An efficient
GPU implementation of our approach further enables the
computation of risk maps at an interactive rate even for
high-resolution meshes. Fig. 2 shows a schematic view
of our proposed approach. The operator can interactively
visualize the risks associated with particular paths, and
explore the effect of changing the position of the target
point.

Calculation of the risk maps involves two computa-
tionally expensive steps. The first is the identification
of all the paths that must be discarded, because they
make direct impact on the critical tissue. In our specific
formulation, it involves testing for intersection between
a line segment and all the triangles in mc. The second
step is the computation of the second term in the Eq. 1
above. This computation involves determining, among
all the vertices in mc, which one is the closest to a
specific line segment. Testing each path for intersection
against each triangle, and computing its closest distance
to each vertex are not affordable options for interactive
visualization and planning.

2.2 Acceleration Spatial Data Structures
To avoid a large bulk of the computation required to
obtain the risk map, without sacrificing precision, we
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Fig. 3. Visualizations of risk maps for different pairs of weights. (a) Position of the target point. (b) Enforcing a large
proximity: k1 = 0.1 and k2 = 0.9. (c) Enforcing the balance between length and proximity: k1 = 0.5 and k2 = 0.5. (d)
Enforcing the selection of short paths: k1 = 0.9 and k2 = 0.1.

Fig. 4. Bounding Volume Hierarchy. (a) is an example of the BVH of triangles, (b) is an example of the BVH of vertices,
and (c) shows bounding boxes for a 3D mesh (down to a depth of 3).

use acceleration spatial data structures. Specifically, we
opt for the use of Bounding Volume Hierarchies (BVHs)
[11], since they are inexpensive to compute, and they can
be quickly restructured to support meshes that may go
through dynamic deformations. It should be noted that
in this work we only consider static meshes, not general
dynamic meshes. A BVH is a partition of geometric
objects into a hierarchy that can be used to accelerate
geometric queries as the ones involved in our problem.
Formally, BVHs are binary trees, where each node rep-
resents a group of objects and the region in space that
they occupy, and children nodes are recursive partitions
of the group of objects within their parent nodes. Fig.
4(a)-(b) show 2D examples of BVHs, and Fig. 4(c) shows
bounding boxes for a 3D mesh (down to a depth of 3).
We construct two BVHs from the critical tissue mesh
mc: one holding its triangles and the other holding its
vertices. The BVH of triangles is used to compute the set
of permissible paths, and the BVH of vertices is used for
the computation of the proximity term (i.e., the second
term in Eq. 1).

A geometric query over the BVHs involves a traversal
of the data structure. To compute the set of permissible
paths we need to figure out whether each path intersects
a triangle in mc. Starting from the root, at each step of

the traversal, an intersection test against the children
nodes is performed. If a node is intersected, then the
traversal must be continued in a recursive manner over
the substructure for which the node is root. Otherwise,
the whole substructure can be safely ignored, because it
is guaranteed that none of the triangles that it holds can
be intersected by the line segment. Triangles are actually
contained within the leaf nodes of the tree structure, so
when a leaf node is reached, each of its triangles must
be tested for intersection against the line segment. The
traversal stops when a triangle hit by the segment is
found or when all the triangles within the intersected
nodes have been tested. Fig. 4(a) illustrates this idea for
the BVH of triangles. The BVH traversal starts with a test
of the box labeled AABB. As it is intersected, the traver-
sal continues with tests of its two children (i.e., AABB1

and AABB2). AABB1 is intersected, so both its children
must be tested as well. AABB1,1 is not intersected by
the path (going further down that node can be safely
discarded), but AABB1,2 is intersected. Since AABB1,2 is
a leaf node, all the geometric primitives it contains must
be tested for intersection. In the case of AABB2, we can
see that only its child labeled AABB2,1 must be tested
for intersection.

