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Abstract 
Although a large amount of research has been 
done in speech animation, both 2D and 3D, one 
shortcoming of current speech animation 
methods is that they cannot generate dynamic 
expressions automatically. In this paper, an 
automatic technique for synthesizing novel 
dynamic expression for 3D speech animation is 
presented. After a Phoneme-Independent 
Expression Eigen-Space (PIEES) is extracted 
from expressive facial motion capture data by 
Principal Component Analysis (PCA), texture 
synthesis methods are used to synthesize novel 
dynamic expression from the PIEES. Control 
for expression intensity dynamics is also 
provided for animators via expression intensity 
curves. 
Keywords: Facial Animation, Expressive 
Synthesis, Speech Animation 
 

1. Introduction 

Human expression is a challenging research 
topic not only in the graphics community, but 
also in other fields, including artificial 
intelligence and psychology. However, 
expression is critical to realistic facial 
animation, and automatically synthesizing 
expressive facial animation still remains an 
open problem. In this paper, a texture synthesis 
based approach for automatically synthesizing 
dynamic expressions for 3D speech animation 
is presented. This approach is compatible with 
various presented speech animation methods: 
expression is added on top of the animation 
synthesized by speech animation methods 
[1,2,3,4]. 

   This automatic dynamic expression synthesis 
approach can be used for various applications. 
For example, in MPEG-4 facial animation, 
only textual descriptions are used to define 
high-level expression parameters [5], and no 
expression synthesis approach is specified. 
This approach can be used to automatically 
reconstruct expressive MPEG-4 facial 
animation upon receiving high-level expression 
parameters in FAPs (Facial Animation 
Parameters). This approach can also be used 
for web-based avatars [6] or low-bandwidth 
facial animation applications [7]. 
 

2. Related Work 

An overview of various facial animation 
techniques can be found in [8]. The research 
topics closely connected to this work are 
speech animation and expressive facial 
animation. A brief review of recent work in 
these two fields and the motivations of our 
work are described next.  
 
2.1 Speech Animation 

Many techniques have been presented for 
synthesizing speech animation according to 
novel audio/text input. For example, phoneme-
base methods [1,3,9] require animators to 
design key mouth shapes beforehand, and then 
hand-generated smooth functions or co-
articulation rules are used to generate speech 
animation. Physics-based approaches [2] 
employ the laws of physics to drive the mouth 
movement. Bregler et al. [10] present “video 
rewrite” to synthesize novel speech animation 
by re-combining frames in existing video 
footage using triphone rules. Ezzat et al. [11] 
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present a multidimensional morphable model 
trained from phoneme-aligned video footage 
and successfully synthesize video-realistic 
speech animation given novel audio input. 
Instead of driving animation by phonemes, 
Kshirsagar and Thalmann [4] present a 
syllable-based approach to synthesize speech 
animation from a captured “visyllable motion” 
database. However, most of the above speech-
animation approaches cannot automatically 
synthesize dynamic expressions. 
 
2.2 Expressive Facial Animation 

Cassell et al. [12] present a rule-based 
automatic system that generates expressions 
and speech for multiple conversation agents. In 
this work, FACS [13] is used to denote static 
facial expressions. Noh and Neumann [14] 
present an “expression cloning” technique to 
transfer existing expressive facial animation 
between different 3D face models. This 
technique and the further extended technique 
[15] are very useful to transfer expressive 
facial motion. However, they are not 
generative; they cannot be used for generating 
novel facial animation. Chuang et al. [16] learn 
a facial expression mapping/transformation 
from training footage using bilinear models, 
and then this learned mapping is used to 
transform novel video of neutral talking to 
expressive talking. In their work, the 
expressive face frames retain the same timing 
as the original neutral speech, which does not 
seem plausible in all cases. Cao et al. [17] 
present a motion editing technique that applies 
Independent Component Analysis (ICA) onto 
recorded expressive facial motion capture data 
and then perform more editing operations on 
these ICA components, interpreted as 
expression and speech components separately. 
This approach is used only for editing existing 
expressive facial motion, not for the purpose of 
synthesis. Zhang et al. [18] present a geometry-
driven technique for synthesizing expression 
details for 2D faces. This method is used for 
static 2D expression synthesis, and the 
applicability of this method to animate images 
and 3D models has not been established.  
   Blanz et al. [19] present a novel technique to 
reanimate faces in images and video by 
learning an expression and mouth shape space 
from scanned 3D faces. This approach 
addresses both speech and expressions, but it 

