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Figure 1: Some synthesized frames of singing a part of “hunter” music (by dido).

ABSTRACT

While speech animation fundamentally consists of a sequence of
phonemes over time, sophisticated animation requires smooth in-
terpolation and co-articulation effects, where the preceding and
following phonemes influence the shape of a phoneme. Co-
articulation has been approached in speech animation research in
several ways, most often by simply smoothing the mouth geometry
motion over time. Data-driven approaches tend to generate realis-
tic speech animation, but they need to store a large facial motion
database, which is not feasible for real time gaming and interac-
tive applications on platforms such as PDAs and cell phones. In
this paper we show that accurate speech co-articulation model with
compact size can be learned from facial motion capture data. An
initial phoneme sequence is generated automatically from Text-To-
Speech (TTS) systems. Then, our learned co-articulation model is
applied to the resulting phoneme sequence, producing natural and
detailed motion. The contribution of this work is that speech co-
articulation models “learned” from real human motion data can be
used to generate natural-looking speech motion while simultane-
ously preserving the expressiveness of the animation via keyfram-
ing control. Simultaneously, this approach can be effectively ap-
plied to interactive applications due to its compact size.
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1 INTRODUCTION

Because of the complexity of deformation of a moving face and our
inherent sensitivity to the subtleties of facial animation, creating re-
alistic 3D talking faces remains a challenge problem for computer
graphics community. Although several successful automated ap-
proaches to computer speech animation have been developed, most
commercial speech animation is manually animated. The reasons
for this are varied, but among them is the important factor than
manual animation provides full control over the result, including
the ability to produce cartoon effects such as speech animation in
“The Jetsons”, and the high efficiency of keyframe interpolations.
On the other hand, data-driven approaches [7, 6, 17, 25] tend to
produce more realistic animation, but generally they do not provide
enough control for animators, so animators cannot use them with-
out considerable efforts.

Most of data-driven approaches need to store a large facial mo-
tion database and cannot synthesize speech animation with high ef-
ficiency, which prevents the use of these techniques in real-time
applications. The time-consuming manual processing stages that
are required by most existing data-driven approaches further limit
their real time and interactive applications.

In this paper a novel approach is presented tobridge the data-
driven approaches and keyframing approaches. This approach
learns explicit co-articulation models with very compact size, repre-
senting the dynamics of speech animation by “mining” facial mo-
tion capture data. At the same time, animators can design exag-
gerated and expressive key shapes as desired. The key shapes can
be 3D face models, or other representations such as Facial Action
Coding System (FACS) parameters [15]. Given novel phoneme
annotated input, such as speech-recognized audio or phoneme se-
quences from Text-To-Speech (TTS) systems, our approach synthe-
sizes corresponding speech animation in an optimal way, searching
for the “optimal co-articulation combinations” from the existing co-
articulation models using a dynamic programming technique.

This approach can be used for many scenarios. Animators can
use our approach to adjust/design the visemes and timing as de-
sired, to improve quality or produce stylized cartoon effects. This
approach can also be used to produce automated real-time speech
animation for interactive applications, after initial key shapes are
setup.
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2 PREVIOUS AND RELATED WORK

An overview of various facial animation techniques can be found
in [31]. Some of the more recent research in this area includes [15,
16, 7, 2, 12, 20, 29, 34, 1, 6, 4, 30, 23, 22, 10, 9, 26, 38, 21, 17,
3, 25, 13, 14]. A number of techniques have also been presented
specifically for synthesizing speech animation. Phoneme-driven
methods [33, 11, 19, 23] require animators to design key mouth
shapes, and then hand-generated smooth functions [11, 19, 23] or
co-articulation rules [33] are used to generate speech animation. In
physics-based methods [36, 27, 37, 22], the laws of physics drive
mouth movement; for example, Lee et al. [27] use three-layer mass-
spring muscle and skin structures to generate realistic facial anima-
tions. Bregler et al. [7] describe the “video rewrite” method for
synthesizing 2D talking faces. Ezzat et al. [17] present a Mul-
tidimensional Morphable Model (MMM) method that requires a
limited set of mouth image prototypes and effectively synthesizes
new speech animation corresponding to novel audio input. Instead
of constructing a phoneme database [7, 17], Kshirsagar and Thal-
mann [25] present a syllable-motion database-based approach to
synthesize novel speech animation. In their approach, phoneme
sequences are further segmented into syllable sequences, and then
syllable motion is chosen from captured syllable motion database
and concatenated together. Brand [6] learns a HMM-based facial
control model by entropy minimization from example voice and
video data and then effectively generates full facial motions from
new audio track.