The computation of the proximity term (the second
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term in Eq. 1) takes place in a similar fashion over
the BVH of vertices. In this case, for each path we are
interested in determining what is the closest vertex (in
mc) to the line segment. Fig. 4(b) illustrates a query over
the BVH of vertices. For each path we determine which
of the children of a node is closer, and which one is
farther. In general the closest child is more likely to
contain the closest vertex than the other nodes. If the
closest vertex found within that node is closer to the
line segment than any point in the bounding box of the
farthest child node, then the farthest node can be safely
discarded. In our example, node AABB2 is the closest
one, therefore the traversal is performed in a recursive
manner over this node. Within AABB2, child AABB2,1 is
the closest, and it is also a leaf node (containing vertex
primitives), so the closest vertex within this node to our
path is found. Since the closest vertex is closer to our
path than the closest point in bounding box AABB2,2,
we can safely discard traversals through such node. In a
similar way we can discard traversals through AABB1.

2.3 GPU-based Parallel Implementation

In our proposed approach, the algorithm generates the
risk maps by performing the calculations discussed in
Section 2.2 for a large number of potential paths. Since
the calculations for each path are independent from
those of other paths, the computational task will be
ideal for implementation on massively parallel proces-
sors such as GPUs. However, in spite of the intrinsic
parallelizable nature of the problem, achieving a high-
performance on GPUs is not straightforward. The origin
of this is that the computations required for each path
are highly variable, and this irregular workload leads to
underutilization of GPU resources. To describe the pre-
sented GPU implementation, it is instructive to briefly
review its operational structure. A GPU consists of a
number of processing units, i.e. the streaming multipro-
cessors (SMs). In the streaming programming paradigm,
grids of threads are subdivided into groups known as
blocks. Different blocks are assigned for execution to
different SM in a static manner. i.e. after a block has been
assigned to an SM, it cannot be executed on another
SM. After being assigned, the threads within each block
are further subdivided into groups of 32 consecutive
threads, the warps. Threads within a warp are executed
in parallel within the SM in Single Instruction Multiple
Thread (SIMT) mode. In SIMT mode, each thread in a
warp executes the same instruction at the same time.

With respect to the problem of computing the risk
map, a naive scheme of assigning work to processing
units in CUDA or OpenCL would correspond to launch
the execution of a grid with as many threads as the
paths. Therefore, the computation for each thread would
be performed in a single thread. As a result, the high
variability of the required computations for different
paths will lead to resource underutilization. Practically,
the workload assigned to some blocks will need more

time than other blocks, eventually leading to a situation
where some of the SMs are idle for a portion of the
overall computation time. The difference between the
processing time required for different tasks can thus
lead to a high workload imbalance that translates into
performance degradation [12].

To obtain better performance, we balance the work-
load within the GPU using a centralized queue [12]. All
the paths to be computed are kept on a single queue
implemented as an array in the global memory. The head
of the queue is also kept in the global memory, and it is
visible to every thread in the grid. Instead of assigning
the computation of a path to a single thread, we make
long-running warps to retrieve batches of paths (tasks)
from the global queue. In our work, long-running warps
are those that only finish their execution when all the
paths in the global queue have been processed. This can
be appreciated when the warps process is considered:
when they are first launched, the first thread takes the
next task by updating the head of the queue through an
atomic addition operation (it needs to be atomic in order
to avoid race conditions). Then, each of the threads,
within the warp, processes one of the paths in the task.
When a warp completes this batch, it takes another task
of paths, or finish execution in case the queue is empty.
The processing of each path, first involves traversing
the BVH of triangles for determining whether it hits the
critical tissue, and then traversing the BVH of vertices to
compute the proximity term of the risk function. With
the centralized queue, none of the SMs is going to be
idle, as long as there are remaining tasks to be processed.

3 EVALUATION AND RESULT ANALYSIS

3.1 Computational Performance
To evaluate the efficiency of the proposed approach (i.e.,
to what degree it can be used in an interactive fash-
ion), we measured the time required for performing the
computation of the risk maps for meshes with different
resolutions. Specifically, the mesh sizes were varied as
follows: (i) for the scalp surface, the range of triangles
was 2k to 276k and that of vertices was 4k to 553k;
and (ii) for the critical tissue, the range of triangles was
2k to 276k and that of vertices was 46k to 300k. It is
noteworthy that the number of vertices in the scalp
surface mesh determines the number of paths to be
processed.