only considers several static expression poses 
that are not enough to synthesize realistic 
dynamic expressive motion. Brand [20] learns 
an HMM-based facial control model by an 
entropy minimization algorithm from training 
audio/video data, and then novel facial motion 
(speech and expression) is synthesized by 
sampling from this generative model. In his 
work, audio features (a mixture of LPC and 
RASTA-PLP are used [20]) are implicitly 
mapped to some expressive facial 
configurations, and the implicit assumption is 
that there is a clear mapping between audio 
features and expressions. In the speech 
recognition literature [21,22,23], it is known 
that if only audio features are used as inputs, 
the average accuracy of the state-of-the-art 
emotion recognizers is about 70%. As such, 
expressive motion may not be learned correctly 
from only several audio features. Brand [20] 
also learns the audio-motion mapping as a 
monolithic system. Therefore, it is difficult for 
animators to intuitively control speech and 
expression separately. Kshirsagar et al. [6,24] 
present a PCA-based method for synthesizing 
expressive speech animation. In their work, 
static expression configurations are embedded 
in an expression and viseme space, constructed 
by PCA. Expressive speech animation is 
synthesized by weighted blending between 
expression configurations (corresponding to 
some points in the expression and viseme 
space) and speech motion. Besides the above 
work, significant effort has been done in 
expressive virtual characters in complex 
scenarios [25,26,27]. 
    In this paper, an automatic approach for 
synthesizing dynamic expressions on 3D 
speech animation is presented. This approach 
is compatible with other speech animation 
techniques. On top of the speech animation 
synthesized by existing speech animation 
techniques, this approach synthesizes a novel 
dynamic expression sequence and adds it to the 
speech animation. First, an actress with motion 
capture markers on her face is captured, 
speaking a custom corpus with different 
expressions. By removing phoneme-dependent 
content from the expressive facial motion data, 
Phoneme-Independent Expressive Motion 
Signals (PIEMS) are extracted. Then these high 
dimensional motion signals are further used to 
construct a three dimensional Phoneme-
Independent Expression Eigen-Space (PIEES) 
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using EM-PCA [28]. Based on the observation 
that an expression sequence is just a 
continuous curve in the three-dimensional 
PIEES, novel expressive motion is synthesized 
by texture-synthesis techniques [29,30]. 
    This work shares similarities with [24,6], but 
the largest distinction of our work is that 
expressions are treated as a dynamic process, 
not as static poses as in [24,6]. In general, the 
expression dynamics include two aspects: (1) 
Expressive Motion Dynamics (EMD): even in 
an invariant level of anger, they seldom keep 
their eyebrows at the same height for the entire 
duration of the anger. As such, expressive 
motion is a dynamic process, not statically 
corresponding to some fixed facial 
configurations. (2) Expression Intensity 
Dynamics (EID): both the intensity of their 
expressions and the type of expression may 
vary over time, depending on many factors, 
including speech contexts. 
   Varying blending weights over time in [24,6] 
can simulate the EID, but the EMD are not 
modeled, because the same static expressive 
facial configurations are used. An automatic 
technique for synthesizing dynamic 
expressions, including EMD and EID, is 
presented in this paper. The EMD are 
embodied in the constructed PIEES as 
continuous curves. The optional expression-
intensity control is used for simulating EID, 
similar to [24,6]. This approach is flexible, 
allowing the animators to use any desired 
speech animation technique. 
 

3. System Overview 

Figure 1 illustrates the pipeline of this dynamic 
expression synthesis approach. In the analysis 
stage (top row, Fig 1), PIEMS (Phoneme-

Independent Expressive Motion Signals) are 
extracted by removing phoneme-dependent 
content from expressive speech motion data. 
These are further used to construct PIEES by 
PCA. In the synthesis stage (bottom row, Fig 
1), texture synthesis is used to generate a novel 
dynamic expression sequence, and blend it 
with a neutral speech animation. The 
remainder of the paper is organized as follows: 
first, data acquisition, processing and analysis 
are described, then how to synthesize novel 
dynamic expressions and how to simulate 
expression intensity dynamics over time are 
described. The final part describes the results 
and conclusions. 
 

