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Abstract

Rigid head motion is a gesture that conveys important non-verbal information in human commu-

nication, and hence it needs to be appropriately modeled and included in realistic facial animations to

effectively mimic human behaviors. In this paper, head motion sequences in expressive facial animations

are analyzed in terms of their naturalness and emotional salience in perception. Statistical measures

are derived from an audiovisual database, comprising synchronized facial gestures and speech, which

revealed characteristic patterns in emotional head motion sequences. Head motion patterns with neutral

speech significantly differ from head motion patterns with emotional speech in motion activation, range

and velocity. The results show that head motion provides discriminating information about emotional

categories. An approach to synthesize emotional head motion sequences driven by prosodic features is

presented, expanding upon our previous framework on head motion synthesis. This method naturally

models the specific temporal dynamics of emotional head motion sequences by building Hidden Markov

Models for each emotional category (sadness, happiness, anger and neutral state). Human raters were

asked to assess the naturalness and the emotional content of the facial animations. On average, the

synthesized head motion sequences were perceived even more natural than the original head motion

sequences. The results also show that head motion modifies the emotional perception of the facial

animation especially in the valence and activation domain. These results suggest that appropriate head
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motion not only significantly improves the naturalness of the animation but can also be used to enhance

the emotional content of the animation to effectively engage the users.

Index Terms

Head Motion, Prosody, Talking Avatars driven by speech, Emotion, Hidden Markov Models.

I. INTRODUCTION

In normal human-human interaction, gestures and speech are intricately coordinated to express and

emphasize ideas, and to provide suitable feedback. The tone and the intensity of speech, facial expressions,

rigid head motion and hand movements are combined in a non-trivial manner, as they unfold in natural

human communication. These interrelations need to be considered in the design of realistic human

animation to effectively engage the users.

One important component of our body language that has received little attention compared to other non-

verbal gestures is rigid head motion. Head motion is important not only to acknowledge active listening

or replace verbal information (e.g.,‘nod’), but also for many interesting aspects of human communication.

Munhall et al. showed that head motion improves the acoustic perception of the speech [1]. They also

suggested that head motion helps to distinguish between interrogative and declarative statements. Hill

and Johnston found that head motion also helps to recognize speaker identity [2]. Graf et al. proved that

the timings of head motion and the prosodic structure of the text are consistent [3], suggesting that head

motion is useful to segment the spoken content. In addition to that, we hypothesize that head motion

provides useful information about the mood of the speaker, as suggested by [3]. We believe that people

use specific head motion patterns to emphasize their affective states.

Given the importance of head motion in human communication, this aspect of non-verbal gestures

should be properly included in an engaging talking avatar. The manner in which people move their head

depends on several factors such as speaker styles and idiosyncrasies [2]. However, the production of

speech seems to play a crucial role in the production of rigid head motion. Kuratate et al. [4] presented

preliminary results about the close relation between head motion and acoustic prosody. They concluded,

based on the strong correlation between these two streams of data (r=0.8) that the production systems of

the speech and head motion are internally linked. These results suggest that head motion can be estimated

from prosodic features.

In our previous work, we presented a synthesis framework for rigid head motion sequences driven

by prosodic features [5]. We modeled the problem as classification of discrete representations of head
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poses, instead of estimating mapping functions between the head motion and prosodic features, as in

[3], [6]. Hidden Markov Models (HMMs) were used to learn the temporal relation between the dynamics

of head motion sequences and the prosodic features. The HMMs were used to generate quantized head

motion sequences, which were smoothed using first order Markov models (bi-gram) and spherical cubic

interpolation. Notice that prosodic features predominantly describe the source of speech rather than the

vocal tract. Therefore, this head motion synthesis system is independent of the specific lexical content of

what is spoken, reducing the size of the database needed to train the models. In addition to that, prosodic

features contain important clues about the affective state of the speakers. Consequently, the proposed

model can be naturally extended to include emotional content of the head motion sequence, by building

HMMs appropriate for each emotion, instead of generic models.

In this paper, we address three fundamental questions: (1) How important is rigid head motion for

natural facial animation? (2) Do head motions change our emotional perception? (3) Can emotional and

natural head motion be synthesized only by prosodic features? To answer these questions, the temporal

behavior of head motion sequences extracted from our audiovisual database were analyzed for three

different emotions: happiness, anger, sadness and the neutral state. The results show that the dynamic of

head motion with neutral speech significantly differs from the dynamics of head motion with emotional

speech. These results suggest that emotional models need to be included to synthesize head motion

sequences that effectively reflect these characteristics. Following this direction, an extension of the head

motion synthesis method, originally proposed in [5], is presented. The approach described in the present

paper includes emotional models that learn the temporal dynamics of the real emotional head motion

sequences. To investigate whether rigid head motion affects our perception of the emotion, we synthesized

facial animation with deliberate mismatches between the emotional speech and the emotional head motion

sequence. Human raters were asked to assess the emotional content and the naturalness of the animations.

In addition, animations without head motion were also included in the evaluation. Our results indicate

that head motion significantly improves the naturalness perception in the facial animation. They also

show that head motion changes the emotional content perceived from the animation, especially in the

valence and activation domain. Therefore, head motion can be appropriately and advantageously included

in the facial animation to emphasize the emotional content of the talking avatars.