We implemented our proposed approach on a GPU
using CUDA, and timing was recorded using CUDA
time events. With this, the recorded time includes both
the execution time of the CUDA kernels, and the com-
munication overhead due to data transfer between host
and device. Specifically, it starts when the BVH data (as
well as the scalp surface mesh data) are transferred to the
GPU, and ends when the results from the computations
of the path length and proximity terms are transferred to
the main memory of the host. Our implementation was
tested on a mainstream commodity desktop computer
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Fig. 5. Computational times for the generation of risk maps, with meshes given as: (number of triangles - number of
vertices).

featuring an Intel Core i7 processor, a NVidia GeForce
GTX 480 GPU, and 4 GB main memory. Fig. 5 reports the
measured computational times for the above listed range
of sizes of the two meshes (i.e. scalp surface and critical
tissue). We observe that even for high-resolution meshes,
our proposed approach can achieve interactive rates, and
that it is scalable. It is noteworthy that the computational
time is approximately linear to the size of the scalp
surface mesh, since it depends on the number of paths to
be processed. Indeed, as the mesh resolution increases,
the number of paths increases linearly. By contrast, the
required computational time demonstrates a logarithmic
dependence on the size of the critical tissue mesh.

3.2 Comparison with CPU-based Baseline Imple-
mentation
We compared our proposed GPU-accelerated implemen-
tation with a CPU-based baseline implementation. The
CPU-based baseline implementation computes the risk
maps by following the same approach that we have
previously described. No attempt was made to make
use of the SIMD capability of the CPU in the baseline
implementation. We measured the computing times of
both the implementations while varying the resolution
of the vital tissue mesh, and the number of paths that
were considered. As shown in Fig. 8, a speed-up of two
orders or magnitudes in our GPU-accelerated implemen-
tation over the baseline implementation was achieved.
Interestingly, the GPU implementation also scales better
to the number of computed paths and to the size of the
vital tissue mesh than the CPU-based baseline imple-
mentation. That is, although both the implementations

are algorithmically equivalent, the speed-up increases
along with the size of the problem.

3.3 Performance Improvement due to the Task
Queue
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Fig. 6. Comparison between a GPU implementation with
a task queue, and without a task queue in terms of the
achieved speed-up (GPU no-queue time / GPU queue
time).

A speed-up of up to 1.4x (i.e. a 29% reduction in
computational time) was measured for a GPU imple-
mentation using the centralized task queue with respect
to a baseline GPU implementation (see Fig. 6). In the
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baseline GPU implementation we configure a grid that
holds as many threads as there are paths to process.
As shown in Fig. 6 the achieved speed-up increases
with the size of the vital structure mesh, but is not
significantly sensitive to the number of computed paths.
The explanation for this is that when the size of the mesh
is increased the application becomes memory bounded,
that is, the computation becomes dominated by the time
spent on memory operations.

3.4 Comparison with Voxel-based Approach
We also compared our proposed approach to a fast
voxel-based method for computing the risk maps [3]
running on the CPU. In both the approaches, we varied
the size of the input structure as well as the number of
computed paths. The input structure to the voxel-based
approach [3] is volumetric data containing precomputed
information about risks. The value stored in each cell
of the 3D grid is an estimate of the risk involved in
traversing the cell with the surgical instrument. The
total risk associated with each path is then computed
as the sum of the risks of all the voxels intersected by
the surgical instrument. Since the input structure of the
two methods are fundamentally different, we make the
following assumption: the vital tissue mesh and the vol-
umetric data are equivalent in terms of size, if the mesh
is the iso-surface reconstructed from a segmented 3D
image with the same resolution as the volumetric data by
the classical marching cubes algorithm. Our mesh-based
approach consistently outperforms the voxel-based ap-
proach for all of the input structure sizes and number of
paths, as illustrated in Fig. 7. We also observe that our
proposed mesh-based approach has a better scalability to
problem size than the voxel-based approach. Although
the computational time of both the mesh-based and
voxel-based approaches is approximately linear to the
number of computed paths, the voxel-based approach
has the additional disadvantage of growing linearly with
the size of the input structure. This leads to a quick loss
of the interactive rate for the voxel-based approach, as
shown in Fig. 7.