The mouth shape corresponding to a particular phoneme changes
slightly depending on the preceding and following phonemes; this
is termedco-articulation. Traditionally, co-articulation has been
approached by simply smoothing the facial parameters or geometry
over time [28, 11]. Hand-generated empirical co-articulation mod-
els have also been used [19, 23]. Instead of using ad hoc smoothing
methods and ignoring dynamics factors, Bregler et al. [7] model
the co-articulation effect with “triphone video segments”, but it is
not generative (i.e. the co-articulation cannot be applied to other
faces without retraining). Brand [6] models co-articulation, us-
ing the Viterbi algorithm through vocal HMM to search for most
likely facial state sequence that further be used for predicting fa-
cial configuration sequences. Ezzat et al. [17] use the magnitude of
diagonal covariance matrixes of phoneme clusters to represent co-
articulation effects: large covariance means small co-articulation,
and vice versa. In most of the data-driven approaches above the co-
articulation is expressed as an implicit function (e.g. covariance) of
the particular facial data. An explicit co-articulation model that can
be applied to other face data has not been developed.

The goal of this work is to construct explicit human-like co-
articulation models that model the dynamics of real speech accu-
rately and can be used by animators in a controllable way.

Motivated by this goal, in this paper we present a motion cap-
ture mining technique for speech co-articulation that constructs ex-
plicit, simple, and accurate co-articulation models from real hu-
man data. This approach learns optimal polynomial co-articulation
curves from the facial motion capture data. Both co-articulation be-
tween two phonemes (diphone co-articulation) and co-articulation
among three phonemes (triphone co-articulation) are learned from
the real data. Given phoneme-annotated input (audio or text) and
viseme shapes, a dynamic programming algorithm is used to search
for optimal sequences from existing “diphone co-articulation” and
“triphone co-articulation” models and other alternatives.

This approach can be stretched to model the co-articulation
among more than three phonemes, and it will need more training
data because of the “combinational sampling”. As a reasonable
trade-off, diphone and triphone co-articulation model are used in
this work.The advantages of this approach include:

• It produces an explicit co-articulation model that can be ap-

plied to any face model rather than being restricted to “re-
combinations” of the original facial data.

• It naturally bridges data-driven approaches (that accurately
model the dynamics of real human speech) and flexible
keyframing approaches (preferred by animators), by combin-
ing the realism of data-driven approaches and the controlla-
bility of keyframing approaches.

3 SYSTEM OVERVIEW

Figure 2: The schematic overview of the speech animation system.
The top line illustrates the co-articulation modeling stage, and the
bottom line illustrates the speech animation synthesis stage.

Figure 2 gives the overview of this speech animation system. In
the preprocessing stage, motion capture data are normalized and
aligned with the audio. Then, in the co-articulation modeling stage
(top line in Figure 2), various co-articulation curves are learned
from the motion capture data. In the synthesis stage (bottom line
in Figure 2), given phoneme-annotated input and key shapes de-
signed by animators, corresponding speech animations are synthe-
sized with human-like co-articulation.

The remaining parts are organized as follows: Section 4 de-
scribes data gathering and preprocessing. Section 5 describes how
to construct diphone and triphone co-articulation models from data.
Section 6 describes speech animation synthesis by dynamic pro-
gramming. The final part describes results and evaluation (Sec-
tion 7) and discussion and conclusions (Section 8).

4 DATA CAPTURE AND PREPROCESSING

We capture facial motion data of a human subject speaking in a nor-
mal speed, with markers on the face and recorded corresponding
audio and video tracks [5]. The recorded corpus that we created is
composed of hundreds of sentences. First, the Festival system [18]
is used to align each phoneme with its corresponding motion cap-
ture segments. Second, the motion capture data are normalized: 1)
all data points are translated in order to make a nose point be the lo-
cal coordinate center of each frame, 2) one frame with neutral and
closed-mouth head pose is chosen as a reference frame, 3) three ap-
proximately rigid points (the nose point and corner points of eyes)
define a local coordinate system for each frame, and 4) each frame
is rotated to align it with the reference frame.