The paper is organized as follows: Section II motivates the use of audiovisual information to synthesize

expressive facial animations. Section III describes the audiovisual database, the head pose representation

and the acoustic features used in the paper. Section IV presents statistical measures of head motion

displayed during expressive speech. Section V describes the multimodal framework, based on HMMs, to
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synthesize realistic head motion sequences. Section VI summarizes the facial animation techniques used

to generate the expressive talking avatars. Section VII presents and discusses the subjective evaluations

employed to measure the emotional and naturalness perception under different expressive head motion

sequences. Finally, Section VIII gives the concluding remarks and our future research direction.

II. EMOTION ANALYSIS

For engaging talking avatars, special attention needs to be given to include emotional capability in

the virtual characters. Importantly, Picard has underscored that emotions play a crucial rule in rational

decision making, in perception and in human interaction [7]. Therefore, applications such as virtual

teachers, animated films and new human-machine interfaces can be significantly improved by designing

control mechanisms to animate the character to properly convey the desired emotion. Human beings are

especially good at not only inferring the affective state of other people, even if emotional clues are subtly

expressed, but also in recognizing non-genuine gestures, which challenges the designs of these control

systems.

The production mechanisms of gestures and speech are internally linked in our brain. Cassell et al.

mentioned that they are not only strongly connected, but also systematically synchronized in different

scales (phonemes-words-phases-sentences) [8]. They suggested that hands gestures, facial expressions,

head motion, and eye gaze occur at the same time as speech, and they convey similar information as

the acoustic signal. Similar observations were mentioned by Kettebekov et al. [9]. They studied deictic

hand gestures (e.g. pointing) and the prosodics of the speech in the context of gesture recognition. They

concluded that there is a multimodal coarticulation of gestures and speech, which are loosely coupled.

From an emotional expression point of view, in communication, it has been observed that human beings

jointly modify gestures and speech to express emotions. Therefore, a more complete human-computer

interaction system should include details of the emotional modulation of gestures and speech.

In sum, all these findings suggest that the control system to animate virtual human-like characters

needs to be closely related and synchronized with the information provided by the acoustic signal. This

is especially important if a believable talking avatar conveying specific emotion is desired. Following this

direction, Cassell et al. proposed a rule-based system to generate facial expressions, hand gestures and

spoken intonation, which were properly synchronized according to rules [8]. Other talking avatars that

take into consideration the relation between speech and gestures to control the animation were presented

in [10], [11], [12], [13].

Given that head motion also presents similar close temporal relation with speech [3], [4], [14], this
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Fig. 1. Audio-visual database collection. The left figure shows the facial marker layout, the middle figure shows the facial

motion capture system, and the right figure shows the head motion features extraction.

paper proposes to use HMMs to jointly model these streams of data. As shown in our previous work [5],

HMMs provide a suitable framework to capture the temporal relation between speech and head motion

sequences.

III. AUDIO-VISUAL DATABASE

The audiovisual database used in this research was collected from an actress with 102 markers attached

to her face (left of Figure 1). She was asked to repeat a custom-made, phoneme-balance corpus four

times, expressing different emotions, respectively (neutral state, sadness, happiness and anger). A VICON

motion capture system with three cameras (middle of Figure 1) was used to track the 3D position of each

marker. The sampling rate was set to 120 frames per second. The acoustic signal was simultaneously

recorded by the system, using a close talking SHURE microphone working at 48 kHz. In total, 640

sentences were used in this work. The actress did not receive any instruction about how to move her

head.

After the data were collected, the 3D Euler angles, which were used to represent the rigid head poses,

were computed. First, all the markers’ positions were translated to make the nose marker the center of the

coordinate system. Then, a neutral head pose was selected as the reference frame, Mref (102×3 matrix).

For each frame, a matrix Mt was created, using the same marker order as the reference. Following that,

the singular value decomposition (SVD) UDV T of the matrix MT
t · Mref was calculated. The product

V UT gives the rotational matrix, Rt, used to spatially align the reference and the frame head poses [15].

Finally, the 3D Euler angles, xt, were computed from this matrix (right of Figure 1).

MT
t · Mref = UDV T (1)

Rt = V UT (2)
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In previous work, head motion has been modeled with 6 degrees of freedom (DOF), corresponding to

head rotation (3 DOF) and translation (3 DOF) [14], [16]. However, for practical reasons, in this paper we

consider only head rotation. As discussed in Section V, the space spanned by the head motion features

is split using vector quantization. For a constant quantization error, the number of clusters needed to

span the head motion space increases as the dimension of the feature vector increases. Since an HMM is

built for each head pose cluster, it is preferred to model head motion with only a 3-dimensional feature

vector, thereby decreasing the number of HMMs. Furthermore, since most of the avatar applications

require close-view of the face, translation effects are considerably less important than the effects of head

rotation. Thus, the 3 DOF of head translation are not considered here, reducing the number of required

HMM models and the expected quantization errors.

The acoustic prosodic features were extracted with the Praat speech processing software [17]. The

analysis window was set to 25 milliseconds with an overlap of 8.3 milliseconds, producing 60 frames per

second. The pitch (F0) and the RMS energy and their first and second derivatives were used as prosodic

features. The pitch was smoothed to remove any spurious spikes, and interpolated to avoid zeros in the

unvoiced regions of the speech, by using the corresponding options provided by the Praat software [17].

IV. HEAD MOTION CHARACTERISTICS IN EXPRESSIVE SPEECH

To investigate head motion in expressive speech, the audiovisual data were separated according to the

four emotions. Different statistical measurements were computed to quantify the patterns in rigid head

motion during expressive utterances.

