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A preliminary study using the Quake 3 and XRace games as benchmarks

on three mainstream mobile system-on-chip architectures reveals that the
geometry stage is the main bottleneck in 3D mobile games and confirms that
game logic significantly affects power consumption.

espite the phenomenal growth of mobile applica-

tions in novel categories, such as education and

lifestyle, gaming applications remain the most

popular category by a wide margin, according
to the latest Apple App Store statistics (http://148apps.biz/
app-store-metrics).

Although 3D entertainment is gaining a market foothold
in other media, including desktop computing, 3D games
are still a relative rarity on smartphones, in part because
mobile and desktop segments differ considerably in feature
and performance requirements. For example, rendering
effects such as aliasing and imperfect shading can result
in reduced image quality because the smartphone screen
is viewed closer to the observer’s eyes compared with
a PC." Also, 3D graphics and games are power-hungry
applications in general, which can be a major limitation for
battery-powered smartphones.

To improve the performance and energy efficiency of 3D
mobile games, a clear research priority is to identify and
quantify bottlenecks in the games’ 3D graphics pipeline.
Intensive efforts have attempted to characterize the per-
formance and power consumption of desktop 3D games,?
but undertaking the same task for smartphones is much
more challenging. Unlike PCs, mobile architectures are
designed for small dies, low hardware cost, and low power
consumption. As such, smartphones’ graphics hardware
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is integrated into a system on chip (SoC) consisting of the
core processor, the digital signal processor, and many
peripheral controllers. This tight chip integration makes
it infeasible to physically isolate and measure the SoC’s
graphics hardware.

Moreover, because smartphone graphics hardware is
less competent relative to desktop PCs, the smartphone’s
general-purpose processor still plays a substantial role in
mobile graphics computing. As a result, many aspects of
the SoC are involved in 3D graphics computing, which ex-
acerbates the task of isolating and quantifying graphics
bottlenecks on smartphones.

To tackle these challenges, we used a five-stage,
abstracted graphics pipeline, inspired by the OpenGL
for Embedded Systems (OpenGL ES 2.0) graphics
pipeline, to measure the performance of two game
benchmarks. We compared five game versions—one
corresponding to the original source code and the
other four corresponding to four conditions in which
we selectively disabled one or more pipeline stages.
Then, using empirically measured performance and
power consumption data for three mainstream smart-
phones—the Motorola Droid, HTC EVO, and Motorola
Atrix 4G—we performed an in-depth quantitative
bottleneck analysis on performance and power con-
sumption among the pipeline’s five stages.
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Table 1. Technical specifications summary for three smartphone SoC models.

CPU ARM Cortex A8 QSD 8650 Dual-core ARM Cortex 9
GPU PowerVR SGX 530 Adreno 200 GeForce ULV

CPU clock (MHz) 600 800 1,000

GPU clock (MHz) 200 256 128

GPU memory (MHz) 200 128 600
Polygon fill rate (millions of triangles per sec) ~90 ~70 ~80

Pixel fill rate (megapixels per sec) ~250 ~133 ~1,200

Our analysis revealed that the geometry stage is the
main bottleneck in 3D mobile games and confirmed that
game logic significantly affects power consumption.

SMARTPHONE PLATFORMS

Efforts to characterize the performance and power con-
sumption of 3D desktop games include dynamic workload
characterization on graphics architecture features,” 3D graph-
ics performance modeling,”> and the power modeling of 3D
graphics architecture.*®* Modern smartphones use signifi-
cantly different graphics hardware, which makes it extremely
difficult to apply these study results to smartphones.

Unlike previous work that has attempted to break down
power at the system level,® our work focuses on the per-
formance and energy characterization of mobile graphics
in the context of mobile SoC architectures that represent
state-of-the-art design.

Table 1 lists the technical specifications of the three
smartphone platforms in our study: the Droid was equipped
with Texas Instruments’ Open Multimedia Application Plat-
form (OMAP 3430), the EVO with Qualcomm’s Snapdragon
S2, and the Atrix with Nvidia’s Tegra 2.