4. Data Acquisition and Processing 

A VICON motion capture system [31] with 
three cameras (left of Fig 2) is used to capture 
the expressive facial motion data with 120Hz 
sampling frequency. With 102 markers on her 
face (right of Fig 2), an actress is directed to 
speak a custom phoneme-balanced corpus four 
times. Each time the same corpus is spoken 
with different emotions. In this work, total four 
emotions (neutral, happy, angry, and sad) are 
considered. The actress is asked to speak the 
corpus with full specific emotion all the time. 
The markers' motion and aligned audio are 
captured by the system simultaneously. 

 
    After the data are captured, the captured 
motion data are normalized. Then, the festival 
speech recognition system [32] is used to 
perform phoneme alignment on the captured 
audio. Since the same corpus is used for 
different captured expressions, the phoneme 
sequences, except for their timing, are the 
same. Based on this observation, a phoneme-

 
Figure 1: Illustration of the dynamic expression 

synthesis pipeline. 

Figure 2: Illustration of motion data acquisition. 
The left shows the cameras of the motion 

capture system. The right shows the markers 
used in the data acquisition stage. 
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based time warping and resampling (super-
sample/down-sample) is applied to the 
expressive capture data to make them align 
strictly with neutral data frame by frame. In 
this step, eyelid markers are ignored. Figures 
3-4 illustrate this time-warping procedure for a 
short piece of angry data. Then, subtracting 
neutral motion from aligned expressive motion 
generates pure expressive motion signals. 
Since they are strictly phoneme-aligned, we 
assume that the above subtraction removes 
“phoneme-dependent” content from expressive 
speech motion capture data. As such, the 
extracted pure expressive motion signals are 
Phoneme-Independent Expressive Motion 
Signals (PIEMS).  

 

   
  The extracted PIEMS are high dimensional 
when the 3D motion of all markers are 

concatenated together. As such, all the PIEMS 
are put together and reduced to three 
dimensions, covering 86.5% of the variation. 
The EM-PCA algorithm [28] is used here, 
because EM-PCA can extract eigen-values and 
eigenvectors from large data sets more 
efficiently than regular PCA. In this way, we 
find three-dimensional PIEES where 
expression is a continuous 3D curve. Figures 5-
6 illustrate the PIEES and the PIEMS. Note 
that the personality of the captured subject may 
be irreversibly reflected in the PIEES, and only 
four basic expressions are considered. Building 
person-independent expression eigen-space 
and modeling the universal expression space is 
beyond this work. 

 

5. Dynamic Expression Synthesis 
From Fig 6, we observe that expression is just 
a continuous curve in the low-dimensional 
PIEES. Texture Synthesis, originally used in 
2D image synthesis, is a natural choice for 
synthesizing novel expression sequences. Here 

Figure 3: Illustration of phoneme-based time-
warping for the Y position of a particular marker. 
Although the phoneme timings are different, the 
warped motion (black) is strictly frame aligned 

with neutral data (red). 

Figure 4: Extracted phoneme-independent angry 
motion signal from Fig 3.

 
Figure 5: Plot of three expression signals on the 

PIEES. It shows that sad signals and angry signals 
intersect in some places. 

 
Figure 6: Plot of two expression sequences in the 

PIEES. It shows that expression is just a 
continuous curve in the PIEES. 



Appeared in Proc. of IEEE Computer Animation and Social Agents (CASA) 2004 

non-parametric sampling methods [29,30] are 
used. The patch-based sampling algorithm [30] 
is chosen, due to its time efficiency. Its basic 
idea is to grow one texture patch (fixed size) at 
a time, randomly chosen from qualified 
candidate patches in the input texture sample. 
In this work, each texture sample (analogous to 
a pixel in the 2D image texture case) consists 
of three elements: the three coefficients of the 
projection of a motion vector on the three-
dimensional PIEES. Figure 7 sketches this 
synthesis procedure. The parameters of patch-
based sampling [30] for this case: patch size = 
30, the size of boundary zone = 5, and the 
tolerance extent = 0.03. For more details of this 
synthesis approach, see [30]. 
   To ensure the synthesis quality, a high-
resolution synthesis strategy is employed. As 
mentioned in data acquisition section, the 
original data are captured at a 120 Hz sampling 
rate. The above texture synthesis procedure is 
done on high-resolution (120 Hz) captured data 
and later down-sampled to ordinary video rate 
(30 samples/sec). 