Canonical Correlation Analysis (CCA) was applied to the audiovisual data to validate the close

relation between the rigid head motions and the acoustic prosodic features. CCA provides a scale-

invariant optimal linear framework to measure the correlation between two streams of data with equal

or different dimensionality. The basic idea is to project the features into a common space in which

Pearson’s correlation can be computed. The first part of Table I shows these results. One-way Analysis of

Variance(ANOVA) evaluation indicates that there are significant differences between emotional categories

(F [3,640], p=0.00013). Multiple comparison tests also show that the CCA average of neutral head motion

sequences is different from the CCA mean of sad (p= 0.001) and angry (p= 0.001) head motion sequences.

Since the average of the first order canonical correlation in each emotion is over r=0.69, it can be inferred

that head motion and speech prosody are strongly linked. Consequently, meaningful information can be

extracted from prosodic features to synthesize the rigid head motion.
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TABLE I

STATISTICS OF RIGID HEAD MOTION

Neu Sad Hap Ang

Canonical correlation Analysis

0.74 0.74 0.71 0.69

Motion Coefficient [◦]

α 3.32 4.76 6.41 5.56

β 0.88 3.23 2.60 3.67

γ 0.81 2.20 2.32 2.69

Range [◦]

α 9.54 13.71 17.74 16.05

β 2.31 8.29 6.14 9.06

γ 2.27 6.52 6.67 8.21

Velocity Magnitude [◦/sample]

Mean .08 0.11 0.15 0.18

Std .07 0.10 0.13 0.15

Discriminant Analysis

Neu 0.92 0.02 0.04 0.02

Sad 0.15 0.61 0.11 0.13

Hap 0.14 0.09 0.59 0.18

Ang 0.14 0.11 0.25 0.50

To measure the motion activity of head motion in each of the three Euler angles, we estimated a motion

coefficient, Ψ, which is defined as the standard deviation of the sentence-level mean-removed signal,

Ψ =

√√√√ 1

N · T

N∑

u=1

T∑

t=1

(xu
t − µu)2 (3)

where T is the number of frames, N is the number of utterances, and µu is the mean of the sentence u.

The results shown in Table I suggest that the head motion activity displayed when the speaker is under

emotional states (sadness, happiness or anger) is much higher than the activity displayed under neutral

speech. Furthermore, it can be observed that head motion activity related to sad emotion is slightly lower

than the activity for happy or angry. As an aside, it is interesting to note that similar trends with respect

to emotional state have been observed in articulatory data of tongue and jaw movement [18].

Table I also shows the average ranges of the three Euler angles that define the head poses. The results

indicate that during emotional utterances the head is moved over a wider range than in normal speech,
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which is consistent with the results of the motion coefficient analysis.

The velocity of head motion was also computed. The average and the standard deviation of the head

motion velocity magnitude is presented in Table I. The results indicate that the head motion velocities

for happy and angry sequences are about two times greater than that of neutral sequences. The velocities

of sad head motion sequences are also greater than that of neutral head motion, but smaller than that of

happy and angry sequences. In terms of variability, the standard deviation results reveal a similar trend.

These results suggest that emotional head motion sequences present different temporal behavior than

those of neutral condition.

To analyze how distinct the patterns of rigid head motion for emotional sentences are, a discriminant

analysis was applied to the data. The mean, standard deviation, range, maximum and minimum of the

Euler angles computed at the sentence-level were used as features. Fisher classification was implemented

with leave-one-out cross validation method. Table I shows the results. On average, the recognition rate just

with head motion features was 65.5%. Notice that the emotional class with lower performance (anger)

is correctly classified with an accuracy higher than 50% (chance is 25%). These results suggest that

there are distinguishable emotional characteristics in rigid head motion. Also, the high recognition rate

of neutral state implies that global patterns of head motion in normal speech are completely different

from the patterns displayed under an emotional state.

These results suggest that people intentionally use head motion to express specific emotion patterns.

Therefore, to synthesize expressive head motion sequences, suitable models for each emotion need to be

built.

V. RIGID HEAD MOTION SYNTHESIS

The framework used in this work to synthesize realistic head motion sequences builds upon the approach

presented in our previous publication [5]. This section presents the extension of this method.

The proposed speech-driven head motion sequence generator uses HMMs because they provide a

suitable framework to jointly model the temporal relation between prosodic features and head motion.

Instead of estimating a mapping function [3], [6], or designing rules according to the lexical content of

the speech [8], or finding similar samples in the training data [16], we model the problem as classification

of discrete representations of head poses which are obtained by the use of vector quantization. The Linde-

Buzo-Gray Vector Quantization (LBG-VQ) technique [19] is used to compute K Voronoi cells in the 3D

Euler angle space. The clusters are represented with their mean vector Ui and covariance matrix Σi, with

i = 1, . . . ,K. For each of these clusters, Vi, an HMM is built to generate the most likely head motion
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sequence, given the observations O, which correspond to the prosodic features. The number of HMMs

that need to be trained is given by the number of clusters (K) used to represent the head poses.

Two smoothing techniques are used to produce continuous head pose sequences. The first smoothing

technique is imposed in the decoding step of the HMMs, by constraining the transition between clusters.

The second smoothing technique is applied during synthesis, by using spherical cubic interpolation to

avoid breaking of the discrete representation. More details of these smoothing techniques are given in

Sections V-A and V-B, respectively.