3.5 User Study
We conducted a user study in order to quantitatively
assess the benefits that interactive computation of risk
maps might have on the planning of straight access
neurosurgical interventions (Fig. 9). Specifically, we ex-
plored the benefits that the introduced high performance
approach might have on intra-operative target reposi-
tioning. We compared the safety, in terms of length
and proximity, between paths that were planned using
visually-guided target position selection, and paths selected
through risk-map guided target positioning. The visually-
guided approach stands for any method that requires
planning outside of the operating room due to compu-
tational time limitations (e.g., [2]), and the risk map-
guided approach stands for an approach which enables
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or a 576x460x136 grid; R4 is a 185k Verts-370k Tris
mesh, or a 576x768x136 grid; R5 is a 246k Verts-492k
Tris mesh, or a 576x768x272 grid.

intra-operative re-planning, such as the one described
in this article. For this purpose, seven subjects were
asked to perform a set of tasks that emulate planning
the insertion of a surgical tool for a straight access
intervention. The subjects were graduate students of
computer science with an average age of 26.4 years. Prior
to the experiment, subjects were explained the concept
of risk maps, and the tasks they had to perform. They
had to select both the insertion point on the scalp surface
and the target point within a given region of interest.

The experimental protocol consisted of the two men-
tioned treatments (i.e. visually-guided and risk map
guided target positioning) distributed among twelve
planning tasks (i.e. six tasks for each of the two treat-
ments). Two regions of interest were defined (see their
positions in Fig. 9), such that for each treatment the
three tasks required planning the best insertion path
for one of the regions using one of three different sets
of risk map weights. The set of weights used were (i)
w1 ≡ (k1 = 0.1, k2 = 0.9); (ii) w2 ≡ (k1 = 0.5, k2 = 0.5);
(iii) w3 ≡ (k1 = 0.9, k2 = 0.1).

For the visually-guided treatment, the subjects were
asked to find the best path they could find by selecting
an insertion point and freely positioning the target with-
out the aid of risk maps. That is, they relied on the visual
inspecting and navigation of the rendered models for the
surface of the head and the blood vessels. In addition
to this, for each tried path, they were presented with
information about the length and the proximity to blood
vessels. After a satisfactory target point was selected, a
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Fig. 8. Comparison between our GPU-accelerated and our CPU baseline implementations in terms of the obtained
speed-up (CPU time / GPU time)

full color-coded risk map was displayed, and the subject
was given the opportunity to reposition the entry point
if desired.

For the risk-map guided target, the user was allowed
to use guidance from the risk map in order to select a
satisfactory target position. As the subject freely moved
the target, full risk maps were interactively computed
and displayed. Additionally, for each given target, the
subject was given the opportunity to visualize a coarse
grid computed within the region of interest that suggest
safe regions to compute the target. This grid consist of
56 points within the region of interest, with each point
holding the risk of the safest path that can be found,
using the risk model presented in this article, if the point
is selected as the target. A normalized color-coded visu-
alization of the minimum risks is displayed on subject
demand to guide target repositioning. It is noteworthy to
mention that such visualization requires the computation
of 56 full risk maps, and can be completed in less than
two seconds. This computation has to be performed only
once for a given region of interest.

We recorded the achieved lengths and proximity val-
ues for the planned paths, and results are shown in
Fig. 10. A repeated-measures t-test show statistically
significant reduction of length for every pair of weights
(for w1, t = 2.898, p = 0.012; for w2, t = 3.939, p = 0.001;
for w3, t = 3.738, p = 0.002), as well as for proximity
weight w1 (for w1, t = −5.624, p = 0.00008; for w2,
t = −0.766, p = 0.457; for w3, t = −1.317, p = 0.21).
For weights w2 and w3 we observed no evidence of im-
provement in terms of proximity. This can be explained
by noting that weights w2 and w3 penalize the selection
of long paths according to the risk model, in addition
to the fact that, for most access pathways, their length
in millimeters tends to be larger than the distance to the
closest vessels.

3.6 Neurosurgeon Evaluation
The ultimate goal of our work is to be able to pro-
vide assistance to the neurosurgeon for intra-operative
planning/re-planning. With the purpose of assessing
how much the neurosurgeon can benefit from interactive
visualization and planning within the operating room,
two experienced neurosurgeons were consulted. The
surgeons were explained the proposed approach, and the
kind of computations that it can perform at interactive
rates. They were asked to answer a questionnaire for
rating how much they can benefit from some of the
features enabled by the interactive approach, and asked
to identify which surgical procedures can benefit, as well
as to provide freeform feedback and suggestions.