 
6. Intensity Dynamic Control 

As mentioned in the data acquisition section, 
the expressive facial motion data used for 
extracting the PIEES are captured with full 
expressions. However, in real-world 
applications, humans usually vary their 
expression intensity over time.  In this work, an 
optional expression-intensity curve scheme is 
provided to intuitively simulate the EID. 
Ideally, the EID (expression intensity curves in 
this work) should be automatically extracted 
from the given audio by emotion-recognition 
programs [21,22,23]. The optional expression-
intensity control is a manual alternative to this 
program.  

    Basically, an expression intensity curve can 
be any continuous curve in time versus 
expression-intensity space, and its range is 
from 0 to 1. Zero represents “no specific 
expression” (neutral) and one represents “full 
specific expression”. By interactively 
controlling expression-intensity curves, 
animators can conveniently control expression 
intensities over time. 
 

7. Results and Evaluation 

To test this approach, a female subject was 
recorded while she recited lines from a 
Shakespeare play (not included in the training 
corpus) with different expressions. Then, this 
audio is used to synthesize several expressive 
speech animations: after neutral speech 
animation is generated, expressions 
synthesized by this expression synthesis 
approach are added onto the speech animation. 
Figure 8 shows some frames of synthesized 
expressive speech animation. For more results, 
please see accompanying videos. 

     We compare synthesized expressive facial 
animation with the ground-truth video in 
Figure 9. Taken into consideration that the 
speech synthesis process is not yet perfect, the 
expression in the synthesized speech animation 
closely matches that of ground-truth video. The 
used 3D face model is a NURBS model, 
composed of 46 blend shapes. The method 
presented in [33] was used to map markers' 
motion to the weights of blend shapes, and eye 
motion was synthesized by the approach 
presented in [34]. Hair was modelled and 
rendered using the approach presented by Kim 
and Neumann [35]. 

Figure 7: Illustration of the patch-based sampling 
procedure. 

Figure 8: Some frames of synthesized expressive 
speech animation. 
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8. Conclusions and Future Work 

An automatic technique for synthesizing 
dynamic expressions for 3D speech animation 
is presented in this paper. Improving on 
previous expression synthesis work [6,24], this 
approach models both the EMD and EID. In 
this work, the EMD are embodied in the PIEES 
and the EID is provided by expression intensity 
curves. The advantages of this approach are 
that it works in conjunction with any speech 
animation method. This approach is simple and 
also benefits from the time efficiencies of 
texture synthesis techniques.   
   This approach can be used for reconstructing 
MPEG-4 expressive facial animation given 
high-level expression parameters and in low 
bandwidth facial animation applications [6,7]. 
A limitation of this approach is that the 
interaction between expression and speech is 
simplified. We assume there is a PIEES 
extracted by phoneme-based subtraction. 
Therefore, a large amount of expressive facial 
motion data are needed to construct the PIEES, 
because it is hard to anticipate in advance how 
much data are needed to avoid getting “stuck” 
during the synthesis process. However, after 
some animation is generated, it is easy to 
evaluate the variety of synthesized expressions 
and more data can be obtained if necessary. 
   We are aware that expressive eye motion and 
head motion are critical parts of expressive 
facial animation, since the eye is one of the 
strongest cues to the emotional state of a 
person. Future work on expressive eye motion 
and head motion can greatly enhance the 
realism of expressive facial animation 
synthesized by this approach. Although this 
approach is a step toward the goal, further 
research is needed to discover the principles of 
human expression creation and perception in 
order to rigorously solve the automatic 
expression synthesis problem. 
   Learning approaches, such as HMMs, will be 
explored to model expression patterns and 
interactions between speech and expressions. 
“Expression graphs” (similar to “motion 
graphs” [36]) or “expression textures” (similar 
to “video textures” [37]) will also be 
investigated in the future work. 
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