Only the 10 points around the mouth area are used for the speech
co-articulation mining (Figure 3). The dimensionality of these mo-
tion vectors is reduced using EM-PCA algorithm [35], because EM-
PCA can extract eigen-values and eigenvectors from large collec-
tions of high dimensional data more efficiently than regular PCA.
Instead of directly applying Singular Value Decomposition (SVD)
on the full data set, EM-PCA solves eigen-values and eigen-vectors
iteratively using the Expectation-Maximization (EM) algorithm.
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The motion data are reduced from the original 30 dimensions to 5
dimensions, covering 97.5% of the variation. In the remaining sec-
tions, these phoneme-annotated five-dimensional PCA coefficient
spaces will be used.

Figure 3: Illustration of ten marker used for this work.

5 CO-ARTICULATION MODELS

Figure 4: Two examples of diphone co-articulation functions (the top
is the co-articulation weighting functions of phoneme pair /ae/ and
/k/: Fs(t) and Fe(t) , the bottom is the co-articulation weighting
functions of phoneme pair /ae/ and /p/.

In the preprocessing stage described above, each phoneme with
its associated duration is associated with a PCA coefficient sub-
sequence. The median of the PCA coefficient subsequence (the
middle frame of the sequence) is chosen as a representative sample
of that phoneme (a“phoneme sample”). So, the PCA coefficient
subsequence between two adjacent phoneme samples captures the
co-articulation transition between two phonemes. Then, using the
weight decomposition method used in [8] to construct phoneme-
weighting functions; this approach learns the co-articulation mod-
els from the training data. SupposePs is the first (starting) phoneme
sample at timeTs, Pe is the second (ending) phoneme sample at
time Te,andPi(i ≥ 1∩ i ≤ k) is any intermediate PCA coefficient
between them at timeTi(Ti ≥ Ts ∩ Ti ≤ Te) (its relative time is
ti = (Ti − Ts)/(Te− Ts)). In a least-square sense, the following
equation is solved to get two time-weight relations< ti ,Wi,0 > and
< ti ,Wi,1 >:

Pi = Wi,0×Ps+Wi,1×Pe (1)

whereWi,0 ≥ 0 andWi,1 ≥ 0. Gathering all time-weight relations
between a specific pair of phonemes, two time-weight sequences
( < t1,W1,0 >, < t2,W2,0 >,· · ·,< tn,Wn,0 > and < t1,W1,1 >, <
t2,W2,1 >,· · ·,< tn,Wn,1 >) are collected, and two third degree poly-
nomial curvesFs(t) andFe(t) are used to fit these two time-weight
sequences separately (why third degree polynomial curves are cho-
sen will be described in the follow-up). We termFs(t) andFe(t)
theStarting-Phoneme Weighting functionand theEnding-Phoneme
Weighting functionrespectively. Figure 4 illustrates two examples
of these diphone co-articulation functions.

As illustrated in Figure 4, the decay rate rate of phoneme /ae/
during the transition from phoneme /ae/ to phoneme /p/ is faster
than that during the transition from phoneme /ae/ to phoneme /k/.
The residual fitting error (also termeddiphone co-articulation er-
ror) Ei, j

D for the diphonePHi → PHj is calculated with equation
2, wheren is the number of fitted points andPHi and PHj are
phonemes.

Ei, j
D = Ei, j

s +Ei, j
e (2)

Ei, j
s = (

n

∑
i=1

(Wi,0−Fs(ti))
2)/n (3)

Ei, j
e = (

n

∑
i=1

(Wi,1−Fe(ti))
2)/n (4)

For the triphone co-articulations, the equation 5 is solved to
get three time-weight relations< ti ,Wi,0 >, < ti ,Wi,1 >, and <
ti ,Wi,2 >:

Pi = Wi,0×Ps+Wi,1×Pm+Wi,2×Pe (5)

where Ps, Pm, and Pe represent the three phoneme samples and
the weight values are non-negative. Analogously, these time-
weight relations are used to fit three weighting functions separately
(termed as theStarting-Phoneme weighting function Fs(t), the Mid-
dle Phoneme Weighting Function Fm(t), and theEnding-Phoneme
Weighting Function Fe(t) ). The residual fitting error (also termed

triphone co-articulation error) Ei, j,k
T is defined analogously toEi, j

D .
Figure 5 illustrates these tri-phones co-articulation functions.