In our previous work, we proposed the use of generic (i.e., emotion-independent) models to generate

head motion sequences [5]. As shown in the previous section (Section IV), the dynamics and the patterns

of head motion sequences under emotional states are significantly different. Therefore, these generic

models do not reflect the specific emotional behaviors. In this paper, the technique is extended to include

emotion-dependent HMMs. Instead of using generic models for the whole data, we proposed building

HMMs for each emotional category to incorporate in the models the emotional patterns of rigid head

motion.

A. Learning relations between prosodic features and head motion

To synthesize realistic head motion, our approach searches for the sequences of discrete head poses

that maximize the posterior probability of the cluster models V = (V t
i1

, V t+1

i2
, . . .), given the observations

O = (ot, ot+1, . . .).

arg max
i1,i2,...

P (V t
i1

, V t+1

i2
, . . . |O) (4)

This posterior probability is computed according to Bayes rule as:

P (V |O) =
P (O|V ) · P (V )

P (O)
(5)

P (O) is the probability of the observation which does not depend on the cluster models. Therefore, it

can be considered as a constant. P (O|V ) corresponds to the likelihood distribution of the observation,

given the cluster models. This probability is modeled as a first order Markov process, with S states. Hence,

the probability description includes only the current and previous state, which significantly simplifies the

problem. For each of the S states, a mixture of M Gaussians is used to estimate the distribution of the

observations. The use of mixtures of Gaussians models the many-to-many mapping of head motion and

prosodic features. Under this formulation, the estimation of the likelihood is reduced to computing the
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Fig. 2. Head motion synthesis framework.

parameters of the HMMs, which can be estimated using standard methods such as forward-backward and

Baum-Welch re-estimation algorithms [20], [21].

P (V ) in Equation 5 corresponds to the prior probability of the cluster models. This probability is

used as a first smoothing technique to guarantee valid transition between the discrete head poses. A

first-order state machine is built to learn the transition probabilities of the clusters, by using bi-gram

models (similar to bi-gram language models [20]).The transition between clusters are learned from the

training data. In the decoding step of the HMMs, these bi-gram models are used to penalize or reward

transitions between discrete head poses according to their occurrences in the training database. As our

results suggest, the transition between clusters is also emotion-dependent. Therefore, this prior probability

is separately trained for each emotion category.

Notice that in the training procedure the segmentation of the acoustic signal is obtained from the

vector quantization step. Therefore, the HMMs were initialized with this known segmentation, avoiding

the use of forced alignment, as it is usually done in speech recognition to align phonemes with the speech

features.

B. Generating realistic head motion sequences

Figure 2 describes the proposed framework to synthesize head motion sequences. Using the acoustic

prosodic features as input, the HMMs, which were previously trained as described in Section V-A,

generate the most likely head pose sequences, V̂ = (V̂ t
i1

, V̂ t+1

i2
. . .), according to Equation 4. After the

sequence V̂ is obtained, the means of the clusters are used to form a 3D sequence, Ŷ = (U t
i1

, U t+1

i2
. . .),

which is the first approximation of the head motion.

In the next step, colored noise is added to the sequence Ŷ , according to Equation 6 (see Figure 2).

The purpose of this step is to compensate for the quantization error of the discrete representation of head
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poses. The noise is colored with the covariance matrix of the clusters, Σ, so as to distribute the noise

in proportion to the error yielded during vector quantization. The parameter λ is included in Equation 6

to attenuate, if desired, the level of noise used to blur the sequence Ŷ (e.g. λ = 0.7). Notice that this is

an optional step that can be ignored by setting λ equal to zero. Figure 3 shows an example of Ẑ (blue

solid lines).

Ẑt
i = Ŷ t

i + λ · W (Σi) (6)

As can be observed from Figure 3, the head motion sequence Ẑ shows a break in the cluster transition

even if colored noise is added or the number of clusters is increased. To avoid these discontinuities, a

second smoothing technique is applied to this sequence which is based on spherical cubic interpolation

[22]. With this technique, the 3D Euler angles are interpolated in the unit sphere by using quaternion

representation. This technique performs better than interpolating each Euler angle separately, which has

been shown to produce jerky movements and undesired effects such as Gimbal lock [23].

In the interpolation step, the sequence Ẑ is down-sampled to 6 points per second to obtain equidistant

frames. These frames are referred here as key-points and are marked as a circle in Figure 3. These 3D

Euler angles points are then transformed into the quaternion representation [22]. Then, spherical cubic

interpolation, squad, is applied over these quaternion points. The squad function builds upon the spherical

linear interpolation, slerp. The functions slerp and squad are defined by equations 7 and 8,

slerp(q1, q2, µ) =
sin(1 − µ)θ

sin θ
q1 +

sin µθ

sin θ
q2 (7)

squad(q1, q2, q3, q4, µ) = (8)

slerp(slerp(q1, q4, µ), slerp(q2, q3, µ), 2µ(1 − µ))

where qi are quaternions, cosθ = q1 ·q2 and µ is a parameter that ranges between 0 and 1 and determines

the frame position of the interpolated quaternion. Using these equations, the frames between key-points

are interpolated by setting µ at the specific times to recover the original sample rate (120 frames per

second). The final step in this smoothing technique is to transform the interpolated quaternions into the

3D Euler angle representation.