The OMAP PowerVR GPU architecture consists of three
main modules:

e atile accelerator, which stores the scene data and di-
vides the screen into tiles;

e an image synthesis processor, which performs hidden
surface removal to determine visible pixels; and

e atexturing and shading processor, which uses a uni-
fied shader architecture with programmable functions.

The Snapdragon Adreno GPU offers a similar program-
mable graphics pipeline. However, the memory controller
in the PowerVR GPU is a 32-bit low-power double-data-rate
interface (LPDDRI) and can run at up to 200 MHz, which
offers a 56 percent increase in memory bandwidth, com-
pared to the Adreno GPU’s 128 MHz. Moreover, although the
Adreno GPU'’s streaming texture unit can combine video
and images with 3D graphics, it has only two such texture

units, relative to the PowerVR GPU’s four. Therefore, the
theoretical fill rate of the texture units in the Adreno GPU
is lower than that in the PowerVR GPU (133 to 250 million
versus 250 to 300 million texels per second).

The GeForce ULV (ultralow voltage) GPU in Nvidia’s Tegra 2
has a different architecture than either the PowerVR or
Adreno GPU. First, it uses an immediate mode renderer
instead of a tile accelerator. Second, it uses completely
separate vertex and pixel cores with different core archi-
tectures, rather than a unified shader architecture.

Immediate mode renderers have dominated PC appli-
cations, while tile-based renderers have been prevalent in
embedded or low-power devices. Relative to immediate
mode GPU architectures, tile-based renderers fetch only the
visible texels, while immediate mode renderers fetch texels
for every pixel in a polygon. Tile-based renderers require
only one frame-buffer access to output final color; immedi-
ate mode renderers need multiple buffer accesses to output
final color. However, as geometric complexity increases,
immediate mode renderers are the better option because
tile-based renderers must process all the polygons in a
tile for each pixel. Immediate mode renderers use explicit
Z-buffering to resolve this issue.”

CHARACTERIZATION DESIGN

Similar to the OpenGL ES 2.0 pipeline, we use a logical,
abstracted graphics pipeline to describe mobile graphics ar-
chitecture. Unlike previous efforts to quantitatively analyze
power consumption using a mobile 3D graphics pipeline,'
we measure both performance and power consumption in
real-world 3D games or graphics applications.

As Figure 1 shows, the abstracted graphics pipeline con-
tains five stages, consecutively executed:

e Application. The CPU executes the 3D graphics ap-
plication. This stage also involves the graphics system
driver running on the CPU and calling OpenGL APIs
into actions that the GPU executes.

e Geometry. The processor calculates the vertex attri-
butes and positions within the 3D scene according to
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Figure 1. (a) Abstracted mobile graphics pipeline, which consists of five stages, and (b) experimental setup. The pipeline is designed
to measure both performance and power consumption in actual 3D games by isolating pipeline stages and analyzing them to
identify bottlenecks. The study used the Quake 3 and XRace 3D games as benchmarks

the scene organization. Tasks include multiplying ver-
tices by model view and projection matrices, executing
vertex shaders, and so on.

e Texture fetching. The processor performs texture data
fetch workloads.

e Fragment shading. The processor executes various
pixel shaders to process fragments and screen pixels,
as well as operations that use textures.

e Pixel processing. The processor performs the fixed
function operations to further process pixels after
fragment shading, such as reading and writing color
components, reading and writing depth and stencil
buffers, and alpha blending.

