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Abstract

Animating 3D faces to achieve compelling realism is a challenging
task in the entertainment industry. Previously proposed face trans-
fer approaches generally require a high-quality animated source
face in order to transfer its motion to new 3D faces. In this work,
we present a semi-automatic technique to directly animate popular-
ized 3D blendshape face models by mapping facial motion capture
data spaces to 3D blendshape face spaces. After sparse markers on
the face of a human subject are captured by motion capture sys-
tems while a video camera is simultaneously used to record his/her
front face, then we carefully select a few motion capture frames
and accompanying video frames as reference mocap-video pairs.
Users manually tune blendshape weights to perceptually match the
animated blendshape face models with reference facial images (the
reference mocap-video pairs) in order to create reference mocap-
weight pairs. Finally, the Radial Basis Function (RBF) regression
technique is used to map any new facial motion capture frame to
blendshape weights based on the reference mocap-weight pairs.
Our results demonstrate that this technique is efficient to animate
blendshape face models, while offering its generality and flexiblity.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

Keywords: Facial Animation, Blend Shape Models, Cross-
Mapping, Motion Capture Data, Radial Basis Functions

1 Introduction

In the entertainment industry the creation of compelling facial ani-
mation is a painstaking and tedious task, even for skilled animators.
Animators often manually sculpt keyframe faces every two or three
frames. Furthermore, they have to repeat a similiar process on dif-
ferent face models. How to animate various face models to achieve
compelling realism with as little manual intervention as possible
has been a challenging research topic for computer animation re-
searchers.

The blendshapes (shape interpolation) method is a popular ap-
proach to computer facial animation. For example, the “Gollum”
model used in Lord of the Rings movies has a total of 946 blend-
shape controls [Lewis et al. 2005]. The blendshapes method is
used by animators so frequently because of its intuitive and flex-
ible controls. However, the cost of blendshape face animation is
considerable. On top of the considerable time taken for the original
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blendshape sculpting that must be done once for each model, still
more time is taken up by the tedious task of animating pre-designed
blendshape models that must be done for each new dialogue.

Face transfer techniques [Noh and Neumann 2001; Pyun et al.
2003] reused existing facial animation by transferring source fa-
cial animation to target face models with little manual interven-
tion, but these techniques require a high-quality animated source
face. Recent face transfer work [Vlasic et al. 2005] successfully
demonstrated how to transfer a recorded face video on to 3D face
models. However, one of major limitations of all the above ap-
proaches is that target faces are currently limited to non-blendshape
face models, and these approaches can not be directly applied to a
pre-designed blendshape face model without considerable efforts.
Pyun et al. [2003] and Ma et al. [2004] require animators to cus-
tomize a proper blendshape face model by sculpting a blendshape
basis based on each key facial configuration chosen from source
facial animation sequences. However, these techniques cannot be
directly applied to blendshape face models that were sculpted in
advance (often with great effort, like the “Gollum” model).

Motion capture has proven to be a feasible and robust approach to
acquire high-quality human motion data including facial motion,
and it is in popular use by the current entertainment industry [Scott
2003]. Hence, directly linking facial motion capture data with the
popular blendshape face method has widespread applications in the
entertainment industry and could greatly alleviate the pains of mak-
ing compelling facial animation.

Animating blendshape faces from motion capture data is essen-
tially a mapping from a motion capture data space to a blendshape
weight space. Since multiple blendshape weight combinations
could achieve the same facial configuration, this mapping generally
is a one-to-many mapping that imposes challenges to full-automatic
approaches. In this work, we present a semi-automatic approach to
animate arbitrary blendshape face models, and we formalize it as
a scattered data interpolation problem [Nielson 1993]: based on
a few carefully chosen reference correspondences between blend-
shape weights and motion capture frames, blendshape weights of
new motion capture frames are computed using Radial Basis Func-
tion (RBF) regression. Figure 1 illustrates the schematic overview
of this approach.