Figure 5: Two examples of triphone co-articulation curves. The top
is the co-articulation weighting functions of triphone (/ef/, /f/ and
/t/): Fs(t), Fm(t), and Fe(t) , the bottom is the weighting functions
of triphone(/ey/, /s/, and /t/ ).

To determine the appropriate degree for fitting the polynomial
curves, we experimentally choose it by checking a total fitting er-
ror curve (see Figure 6). The total fitting error C(n) is defined as
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follows:
C(n) = ∑

i, j,k

(Ei, j
D +Ei, j,k

T ) (6)

Here n is the degree of fitted polynomial curves. Hence, n=3 is
experimentally chosen for fitting polynomial co-articulation curves.
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Figure 6: Total fitting error curves vs the degree of fitted co-
articulation curves. Here n=3 is experimentally chosen.

In this stage, linear error (to make the names consistent, it is also
termed “linear co-articulation error”) is also determined. Instead of
fitting the third degree polynomial curves, linear fitting (a straight
line) is used to fit all the diphones, and we average these linear
fitting errors (Eq. 7).

LinearErr =
1
N ∑

i, j
Ei, j

L (7)

HereEi, j
L is defined analogously (Eq. 2) andN is total number of

diphones. This average linear co-articulation error is used in Sec-
tion 6, only in case of corresponding diphone or triphone models
are not available.

6 SYNTHESIS WITH DYNAMIC PROGRAMMING

After co-articulation models are learned, this approach synthe-
sizes new speech animation corresponding to given novel phoneme-
annotated input and key viseme mapping. The mapped key viseme
could be 3D models, 2D cartoons, control points, or other control
parameters. For simplicity the term “key shapes” will be used to
refer to “mapped key visemes” in the remaining sections. Then,
speech animations are synthesized by blending these key shapes
using the optimal combinations of co-articulation models chosen
by a dynamic programming technique.

Given a phoneme sequence PH1, PH2 PHn with timing labels,
blending these key shapes generates intermediate animation frames.
The simplest approach would be linear interpolation between adja-
cent pairs of key shapes (“linear co-articulation” and “linear inter-
polation” are interchangeable terms in this paper), but linear in-
terpolation cannot provide natural co-articulation effects. Diphone
and triphone co-articulation models are learned from the training
data. How can these be combined to achieve optimal co-articulation
effects? A dynamic programming technique is used to search for
optimal combinations.

Figure 7: Illustration of novel speech synthesis using dynamic pro-
gramming. Given an input phoneme sequence P1,P2, . . . ,Pk, its opti-
mized cost is the minimum of thest two (assume the last two is a
diphone co-articulation or the last three is a triphone co-articulation).

As mentioned in section 5, diphone and triphone co-articulation
fitting errors are retained, and a constant linear co-articulation fit-
ting error LinearErr is solved. So, the optimal sequence should
minimize the total co-articulation errors. For example, given a
phoneme sequence composed ofPH1, PH2, andPH3, there are two
possible combinations:diphone(PH1 → PH2) + diphone(PH2 →

PH3) andtriphone(PH1 → PH3). If the total co-articulation error
of triphone(PH1 → PH3) is minimum, then thetriphone(PH1 →

PH3) co-articulation model is used to interpolate and provide min-
imum co-articulation error. Figure 7 illustrates this idea. This syn-
thesis algorithm is very efficient, since its time complexity is linear
Θ(N), where N is the number of phonemes.

7 RESULTS AND EVALUATIONS

Three types of tests are designed to evaluate this approach. The
first test is used to verify this approach by comparing ground-truth
motion capture data and synthesized speech motion via trajectory
comparisons. The second test is to compare this approach with
some “common sense” and ad hoc interpolation methods, including
linear and spline interpolation. In order to evaluate the applicability
of this approach for 2D and keyframing animation, the third test is
to generate human-like 2D cartoon speech animation, given key ex-
aggerated cartoon shapes. Figure 11 shows some frames from the
synthesized animation.

7.1 Ground-Truth Trajectory Comparisons

In the first evaluation, one arbitrary part of original speaker’s audio
(not used in previous training stage) is used to synthesize speech
animation using this approach. The synthesized motion of 10 points
around the mouth area are then compared frame-by-frame with the
corresponding ground-truth data.