Disabling pipeline stages

Similar to graphics performance profilers such as gDEBugger,
we used a scheme to evaluate the selected benchmarks in
which we disabled some or all graphics pipeline stages. Our
scheme consists of four possible code transformations:

e Disable graphics. We disable all the pipeline stages by
disabling all the OpenGL commands that push vertices
or texture data into the graphics pipeline.

e Disable rasterization. We disable all the stages except
the geometry stage by forcing all W-coordinates in
the scene to be negative (changing W to ~|W|) after
model-view and projection transformations. Geometric
operations proceed as usual before rasterization, but
there are no rasterization and follow-up operations
because all vertices now have negative W-coordinates
and are thus culled.

e Disable texture fetching. We force OpenGL to use
2 x 2 pixel stub textures. Consequently, the pipeline
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performs fetching, mapping, and filtering operations
on texture data only on that size, which minimizes the
texturing workload.

e Disable fragment shading. Instead of running every
complex shader for each pixel, as in the original graph-
ics program, we run only a simple stub shader, thus
removing most of the pixel-shading workload.

We performed all these isolation and disabling trans-
formations without using profiler tools, primarily because
profiler tools typically have their own associated runtime
and energy consumption overhead, which is extremely
difficult to eliminate in data postprocessing.

Experimental setup and procedure

We chose Quake 3, a first-person shooter game, and
XRace, a car race game, as our representative 3D mobile
game benchmarks. In the past several years, both game
categories have dominated the top 10 list of preferred An-
droid 3D games.

Quake 3, which uses OpenGL or OpenGL ES as its graph-
ics engine, has been one of the most successful 3D desktop
games in the past few decades.® The latest release of Quake 3
uses predominantly state-of-the-art vertex and pixel pro-
grams, which extensively exploit the capability of modern
mobile graphics processors.

XRace uses OpenGL ES 2.0 for rendering and is repre-
sentative of optimized graphics on modern mobile SoCs.

We believe that characterizing these cutting-edge games
sheds significant light on how real-world 3D graphics and
game applications run on modern mobile platforms.

For both Quake 3 and XRace, we generated five game
versions: one that corresponds to the original source code



and four that correspond to the
four stage-disabling conditions. To
make our characterization process
repeatable, for each stage-disabled
version, we ran a traced game demo
on smartphones to measure its per-
formance and power consumption.
Figure 2 shows select snapshots for
each game.

A game demo is a recorded se-
quence of game playing, such as
FOUR.dm 89 for Quake 3 (available
from the original package file in the

Quake 3

XRace

game CD), that we can reproduce

Original

Tk

F:
LA

Texture fetching disabled

Fragment shading disabled

on different runs. We first read
each frame in the recorded game
sequence—map type, character
positions, weapon information,
number of enemies, and so on. We
then reconstructed this sequence in the 3D scene and ren-
dered it on the screen using the mobile CPU and GPU. We
could then consecutively read and render the subsequent
frames.

To force the game engine to exhaust CPU and GPU re-
sources, we ran the game demo as fast as possible without
dropping any frame. Hence, completion time is a sound
performance measure or indicator.

To measure each smartphone’s power consumption,
we first hacked its battery and inserted a sensing resistor
to measure the current from the battery. We used a data
acquisition (DAQ) system to simultaneously measure the

Figure 2. Snapshots of the game demos for Quake 3 (top) and XRace (bottom) with
different graphics pipeline stages disabled. The study involved five versions of each
game—the original and four versions that correspond to four stage-disabling conditions.

battery’s voltage and current, with a sampling rate of 1 kHz,
and used a host PC to store the collected data. We then
calculated instant power consumption by multiplying the
voltage and current every 1 ms. Finally, we computed the
average every 100 ms to reduce random noise and potential
errors from the measuring process.

We ran each version of Quake 3 and XRace on the three
smartphones, measured its game demo running time, and
recorded its associated power trace. To eliminate any system
caching effect, we rebooted the smartphones before measure-
ment. We repeated the measurement of each version of Quake 3
and XRace 10 times and computed the average.

Table 2. Raw running time and power consumption for original code and four transformations
(stage-disabled program versions).