As illustrated in Figure 1, in the first stage (data capture), a mo-
tion capture system and a video camera are simultaneously used to
record the facial motions of a human subject. The audio record-
ings from the two systems are misaligned with a fixed time-shift
because of slight differences in start time of recording. The manual
alignment of these two audio recordings results in strict alignments
between mocap frames and video frames. In the second stage, we
carefully select a few of the aligned pairs as reference mocap-video
pairs so that they cover the spanned space of visemes and emo-
tions as completely as possible. In the third stage, motion capture
data are reduced to a low dimensional space by Principal Compo-
nent Analysis (PCA). Meanwhile, based on the selected reference
video frames (face snapshots), animators manually tune the weights
of the blendshape face model to perceptually match the model and
the reference images, which creates surpervised correspondences
between the PCA coefficients of motion capture frames and the
weights of the blendshape face model (referred to as mocap-weight
pairs). Taking the reference mocap-weight pairs as training exam-
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Figure 1: Schematic overview of this work. It consists of four
stages: data capture, creation of mocap-video pairs, creation of
mocap-weight pairs, and RBF regression.

ples, the Radial Basis Function (RBF) regression technique is used
to automatically compute blendshape weights for new input motion
capture frames (the fourth stage in Fig. 1).

In this paper, we show that directly animating blendshape face mod-
els from facial motion capture data can be achieved by formalizing
it as a scattered data interpolation problem. The introduced mocap-
video pairs enable animators to make a direct link between mocap
frames and blendshape weights. This technique can save consid-
erable efforts when dealing with a huge motion capture database,
because it only requires animators to do manual tuning on a small
number of selected examples.

The remainder of the paper is organized as follows: Section 2 re-
views recent work in face transfer and blendshape animation, Sec-
tion 3 describes the details of data acquisition and process, Sec-
tion 4 describes the selection of reference mocap frames from data-
base, Section 5 describes the construction of mocap-weight pairs,
Section 6 details the computing of blendshape weights using RBF
regression, given new input motion capture frames, Section 7 de-
scribes experimental results, and finally, Section 8 concludes this
paper.

2 Related Work

In this section, we will specifically review recent work related to
face transfer and blendshape facial animation. More topics on fa-
cial animation and modeling can be found in the facial animation
book [Parke and Waters 1996].

The expression cloning technique [Noh and Neumann 2001] trans-
fers vertex displacements from a source face model to target face
models that may have different geometric proportions and mesh
structure. Generally, it requires little manual intervention, because
it uses heuristic rules to search for vertex correspondences. How-
ever, it requires a high-quality animated face as its source ani-
mation. The general deformation transfer technique [Sumner and
Popović 2004] can be used for retargetting facial motion from one
model to another model, but it shares the same problem of the ex-
pression cloning technique [Noh and Neumann 2001]. Pyun et
al. [2003] and Ma et al. [2004] transfer facial animation using an
example-based approach. Essentially these approaches require an-
imators to customize a proper blendshape face model by sculpting

a blendshape basis based on each key facial configuration chosen
from source facial animation sequences. Hence, this technique can
not be directly applied to other pre-designed blendshape models
without considerable efforts.

Recently Vlasic et al. [2005] presented a novel framework to trans-
fer facial motion in video to other 2D or 3D faces by learning a
multilinear model of 3D face meshes. In their work, the learned
multilinear face models are controlled via intuitive attribute para-
meters, such as identity and expression. Varying one attribute pa-
rameter (e.g. identity) while keeping other attributes constant can
transfer the facial motion of one model to another. It has yet to be
demonstrated whether this face transfer technique can be success-
fully used in animating the blendshape face models that are pre-
ferred by animators.

Pose Space Deformation (PSD) presented by Lewis et al. [2000]
provides a general framework for example-based deformation. In
their work, the deformation of a surface is treated as a function of
some set of abstract parameters, such as {smile, raise-eyebrow,...},
and new surface deformation (pose) is interpolated by a scattered
data interpolation. In some respects, our work shares similiarities
with the PSD, like the use of scattered data interpolation. How-
ever, the major distinction of this work is that it treats abstract or
high-level parameters (blendshape weights, e.g. raise-eyebrow) as
a function of low level parameters, such as PCA coefficients. It is
the inverse of what the PSD does. Additionally, it has not been ver-
ified yet that PSD can be directly used to map motion capture data
to animate blendshape faces.

Blanz and Vetter [1999] presented a novel technique to learn a
morphable face model by applying Principal Component Analy-
sis (PCA) to vector representations of the shape and texture of
3D face examples. These extracted principal components corre-
spond to prototype faces (blendshape basis), and new faces can be
successfully modeled by adjusting blending weights of the proto-
type faces, manually or automatically. Furthermore, on top of the
morphable face model, Blanz et al. [2003] reanimate faces in im-
ages/video by first fitting the morphable face model to 2D faces and
then transferring facial motion to animate the fitted 3D faces. Lewis
et al. [2005] presented an efficient way to reduce the blendshape
interference problem by selected motion attenuation. After anima-
tors move blendshape slider values, their approach will automat-
ically re-adjust blendshape slider values by mimicing new move-
ment while moving some tagged vertices as little as possible.