The questionnaire asked to score from 1 to 6 (where
6 means “most useful” and 1 means “least useful”)
the usefulness of the following interactive features: (1)
pre-operative risk-map guided target repositioning, (2)
intra-operative risk-map guided target repositioning, (3)
automatic suggestion of safest paths. Interactive pre-
operative and intra-operative target repositioning were
identified as highly beneficial features. Pre-operative
planning is necessary for every surgical procedure, but it
is considered to be a time-consuming process. As such,
any tool that can speed up the process as well as provide
with assistance information for exploring and validating
the plan for the procedure is considered useful. Intra-
operative target repositioning was identified as a highly
desirable feature for surgical procedures in which tissue
shifts occur (e.g., tumor resection in which brain shifts
and changes form after opening the dura). Integration
between the planning assistance software, the imaging
acquisition mechanisms, and the surgical plan execution
tool is the key in the intra-operative scenario. Automatic
suggestion of safest paths was identified as an unde-
sirable features as it takes away responsibility from the
surgeon. It was stressed that the planning tool should
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Fig. 9. (a) A snapshot of our user study, (b) zoomed view of the region of interest and selected path, (c) corresponding
visualization of the grid for risk map-guided target positioning, (d) the two regions of interest specified for the user study.
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Fig. 10. Comparison of recorded lengths and proximity of the selected paths using conventional visually-guided target
positioning (i.e., conventional target positioning through visual inspection), and risk-map guided target positioning
(i.e. our approach), over three different sets of weights (w1 ≡ (k1 = 0.1, k2 = 0.9); w2 ≡ (k1 = 0.5, k2 = 0.5);
w3 ≡ (k1 = 0.9, k2 = 0.1)). For the visually guided target positioning subjects had to decide were to place the target
by just looking and navigating through a 3D visualization of the head surface, vital structures and region of interest.
For the risk-map guided target positioning, subjects were provided with an augmented view interactively showing the
effect of target repositioning on the risk maps, as well as a risk grid that provided the subject with information about
safe regions to position the target.

only provide assistance to the surgeon. Instead of au-
tomatic suggestion of a number of safest paths, it was
recommended to show the surgeon a reduced safest area
such as a cone with its tip at the target point, as this gives
the neurosurgeon with the information that would both
reduce the planning space and still leave space for the
procedure to benefit from the surgeon experience and
good criteria.

The mentioned procedures that could benefit from
interactive planning include: deep brain stimulation for
the placement of electrodes, shunt placement, small tu-
mor resection, brain cyst resection, aneurysm treatment,
and arteriovenous malformations (AVM). For all of these
procedures it was also suggested to include information
on the risk maps about functional regions of the brain, as
these are actually more important in selecting the access
pathways than the position of blood vessels (which can
be slightly retracted during the surgical procedure). This
functional regions could be included in the interactive
approach as additional vital structures that should be

either avoided, or whose intersection would carry a
penalization that would affect the risk of the access
pathways. Another related and important application
that could be benefited by the proposed computational
framework is the procedures using the gamma knife,
which is used to apply radiation doses over tumors.
Precise planning of radiation trajectories that minimize
the exposure of neighboring tissue could be benefited
by a high performance approach, as it requires heavy
computations as well.

4 CONCLUSIONS AND FUTURE WORK

This article introduces a novel efficient GPU-accelerated
scheme for the generation of guidance-maps tailored
for neurosurgical interventions with straight access. It
allows ultrafast processing and visualization even for
high-resolution meshes (e.g., 86k and 115k paths for a
critical tissue mesh of 553k triangles and 276k vertices
require 75 ms and 116 ms, respectively), which facilitates
interactive planning and intra-operative visualization.
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The current work is focused on neurosurgical inter-
ventions with straight access paths. In the future, we
plan to further investigate efficient approaches for proce-
dures on dynamically changing structures, secondary to
breathing, cardiac beating, and/or to the interventional
procedure. Another future research direction would be
to extend the current work for efficient planning and
visualization of surgical interventions with non-straight
access paths.
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