Original
Time (s) 449 15.5 64.7 24.5 40.8 14.6
Power (mW) 944.2 460.9 1,005.7 490.1 918.9 377.2
Disable graphics
Time (s) 20.3 6.3 20.2 6.8 18.6 5.8
Power (mW) 417.2 260.5 402.5 273.5 432.4 216.5
Disable rasterization
Time (s) 31.7 10.1 45.2 15.2 314 8.9
Power (mW) 653.6 378.2 669.9 366.6 648.9 3029
Disable texture fetching
Time (s) 39.2 134 53.0 194 384 12.8
Power (mW) 869.4 411 8927 4014 846.6 291.7
Disable fragment shading
Time (s) 39.0 13.5 59.0 219 38.7 13.6
Power (mW) 815.0 447.3 873.8 466.4 8334 367.8
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Table 3. Running time and power consumption for each pipeline stage.

Application
Time (s) 20.3 6.3 20.2 6.8 18.6 5.8
Power (mW) 417.2- 260.5 402.5 273.5 4324 216.5
Geometry
Time (s) 1.4 3.8 25.0 84 12.8 3.1
Percentage total time 46.3 41.3 56.2 47.5 57.7 35.2
Power (mW) 236.4 177 2674 93.1 213.5 86.4
Percentage total power 44.6 58.7 443 429 43.9 53.8
Texture fetching
Time (s) 5.7 2.1 1.7 5.1 24 1.8
Percentage total time 23.2 22.8 26.3 28.8 10.8 20.5
Power (mW) 74.8 59.8 113.0 88.7 72.3 52.1
Percentage total power 14.2 29.8 18.7 41.0 14.9 324
Fragment shading
Time (s) 5.9 2.0 5.7 2.6 2.1 1.0
Percentage total time 239 21.7 12.8 14.7 9.5 114
Power (mW) 129.2 13.6 1319 237 85.5 9.4
Percentage total power 24.5 6.8 21.9 11.0 17.6 5.8
Pixel processing
Time (s) 1.6 13 2.1 1.6 49 29
Percentage total time 6.5 14.3 4.7 9.0 22.1 33.0
Power (mW) 86.6 9.3 90.9 1.1 115.2 12.8
Percentage total power 16.4 4.6 15.0 5.1 23.7 8.0
System (power only, 466.6 mW 4199 mwW 4204 mW
all stages disabled)

CHARACTERIZATION RESULTS

Table 2 shows the raw running time and power mea-
sured with different code transformations. We calculated
the running time and power consumption of each pipe-
line stage using simple subtraction operations between
the original and the stage-disabled versions, or between
two stage-disabled versions. Table 3 and Figure 3 show
the performance and power consumption breakdown
as well as bottlenecks we identified. Our results point to
several patterns in the pipeline stages.

Impact of geometry stage

As Table 3 shows, the geometry stage uses a major
portion of power and computing time, consuming more
than 40 percent of total computing time and more than
35 percent of total power on all three platforms. Arguably,
scene complexity makes the geometry stage a boundary
on performance and energy consumption, even with scene
organization techniques such as binary space partition-
ing, which both games use. Quake 3 uses highly complex
scenes, which could account for its high power consump-
tion relative to XRace.

COMPUTER

Fragment shading versus pixel processing

Table 3 also shows that the fragment shading stage
consumes a larger portion of power and computing
time than the pixel processing stage on both the Motor-
ola Droid and HTC EVO. On modern mobile GPUs, such
as the PowerVR and Adreno, pixel-processing work-
loads in the GPU frame buffer are dispatched to on-chip
hardware units. These modern mobile GPUs employ a
programmable shader architecture so that graphics
and game developers can use software to create more
realistic and rich shading effects. However, hardware
implementation avoids most of the software implemen-
tation instruction fetching, decoding, and execution
overhead, which results in power consumption and
performance gains over the chip.

On the Motorola Atrix 4G platform, consumption is just
the opposite: pixel processing consumes a larger portion
of computing time and power than the fragment-shading
stage. One possible explanation is the architectural differ-
ence between the Atrix 4G and the other two platforms, which
use a tile-based graphics architecture. The GeForce ULV GPU
must perform pixel-processing operations over the entire frame
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Figure 3. Analysis of tested code configurations. (a) Performance breakdown and bottlenecks and (b) power consumption break-
down and bottlenecks. “System” represents the baseline power consumption (all graphics pipeline stages disabled).

buffer for every drawing frame, while the PowerVR and Adreno
GPUs process pixels in one tile of the entire frame buffer.