Choe and Ko [2001] presented a technique to animate blendshape
face models composed of hand-generated muscle actuation base, by
iteratively adjusting muscle actuation base and analyzed weights.
Sifakis et al. [2005] use nonlinear finite element methods to de-
termine accurate muscle actuations from motions of sparse facial
markers. In their work, an anatomically accurate model of facial
musculature, passive tissue, and underlying skeleton structure is
used. Their work demonstrated the success of the techniques on
muscle actuation based blendshape models or anatomically accu-
rate face models, but it is not clear whether these muscle-based ap-
proaches can be extended to handle general blendshape face models
that are not based on muscle actuation.

Performance driven facial animation was introduced by
Williams [1990] that tracks facial motion of real actors (per-
formance) and drives other 3D face models accordingly. Recent
improved performance driven facial animation techniques focused
on more robust tracking and retargetting algorithms [Li et al. 1993;
Essa et al. 1996; Decarlo and Metaxas 1996; Pighin et al. 1999;
Noh et al. 2002; Chai et al. 2003]. These techniques require robust
vision-tracking algorithms, and the success of directly applying
these techniques to pre-designed blendshape face models has not
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yet been demonstrated.

Data-driven speech animation synthesis can be regarded as gener-
alized face transfer [Bregler et al. 1997; Brand 1999; Ezzat et al.
2002; Kshirsagar and Thalmann 2003; Cao et al. 2004; Ma et al.
2004; Deng et al. 2005]. Most of these approaches first record facial
motion of speaking subjects. Then, given new speech input, they
recombine recorded facial motion frames or sample from learned
parametric models to synthesize new facial motion. Hence, they
“transfer” pre-recorded motion frames for new utterances, although
generally this transfer happens with respect to the same face.

3 Data Acquisition

A VICON motion capture system with camera rigs (top panel of
Fig 2) with a 120Hz sampling rate, is used to capture expressive fa-
cial motion data of an actress speaking in a normal speed, with 102
markers on her face. In this recording, four basic emotions (neutral,
happiness, anger, and sadness) were considered. The actress was
asked to speak the sentences with full intensity of emotions. The
markers’ motion and aligned audio were recorded by the system si-
multaneously. At the same time, we used another video camera to
record the front of her face (Fig. 1 and the bottom panel of Fig. 2).

Figure 2: Illustration of facial motion data acquisition. The top
panel shows the camera rigs of the motion capture system and the
used facial marker layout. The bottom panel shows motion capture
data and a snapshot of recorded face video. Due to marker tracking
erros at some frames, red markers in the bottom-left panel were not
used in this work.

We then further normalized the captured facial motion data. All the
markers were translated so that a specific marker was at the local
coordinate center of each frame. Then a statistical shape analysis
method was used to calculate head motion [Stegmann and Gomez
2002; Busso et al. 2005]. A neutral pose was chosen as a reference
frame that is packed into a 102×3 matrix, y. For each motion cap-
ture frame, a matrix xi was created using the same marker order as
the reference. After that, the Singular Value Decomposition(SVD),
UDV T , of matrix yT xi was calculated. Finally, the product of VUT

gave the rotation matrix, R.

yT xi = UDV T (1)

R = VUT (2)

Since both video and its audio were recorded by the video camera,
they were perfectly aligned. Similiarly, facial motion capture data
were perfectly aligned with the audio recorded by the motion cap-
ture system. However, because of slightly different recording-start
times, audio recorded by the motion capture system had a fixed-
time shift difference with the audio recorded by the video cam-
era, and the same time-shift difference applies for motion capture
frames and the video frames. After we manually aligned these two
audio segments and calculated the fixed-time shift, shifted facial
motion capture frames became strictly aligned with the recorded
video frames. Figure 2 illustrates snapshots of this data acquisition
process. Due to marker tracking erros at some frames, red markers
in the bottom-left panel were not used in this work.

4 Select Reference Frames

In this section, we describe the selection of reference motion cap-
ture frames from recorded motion capture segments. For motion
capture data, the FESTIVAL system [FESTIVAL ] was used to
perform phoneme-alignment on their accompanying audio in or-
der to align each phoneme with its corresponding motion capture
segments. This alignment was done by feeding audio and its ac-
companying text scripts into the speech recognition program in a
force-alignment mode.