Notice that colored noise is applied before the interpolation step. Therefore, the final sequence, X̂ , is

a continuous and smooth head motion sequence without the jerky behavior of the noise. Figure 3 shows
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Fig. 3. Example of a synthesized head motion sequence. The figure shows the 3D noisy signal bZ (Equation 6), with the

key-points marked as a circle, and the 3D interpolated signal bX , used as head motion sequence.

the synthesized head motion sequence for one example sentence. The figure shows the 3D noisy signal

Ẑ (Equation 6), with the key-points marked as a circle, and the 3D interpolated signal X̂ , used here as

head motion sequence.

Finally, for animation a blend shape face model composed of 46 blend shapes is used in this work

(eye ball is controlled separately, as explained in Section VI). The head motion sequence, X̂ , is directly

applied to the angle control parameters of the face model. The face modeling and rendering are done in

Maya [24]. Details of the approach used to synthesize the face are given in Section VI.

C. Configuration of HMMs

The topology of the HMM is defined by the number and the interconnection of the states. In this

particular problem, it is not completely clear which HMM topology provides the best description of the

dynamics of the head motion. The most common topologies are the left-to-right topology (LR), in which

only transitions in forward direction between adjacent states are allowed, and the ergodic (EG) topology,

in which the states are fully connected. In our previous work [5], different HMM configurations for

head motion synthesis were compared. The best performance was achieved by the LR topology with 3

states and 2 mixtures. One possible explanation is that LR topologies have fewer parameters than EG

topologies, so they require less data for training. In this paper, the training data is even smaller, since

emotion-dependent model are separately trained. Therefore, the HMMs used in the experiments were

implemented using a LR topology with 2 states (S = 2) and 2 mixtures (M = 2).
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TABLE II

CANONICAL CORRELATION ANALYSIS BETWEEN ORIGINAL AND SYNTHESIZED HEAD MOTION SEQUENCES

Neutral Sadness Happiness Anger

Mean 0.86 0.88 0.89 0.91

Std 0.12 0.11 0.08 0.08

Another important parameter that needs to be set is the number of HMMs, which is directly related

to the number of clusters K. If K increases, the error quantization of the discrete representation of

head poses decreases. However, the discrimination between models will significantly decrease and more

training data will be needed. Therefore, there is a tradeoff between the quantization error and the inter-

cluster discrimination. In our previous work, it was shown that realistic head motion sequences were

obtained, even when only 16 clusters were used. In this work, we also used a 16-word-sized codebook

(K = 16).

D. Objective Evaluation

Table II shows the average and standard deviation of the first order canonical correlation between

the original and the synthesized head motion sequences. As can be observed, the results show that the

emotional sequences generated with the prosodic feature are highly correlated with the original signals

(r > 0.85). Notice that the first order canonical correlation between the prosodic speech features and

the original head motion sequence was about r ≈ 0.72 (see Table I). This result shows that even though

the prosodic speech features do not provide complete information to synthesize the head motion, the

performance of the proposed system is notably high. This result is confirmed by the subjective evaluations

presented in Section VII.

To compare how different the emotional HMMs presented in this paper are, an analytic approximation

of the Kullback-Leibler Distance (KLD) was implemented. The KLD, or relative entropy, provides the

average discrimination information between the probability density functions of two random variables.

Therefore, it can be used to compare distances between models. Unfortunately, there is no analytic

close-form expression for Markov chains or HMMs. Therefore, numerical approximation, such as Monte

Carlo simulation, or analytic upper bound for the KLD need to be used [25], [26]. Here, we use the

analytic approximation of the Kullback-Leibler Distance rate (KLDR) presented by Do, which is fast and

deterministic. It has been shown that it produces similar results to those obtained through Monte Carlo
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simulations [26].

Figure 4 shows the distance between emotional HMMs for eight head-motion clusters. Even though

some of the emotional models are close, most of them are significantly different. Figure 4 reveals that

happy and angry HMMs are closer than any other emotional category. As discussed in Section IV, the

head motion characteristics of happy and angry utterances are similar, so it is not surprising that they

share similar HMMs. This result indicates that a single model may be used to synthesize happy and

angry head motion sequences. However, in the experiments presented this paper a separate model was

built for each emotion.
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Fig. 4. Kullback-Leibler distance rate (KLDR) of HMMs for eight head-motion clusters. Light colors mean that the HMMs are

different, and dark colors mean that the HMMs are similar. The figure reveals the differences between the emotion-dependent

HMMs.

The readers are referred to [5] for further details about the head motion synthesis method.

VI. FACIAL ANIMATION SYNTHESIS

Although this paper is focused on head motion, for realistic animations, every facial component needs

to be modeled. In this paper, expressive visual speech and eye motion were synthesized by the techniques

presented in [27], [28], [29], [30]. This section briefly described these approaches, which are very

important to creating a realistic talking avatar.

Figure 5 illustrates the overview of our data-driven facial animation synthesis system. In the recording

stage, expressive facial motion and its accompanying acoustic signal are simultaneously recorded and

preprocessed. In the modeling step, two approaches are used to learn the expressive facial animation:

the neutral speech motion synthesis [27] and the dynamic expression synthesis [28]. The neutral speech

motion synthesis approach learns explicit but compact speech co-articulation models by encoding co-

articulation transition curves from recorded facial motion capture data, based on a weight-decomposition

method that decomposes any motion frame into linear combinations of neighboring viseme frames.