Application versus graphics

Compared to game logic computation in the application
stage, the Snapdragon graphics consume more power than
the OMAP graphics, but the OMAP graphics outperform the
Snapdragon’s. The Adreno GPU on Snapdragon offers a pro-
grammable function pipeline similar to the PowerVR GPU
on OMAP. However, because the PowerVR GPU’s memory
controller is a 32-bit LPDDRI1 interface, it can run at up to
200 MHz, which offers approximately a 56 percent increase
in memory bandwidth relative to the Adreno GPU (128 MHz).

From the integrated circuit design perspective, moving
data within the memory system consumes measurable
power. Hence, the PowerVR memory controller leads to im-
proved energy efficiency in the texturing and pixel-shading
stages, which involve frequent access to texture memory
and other pixel buffers.

Moreover, although the Adreno GPU’s streaming texture
units can combine video and images with 3D graphics, the
GPU has only two such texture units, relative to the four tex-

ture units on the PowerVR and GeForce GPUs. Consequently,
the Adreno GPU’s theoretical texture fill rate of 133 to 250 mil-
lion texels per second is significantly slower than the PowerVR
GPU’s theoretical rate of 250 to 300 million texels per second.

On the HTC EVO, the texturing stage consumes signifi-
cantly more power and computing time for XRace than for
Quake 3, so this stage is a major performance and power
consumption bottleneck on that platform. Also, relative to
the Adreno GPU, PowerVR’s hardware implementation of
hidden surface removal significantly increases its fragment-
shading and pixel-processing capability; on the other hand,
removing the pixels avoids additional energy consumption
in the fragment-shading stage.

Game logic and power consumption

In contrast to the characterization results of commod-
ity desktop graphics, game logic for the three smartphone
platforms consumes a significant percentage of total power.
As Figure 3 indicates, Quake 3’s game logic (mainly the CPU
workload) consumes about 30 percent of total power for the
three mobile platforms. On a commodity desktop such as
the Althon II dual-core 2.8-GHz CPU plus AMD HD Radeon
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4200 GPU, the same game logic consumes only 15.12 per-
cent of total power.

The CPU might still be the bound for mobile graph-
ics computing. For example, the OMAP CPU and ARM
Cortex-A8 that we studied can hit 1-GHz clock frequency;
however, compared with multicore desktop CPUs, the rela-
tive amount of on-die resources dedicated to the CPU is
still limited for computation-intensive game logic such as
optimal path search.

he main findings in our preliminary study to

characterize the performance and power consumption

of 3D mobile games are that the geometry stage is
the leading bottleneck and the game logic (application)
consumes a significant portion of power. However, the
power dissipated in a pipeline stage might be a function of
the scene complexity: given a game with lower primitive
complexity, the energy breakdown might be significantly
different.

One limitation of our current work is that we did not
remove the impact of disabling stages on the GPU inter-
connections and bus. For example, when we disable the
fragment-shading stage, the fragment color could be dif-
ferent from the normal case because we use stub shaders.
Bit toggling on the bus would be affected, so the resultant
running time and power of the fragment shading would not
be perfectly accurate.

Finally, two 3D game benchmarks might not be enough
to expose all the game characterizations of mobile GPU
architectures.

To address these limitations, future work could apply the
same methodology to focus on 3D games with high primi-
tive complexity and low primitive processing requirements
and to conduct studies that further break down the geom-
etry stage to better understand performance and power
bottlenecks.

In addition to studying more games, we plan to use
microbenchmarks such as GLBenchmark to expose the
performance and energy characteristics of specific units
in the graphics pipeline. In addition, we did not study flash
videogames that can be played using a Web browser. It
would be useful to study the performance and energy char-
acterization of these games as well.
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