Based on the above phoneme-alignment results, we manually se-
lected one reference motion capture frame Ci (generally, the mid-
dle frame) from a phoneme-associated motion capture segment, for
each possible combination of visemes (Table 1) and expressions: 15
visemes*4 expressions=60. A viseme is the visual equivalent of a
phoneme or unit of sound in spoken language. Furthermore, we se-
lected addtional 40 frames for extreme expressive poses (10 frames
for each expression). These selected 100 motion capture frames
{Ci} with their aligned video frames {Vi} are referred as reference
mocap-video pairs, {〈Ci,Vi〉}.

We assume most of current facial animation applications can be ap-
proximately expressed in terms of speech and expressions. Another
consideration is that the space spanned by these reference mocap
frames should be as balanced and complete as possible. These are
major reasons that we chose representative expressive and viseme
frames as the reference mocap-video pairs.

/pau/ /b/, /p/, /m/ /k/, /g/, /ng/

/ae/, /ax/, /ah/, /aa/ /f/, /v/ /ch/, /sh/, /jh/

/ao/, /y/, /iy/, /ih/, /ay/, /aw/ /ow/, /oy/ /n/, /d/, /t/, /l/

/ey/, /eh/, /el/, /em/, /en/, /er/ /th/, /dh/ /s/, /z/, /zh/

/r/ /w/, /uw/, /uh/ /hh/

Table 1: Scheme of grouping phonemes into the 15 visemes used
in this work.

5 Mocap-Weight Pairs

In this section, we describe the construction of reference mocap-
weight pairs {〈CFi,Wi〉} based on the reference mocap-video pairs
{〈Ci,Vi〉}. The mocap-weight pair 〈CFi,Wi〉 describes the map-
ping between the PCA coefficients of one motion capture frame,
CFi, and its blendshape weights, Wi. Given a reference face im-
age Vi, we manually tuned blendshape weights Wi to perceptually
match the animated faces and the reference face images. Figure 5
illustrates some examples of tuned blendshape faces, the reference
video frames, and the reference motion capture frames.

After the motions of all markers in one frame are packed into a mo-
tion vector, Principal Component Analysis (PCA) is applied onto all
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the motion vectors to reduce its dimensionality. We experimentally
set the reduced dimensionality to four, which covers 90.21% of the
variation. Figure 3 plots the reduced motion vectors in the eigen-
space spanned by the largest three eigen-vectors. Therefore, given
the calculated mean vector MEAN and the reduced eigen-vector
matrix EigMx, we projected the selected reference motion capture
frames {Ci} to the above four dimensional eigen-space (Eq. 3) to
get reduced vectors {CFi}. Here CFi is a four dimensional vec-
tor (projected PCA coefficients). Finally, we obtained 100 cor-
respondence pairs between CFi (4 dimensional PCA coefficients)
and Wi (46 dimensional blendshape-weight vectors). We referred
to these pairs {〈CFi,Wi〉} as reference mocap-weight pairs, used in
the follow-up section as training sets.

CFi = EigMx.(Ci −MEAN) (3)

It is a difficult task to determine proper reduced dimensionality. Be-
cause retaining higher dimensionality keeps more subtle motion in
the reduced vectors and covers more percentage of the motion vari-
ation. However, more training sets are needed to train RBF regres-
sion functions in Section 6, since the input vector space is enlarged
accordingly. It is a trade-off between the reduced dimensionality
of motion capture data and the number of training sets. Based on
the chosen 100 training pairs, we tried several different reduced di-
mensionality in order to experimentally determine proper reduced
dimensionality, and found that experimental results from lower di-
mensionalities (e.g. 2 and 3) significantly dropped expression de-
tails, and those of higher dimensionalities occasionally introduced
unsatisfactory combinations at some frames. As a trade-off, we ex-
perimentally set it to 4.

6 Radial Basis Function Regression

In this section, we describe the calculation of blendshape weights
for an input motion capture frame using scattered data interpola-
tion algorithms [Nielson 1993]. The reference mocap-weight pairs
{〈CFi,Wi〉} are used as training sets.

There are a number of options for this interpolant, such as B-
splines [Lee et al. 1997], Shepard’s method [Beier and Neely 1992],
and Radial Basis Functions [Buhmann 2003]. Since Radial Basis
Functions (RBF) have been shown to have successful applications
in facial animation [Pighin et al. 1998; Noh and Neumann 2001;
Lewis et al. 2000], we decided to use a RBF regression technique
to calculate blendshape weights for input motion capture frames.