Given a new phoneme sequence, this system synthesizes corresponding neutral visual speech motion
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Fig. 5. Overview of the data-driven expressive facial animation synthesis system. The system is composed of three parts:

recording, modeling, and synthesis.

by concatenating the learned co-articulation models. The dynamic expression synthesis approach con-

structs a Phoneme-Independent Expression Eigen-Space (PIEES) by a phoneme-based time warping and

subtraction that extracts neutral motion signals from captured expressive motion signals. It is assumed

that the above subtraction removes “phoneme-dependent” content from expressive speech motion capture

data [28]. These phoneme-independent signals are further reduced by Principal Component Analysis

(PCA) to create an expression eigen-space, referred here PIEES [28]). Then, novel dynamic expression

sequences are generated from the constructed PIEES by texture-synthesis approaches originally used for

synthesizing similar but different images given a small image sample in graphics field. In the synthesis

step, the synthesized neutral speech motions are weight-blended with the synthesized expression signals

to generate expressive facial animation.

In addition to expressive visual speech synthesis, we used a texture-synthesis based approach to

synthesize realistic eye motion for talking avatars [29]. Eye gaze is one of the strongest cues in human

communication. When a person speaks, he/she looks to our eyes to judge our interest and attentiveness,

and we look into his/her eyes to signal our intent to talk. We adopted data-driven texture synthesis

approaches [31], originally used in 2D image synthesis, to the problem of realistic eye motion modeling.

Eye gaze and aligned eye blink motion are considered together as an “eye motion texture” sample. The

samples are then used to synthesize novel but similar eye motions. In our work, the patch-based sampling

algorithm [31] is used, due to its time efficiency. The basic idea is to generate one texture patch (fixed

size) at a time, randomly chosen from qualified candidate patches in the input texture sample. Figure 6

illustrates the synthesized eye motion results.

Figure 7 shows frames of the synthesized data for happy and angry sentences. The text of sentences

are “We lost them at the last turnoff” and “And so you just abandoned them?”, respectively.
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Fig. 6. Synthesized eye-gaze signals. Here, the solid line (blue) represents synthesized gaze signals, and dotted line (red)

represents captured signal samples.

Fig. 7. Synthesized sequence for happy (top) and angry (bottom) sentences.

VII. EVALUATION OF EMOTIONAL PERCEPTION FROM ANIMATED SEQUENCES

To analyze whether head motion patterns change the emotional perception of the speaker, various

combinations of facial animations were created, including deliberate mismatches between the emotional

content of the speech and the emotional pattern of head motion, for four sentences in our database (one

for each emotion). Given that the actress repeated each of these sentences under four emotional states,

we generated facial animations with speech associated with one emotion, and recorded head motions

associated with a different emotion. Altogether, 16 facial animations were created (4 sentences × 4

emotions). The only consideration was that the timing between the repetitions of these sentences was

different, and it was overcome by aligning the sentences using Dynamic Time Warping (DTW) [32].

After the acoustic signals were aligned, the optimal synchronization path was applied to the head motion

sequences and were used to create the mismatched facial animations (Figure 8). In the DTW process, some

emotional characteristics could be removed, especially for sad sentences, in which the syllable duration

is inherently longer than in other emotions. However, most of the dynamic behaviors of emotional head
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Fig. 8. Dynamic Time Warping. Optimums path (left panel) and warped head motion signal (right panel).

motion sequences are nevertheless preserved. Notice that even though lip and eye motions were also

included in the animations, the only parameter that was changed was the head motion.

For assessment, 17 human subjects were asked to rate the emotions conveyed and the naturalness of

the synthesized data presented as short animation videos. The animations were presented to the subjects

in a random order. The evaluators received instructions to rate their overall impression of the animation

and not individual aspects such as head movement or voice quality.

The emotional content was rated using three emotional attributes (“primitives”), namely valence,

activation and dominance, following a concept proposed by Kehrein [33]. Valence describes the positive

or negative strength of the emotion, activation details the excitation level (high vs. low), and dominance

refers to the apparent strength or weakness of the speaker.

Describing emotions by attributes in an emotional space is a powerful alternative to assigning class

labels such as sadness or happiness [34], since the primitives can be easily used to capture emotion

dynamics and speaker dependencies. Also, there are different degrees of emotions that cannot be measured

if only category labels are just used (e.g. how “happy” or “sad” the stimuli is). Therefore, these emotional

attributes are more suitable to evaluate the emotional salience in human perception. Notice that for

animation, we propose to use categorical classes, since the specifications of the expressive animations

are usually described in terms of category emotions and not emotional attributes.

As a tool for emotion evaluation, Self Assessment Manikins (SAMs) have been used [35], [36] as

shown in Figure 9. For each emotion primitive, the evaluators had to select one out of five iconic images

(“manikins”). The SAMs system has been previously used successfully for assessment in emotional

speech, showing low standard deviation and high inter-evaluator agreement [36]. Also, using a text-free

assessment method bypasses the difficulty that each evaluator has on his/her individual understanding of
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TABLE III

SUBJECTIVE AGREEMENT EVALUATION, VARIANCE ABOUT THE MEAN

Valence Activation Dominance Naturalness

0.52 0.49 0.48 0.97

linguistic emotion labels.

Fig. 9. Self Assessment Manikins [35]. The rows illustrate: top, Valence [1-positive, 5-negative]; middle, Activation [1-excited,

5-calm]; and bottom, Dominance [1-weak, 5-strong].