In this evaluation, manually picked key shapes are used that may
not match the motion capture geometry perfectly. As such, the
comparison of original and synthesized motions is only qualitative.
Figure 8 shows the X, Y, and Z trajectory comparison results for
a randomly picked point in the mouth region. As illustrated from
figure 8, the learned co-articulations trajectories are similar to the
real data.

7.2 Comparison with Ad Hoc Methods

This approach is also compared with a “common sense” approach
(e.g. linear interpolation) and a de facto approach (e.g. spline inter-
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Figure 8: Trajectory comparisons with ground-truth motions. The
solid line (blue) denotes ground-truth motion and the dashed line
(red) denotes synthesized motion.

polation) via “sliding” and total square errors. only the ten points
around the mouth area are compared. To synthesize the motions of
these ten points corresponding to test audio, some motion capture
frames are manually picked as key shapes, then motions are synthe-
sized with different approaches.Sliding Square Errors(SSE) and
Total Square Errors(TSE) are defined as:

SSEt =
10

∑
i=1

(Vt,i −vt,i)
2 (8)

TSE=
T

∑
t=1

SSEt (9)

whereVt,i is the position ofith point of tth frame in original mo-
tion capture data,vt,i is the position ofith point of tth frame in the
synthesized motion, and T is the number of compared frames. Fig-
ure 9 illustrates SSE curves corresponding to different approaches
(in Figure 9, TSE of linear interpolation is 609.73, TSE of Catmull
Rom spline is 656.86, and TSE of this approach is 443.24).

7.3 7.3 2D Cartoon/Keyframing Applications

To demonstrate that this explicitly learned co-articulation model
can be applied to keyframing applications, an animator is asked to
draw some 2D key cartoons (Figure 10) and then used this approach
to synthesize speech animation.

7.4 Eye Gaze, Eye Blink, Teeth, and Tongue

Modeling eye gaze, blink, teeth, and tongue motion are outside the
current scope of this work. For the demonstration video, the au-
tomated eye motion method [14]is used to generate eye motion,
and the multi-resolution hair modeling and rendering system [24]
is used. Teeth are assumed to have the same rotation as the jaw
with respect to a rotation axis (a straight line below the line between
two ears) and jaw rotation angles can be estimated from synthesized
mouth motion key points. For tongue motions, several key tongue
shapes are designed for phonemes and simple interpolation is used
to generate the tongue motion.

Figure 9: SSE curves corresponding to different approaches: the
red dotted curve for linear interpolation, the green dashed curve for
Catmull Rom spline, and blue solid curve for this new approach.

Figure 10: Illustration of designed keyshapes for 2D Cartoons.

8 DISCUSSIONS AND CONCLUSIONS

In this paper a novel approach is presented for learning speech
co-articulation models from real motion capture data. By using
a weight-decomposition method, this approach learns the person-
ality (speech co-articulations) of a captured human subject. This
personality can then be applied to any target faces. Instead of gen-
erating speech animation using ad hoc smoothing rules, the statisti-
cal models learned from real speakers make the synthesized speech
animation more natural and human-like.

This approach can be used for various purposes. For animators,
after initial key shapes are provided, this approach can serve as a
fast tool to generate natural looking speech motion while simulta-
neously preserving the expressiveness of the animation. On top of
the generated speech animation, animators can refine the animation
by adjusting the visemes and timing as desired, to improve quality
or produce stylized cartoon effects. When automated speech anima-
tion in real time speed is required, this approach can be used for this
purpose. Because of the very compact size of the co-articulation
models learned by this approach, it can be conveniently applied
onto many mobile-game platforms, such as PDAs and cell phones.

The major limitation of this method is that it depends on “combi-
national sampling” from training data. The best results require that
the training data have a complete set of phonemes and phoneme
combinations. The learned co-articulation model probably depends
on speech rates, since the co-articulation of fast speech may be quite
different from that of normal speech.

This co-articulation modeling approach is efficient and reason-
ably effective for neutral speech, but it does not differentiate emo-
tional states and speaking rates. As such, future work could be
to extend the current co-articulation model to handle emotions and
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different speaking rates, at the cost of requiring significantly more
training data.
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Figure 11: frames of synthesized talking (phrase is “With continued advances in facial animation and computer vision,natural-realistic commu-
nication and interaction between people via avatars integration is being realized”).