The network of RBFs can be described as follows (Eq. 4):

F(X) =
N

∑
k=1

wkφk(X) (4)

Here we use the Gaussian function as the basis function, φk(X) =

exp(−‖X −CFk‖
2 /2σ2

k ), N is the number of the training sets, wk is
the weight to be calculated, and F(X) is the estimated function out-
put. The above regression function output F(X) (Eq. 4) is created
for each blendshape weight.

Ridge regression (weight decay) and the regularisation parameter λ
are used to control the balance between fitting the data and avoid-

ing the penalty. Taking the regression function, Fj(X), for the jth

blendshape weight as an example, we want to minimize the follow-
ing cost function (Eq. 5):

C =
N

∑
k=1

(W
j

k
−Fj(CFk))

2 +λ
N

∑
k=1

w2
k (5)

Figure 3: Illustration of reduced motion vectors in the eigen-space
spanned by the largest three eigen-vectors. Here each red point
represents a facial marker configuration (blue points).

The solution to this minimization problem is Eq. 6.

ŵ = (HT H +λ I)−1HTW j (6)

where W j = (W
j

1 , . . . ,W
j

N)T , and Hi j = φ j(CFi). Further-
more, setting the derivative of the Generalized Cross-Validation
(GCV) [Buhmann 2003] to zero iteratively re-estimates the regular-
isation parameter λ until the difference between the current GCV
and the previous one is less than a specified small threshold.

In summary, the overall algorithm of mapping any motion capture
frame (vector) MCi to its blendshape weights BWi can be described
in Alg. 1. Here assume there are total M blendshapes for the used
blendshape face model.

Algorithm 1 MappingMocapToBlendshapes

Input: a motion capture frame (vector), MCi

Output: blendshape weights, BWi

1: Construct N reference mocap-weight pairs, {〈Ci,Wi〉}.
2: Based on {〈Ci,Wi〉}, train RBF f j(X)(1 ≤ j ≤ M) (Eq. 4)
3: Xi = PCA(MCi)(Eq. 3)
4: for j= 1 to M do

5: BW
j

i = Fj(Xi)
6: end for

7 Results and Evaluations

The target blendshape face that we used to evaluate this approach
is a NURBS face model composed of 46 blendshapes, such as
{le f tcheekRaise, jawOpen, · · ·}. The weight range of each blend-
shape is [0,1]. Figure 4 illustrates the blendshape face model used
in this work. As we can see from Fig. 4, the geometric proportions
of the blendshape face model are quite different from that of the
captured subject (Fig. 2).

Given a facial motion capture sequence, we first used the approach
proposed in this paper to map motion capture frames to blendshape
weights. Since the blendshape weights of each frame are solved
individually, the smoothness of the weights across frames cannot
be guaranteed. Hence, in the postprocessing stage, we use a mo-
tion filter algorithm presented in [Bruderlin and Williams 1995] to
smooth the blendshape weights across frames.

Besides mapping new motion capture sequences to the blend-
shape face, we also compared our approach with a widely-used
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Figure 4: Illustration of the target blendshape face model. The left
panel (the smooth shaded model), the middle panel (the rendered
model), and the right panel (manually picked “virtual marker” -
yellow points - on the polygonized blendshape face model).

blendshape-weight solving method (referred to as the equation-
solving method in this work) that calculates blendshape weights by
solving the standard blendshape equation (Eq. 7). Mathematically,
a blendshape model B is the weighted sum of some pre-designed
shape primitives Bi:

B = B0 +
N

∑
i=1

wi ∗Bi (7)

where B0 is a base face, Bi are delta blendshape bases, and wi are
blendshape weights. Given the real facial marker configuration (the
top-right panel of Fig. 2), we manually picked the corresponding
vertices in the face model as “virtual markers” (the right panel of
Fig. 4). Thus, in Eq. 7, B and {Bi} are concatenated vector forms

for these virtual markers. Bi is the motion vector when only the ith

blendshape weight is set to one (others are zero). Then, the geomet-
ric proportions of the blendshape face model to the motion capture
subject were measured in X, Y, and Z directions, by calculating the
ratio of distances between facial landmark markers, e.g. eye corner
markers. After that, motion capture data were scaled using these
proportions and packed into B. Finally, we solved the linear equa-
tions (Eq. 7) in the least-square sense to get the blending weights
{wi}.