For each SAM row in Figure 9, the selection was mapped to the range 1 to 5 from left to right. The

naturalness of the animation was also rated using a five-point scale. The extremes were called robot-like

(value 1), and human-like (value 5).

In addition to the animations, the evaluators also assessed the underlying speech signal without the

video signal. This rating was used as a reference.

Table III presents the inter-evaluator average variance in the scores rated by the human subjects, in

terms of emotional attributes and naturalness. These measures confirm the high inter-evaluator agreement

of emotional attributes. The results also show that the naturalness of the animation was perceived slightly

different between the evaluators, which suggest that the concept of naturalness is more person-dependent

than the emotional attribute. However, this variability does not bias our analysis, since we will consider

differences between the scores given to the facial animations.

Figures 10, 11 and 12 show the results of the subjective evaluations in terms of emotional perception.

Each quadrant has the error bars for six different facial animations with head motion synthesized with

(from left to right): original sequence (without mismatch), three mismatched sequences (one for each



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 19

emotion), synthesized sequence, and, fixed head poses. In addition, the result for audio (WAV) was also

included. For example, the second quadrant in the most upper-left block of Figure 10 shows the valence

assessment for the animation with neutral speech and sad head motion sequence. To measure whether the

difference in the means of two of these groups are significant, the two-tailed Student’s t-test was used.

In general, the figures show that the emotional perception changes in presence of different emotional

head motion patterns.

In the valence domain (Figure 10), the results show that when the talking avatar with angry speech is

animated with happy head motion, the attitude of the character is perceived more positive. The t-test result

indicates that the difference in the scores between the mismatched and the original animations is statistical

significant (t=2.384, df = 16, p = 0.03). The same result is also held when sad and neutral speeches are

synthesized with happy head motion sequences. For these pairs, the t-test results are (t=2.704, df = 16,

p = 0.016), and (t=2.384, df = 16, p = 0.03), respectively. These results suggest that the temporal pattern

in happy head motion makes the animation to have a more positive attitude.

Figure 10 also shows that when neutral or happy speech is synthesized with angry head motion

sequences, the attitude of the character is perceived slightly more negative. However, the t-test reveals

that these differences are not completely significant.
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Fig. 10. Subjective evaluation of emotions conveyed in valence domain [1-positive, 5-negative]. Each quadrant has the error bars

of facial animations with head motion synthesized with (from left to right): original head motion sequence (without mismatch),

three mismatched head motion sequences (one for each emotion), synthesized sequence (SYN), and, fixed head poses (FIX).

The result of the audio without animation is also shown (WAV).
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In the activation domain (Figure 11), the results show that the animation with happy speech and angry

head motion sequence is perceived with a higher level of excitation. The t-test result indicates that the

differences in the scores are significant (t=2.426, df = 16, p = 0.027). On the other hand, when the talking

avatar with angry speech is synthesized with happy head motion, the animation is perceived slightly more

calmed, as observed in Figure 11. Notice that in the acoustic domain, anger is usually perceived more

excited than happiness, as reported in [37], [38], and as shown in the evaluations presented here (see

the last bars of (c) and (d) in Figure 11). Our results suggest that the same trend is observed in the

head motion domain: angry head motion sequences are perceived more excited than happy head motion

sequences.

When animation with happy speech is synthesized with sad head motion, the talking avatar is perceived

more excited (t=2.184, df = 16, p = 0.044). It is not clear whether this result, which is less intuitive than

the previous results, may be a true effect generated by the combination of modalities, which together

produce a different percept (similar to the McGurk effect [39]), or may be an artifact introduced in the

warping process.

5.0

4.0

3.0

2.0

1.0

A
N

G

N
E
U

S
A

D

H
A

P

S
Y

N

F
IX

W
A
V

5.0

4.0

3.0

2.0

1.0

A
N

G

N
E
U

S
A

D

H
A

P

S
Y

N

F
IX

W
A
V

(a) Neutral (b) Sadness

5.0

4.0

3.0

2.0

1.0

A
N

G

N
E
U

S
A

D

H
A

P

S
Y

N

F
IX

W
A
V

5.0

4.0

3.0

2.0

1.0

A
N

G

N
E
U

S
A

D

H
A

P

S
Y

N

F
IX

W
A
V

(c) Happiness (d) Anger

Fig. 11. Subjective evaluation of emotions conveyed in activation domain [1-excited, 5-calm]. Each quadrant has the error bars

of facial animations with head motion synthesized with (from left to right): original head motion sequence (without mismatch),

three mismatched head motion sequences (one for each emotion), synthesized sequence (SYN), and, fixed head poses (FIX).

The result of the audio without animation is also shown (WAV).

In the dominance domain, Figure 12 shows that the mismatched head motion sequences do not modify
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in significant ways how dominant the talking avatar is perceived as compared to the animations with the

original head motion sequence. For example, the animation with neutral speech and with happy head

motion is perceived slightly stronger. A similar result is observed when animation with happy speech

is synthesized with an angry head motion sequence. However, the t-test reveals that the differences in

the means of the scores of the animations with mismatched and original head motion sequences are not

statistical significant: (t=-1.461, df = 16, p = 0.163), and (t=-1.289, df = 16, p = 0.216), respectively.