We compared the mapping results of our approach with the results
of the equation-solving method in Fig. 6. As can be seen from the
Fig. 6, the face animated by our approach are closer to the recorded
faces (ground-truth), especially in the preservation of expression
details and characteristics of mouth shapes. More mapping results
are illustrated in Fig. 7. For animation results, please refer to the
accompanying demo video. Our approach can compute desirable
blendshape weights for facial motion capture inputs, but there exist
some cases that computed weights by our approach are not perfect,
for example, in the fifth image (counting from the top) of Fig. 7,
the openness of the mouth is not large enough. However, in some
cases, when markers are not perfectly tracked, our approach can
automatically deal with it reasonably well, because the regression
inputs are in the reduced PCA space, not the original marker mo-
tion space. An example is the sixth image of Fig. 7 where red box
illustrates the mistracked place of two markers.

8 Conclusions and Discussions

In this paper, we present a semi-automatic technique for directly
cross-mapping facial motion capture data to pre-designed blend-
shape face models. Unlike previous blendshape animation work,
this approach is not limited to specific types of blendshape faces.
The face models need not be based on muscle actuation bases and
the geometric proportions of the blendshape face models may vary
from that of the captured subject. We also show that our approach
can calculate more proper blendshape weights than a widely-used
weight-solving method.

The reference mocap-video pairs and mocap-weight pairs intro-
duced in our work are used to bridge facial motion capture data and
blendshape face controls. Manual work is required in this process.
However, the cost of the manual work is affordable, considering
large motion capture databases often consist of hundreds of thou-
sands of motion capture frames. Instead manually tuning weights
every two or three frames, this approach can be used as a fast anima-
tion tool given facial motion capture sequences. Another advantage
of this approach is that it automatically maintains the coherence of
blending weights across frames, while this coherence could cause a
problem for animators’ manual-tuning work.

Currently this approach works on 3D facial motion capture data,
but it could be extended to enhance performace-driven facial ani-
mation [Williams 1990], by directly cross-mapping tracked facial
motion from video to blendshape models. Probably, the most dif-
ficult challenge would be the normalization and alignment of the
tracked facial motion in order to force all motion data into the same
coordinate system.

The retained dimensionality of the principal component analysis
used in constructing reference mocap-weight pairs (Section 5) is
important to the efficiency of this approach. As discussed in Sec-
tion 5, it is a difficult trade-off between the reduced dimensionality
of motion capture data and the number of training sets. As a fu-
ture work, we plan to investigate new ways to optimize the reduced
dimensionality for this cross-mapping, e.g., cross-validation.

The mapping from the facial motion capture data space to the blend-
shape weight space is generally a one-to-many mapping. The indi-
vidual preferences of animators in choosing blendshape controls
is a factor when they are constructing the reference mocap-weight
pairs that are later used to train RBF regression functions. Hence,
animators with different blendshape-control preferences may get
different cross-mapping results given the same motion capture data
input. Mixing reference mocap-weight pairs constructed by dif-
ferent animators together involves a risk of causing conflicts in
the RBF regression training and may result in unpleasant cross-
mapping results.

There remains a number of interesting extensions to this work that
can be pursued in the future. Current approach still requires man-
ual work in the setup stage, including selecting reference motion
capture frames and tuning blendshape weights. We plan to work on
automatically extracting the best reference motion capture frames
from a motion capture database. Additionally, in our current work,
we also assume that the scheme of selecting reference motion cap-
ture frames can achieve its goal - covering the spanned space of
facial movements as balanced and completely as possible. Future
work can develop an evaluation tool/algorithm to quantatively mea-
sure the coverage of reference mocap frames and iteratively refine
the selection scheme. A blendshape face model composed of 46
blendshapes was used in this work, while blendshape models used
in current industry practice are more complex, often composed of
hundreds of blendshapes. Hence, future work can be done to evalu-
ate and improve this approach on these various complex blendshape
face models.
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Figure 5: Three examples of tuned blendshape faces (the top), the
reference face images (the middle), and reference motion capture
frames (the bottom).

Figure 6: Comparisons of grouthtruth video, motion capture data,
results of the equation-solving method, and results of our approach.
The first row shows recorded groundtruth video frames, the second
row shows aligned motion capture frames (for comparison purpose,
head motion was not removed in these frames), the third row shows
the mapping results of the equation-solving method, and the fourth
row shows the mapping results of our approach.

Figure 7: Examples of facial motion capture mapping results. The
left column shows motion capture frames, and the right column
shows corresponding mapping results generated by our approach.
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