These results suggest that head motion has a lower influence in the dominance domain than in the

valence and activation domains. A possible explanation of this result is that human listeners may be

more cognizant of other facial gestures such as eyebrow and forehead motion to infer how dominant the

speaker is. Also, the intonation and the energy of the speech may play a more important role than head

motion gesture for dominance perception.
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Fig. 12. Subjective evaluation of emotions conveyed in dominance domain [1-weak , 5-strong]. Each quadrant has the error bars

of facial animations with head motion synthesized with (from left to right): original head motion sequence (without mismatch),

three mismatched head motion sequences (one for each emotion), synthesized sequence (SYN), and, fixed head poses (FIX).

The result of the audio without animation is also shown (WAV).

Notice that the emotional perception of the animations synthesized without head motion usually differs

from the emotion perceived from the animations with the original sequences. This is especially clear in

the valence domain, as can be observed in Figure 10. The differences in the mean of the scores in 10−(a)

and 10−(b) between the fixed head motion and the original animations are statistical significant, as shown
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TABLE IV

NATURALNESS ASSESSMENT OF RIGID HEAD MOTION SEQUENCES [1-robot-like, 5-human-like]

Head Motion Neutral Sadness Happiness Anger

Data Mean Std Mean Std Mean Std Mean Std

Original 3.76 0.90 3.76 0.83 3.71 0.99 3.00 1.00

Synthesized 4.00 0.79 3.12 1.17 3.82 1.13 3.71 1.05

Fixed Head 3.00 1.06 2.76 1.25 3.35 0.93 3.29 1.45

by the t-test: (a) (t=2.746, df = 16, p = 0.014) and (b) (t=2.219, df = 16, p = 0.041). For (c) and (d)

the differences in the means observed in the figure are not totally significant: (c) (t=-1.144, df = 16, p

= 0.269), (d) (t=2.063, df = 16, p = 0.056). This result suggests that head motion has a strong influence

on the perception of how positive or negative the affective state of the avatar is.

Figures 10, 11 and 12 also suggest that the emotional perception of the acoustic signal changes when

facial animation is added, emphasizing the multimodal nature of human emotional expression. This is

particularly noticeable in sad sentences, in which the t-test between the means of the scores of the original

animation and the acoustic signal gives (t=4.190, df = 16, p = 0.01) in the valence domain, and (t=2.400,

df = 16, p = 0.029) in the activation domain. Notice that in this analysis, the emotional perception of

the acoustic signal is directly compared to the emotional perception of the animation. Therefore, the

differences in the results are due to not only the head motion, but also the other facial gestures included

in the animations (see Section VI). These results suggest that facial gestures (including head motion) are

extremely important to convey the desired emotion.

Table IV shows how the listeners assessed the naturalness of the facial animation with head motion

sequences generated with the original and with the synthesized data. It also shows the results for anima-

tions without head motion. These results show that head motion significantly improves the naturalness

of the animation. Furthermore, with the exception of sadness, the synthesized sequences were perceived

even more natural than the real head motion sequences, which indicates that the head motion synthesis

approach presented here was able to generate realistic head motion sequences.

VIII. CONCLUSIONS

Rigid head motion is an important component in human-human communication that needs to be appro-

priately added into computer facial animations. The subjective evaluations presented in this paper show

that including head motion into talking avatars significantly improves the naturalness of the animations.
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The statistical measures obtained from the audiovisual database reveal that the dynamics of head

motion sequences are different under different emotional states. Furthermore, the subjective evaluations

also show that head motion changes the emotional perception of the animation, especially in the valence

and activation domain. The implications of these results are significant. Head motion can be appropriately

included in the facial animation to emphasize its emotional content.

In this paper, an extension of our previous head motion synthesis approach was implemented to

handle expressive animations. Emotion-dependent HMMs were designed to generate the most likely

head motion sequences driven by speech prosody. The objective evaluations show that the synthesized

and the original head motion sequences were highly correlated, suggesting that the dynamics of head

motion were successfully modeled by the use of prosodic features. Also, the subjective evaluations show

that on average, the animations with synthesized head motion were perceived as realistic when compared

with the animation with the original head motion sequence.

The results of this paper indicate that head motion provides important emotional information that can be

used to discriminate between emotions. It is interesting to notice that in the current multimodal emotion

recognition systems, head motion is usually removed in the preprocessing step. Although head motion

is speaker-dependent, as is any gesture, it could be used to determine emotional versus non-emotional

affective states in human-machine interaction systems.

We are currently working to modify the system to generate head motion sequences that not only look

natural, but also preserve the emotional perception of the input signal. Even though the proposed approach

generates realistic head motion sequences, the results of the subjective evaluations show that in some cases

the emotional content in the animations were perceived slightly different from the original sequences.

Further research is needed to shed light into the underlying reasons. It may be that different combinations

of modalities create different emotion percepts, similar to the famous McGurk effect [39]. Or, it may be

that the modeling and techniques used are not perfect enough, creating artifacts. For instance, it may be

that the emotional HMMs preserve the phase but not the amplitude of the original head motion sequence.

If this is the case, the amplitude of the head motion could be externally modified to match the statistics

of the desired emotion category.

One limitation of this work is that head motion sequences considered here did not include the 3 DOF

of head translation. Since human neck translates the head, especially back and forward, our future work

will investigate how to jointly model the 6 DOF of the head.

In this work, head motion sequences from a single actress were studied, which is generally enough for

synthesis purposes. An open area that requires further work is the analysis of inter-person variabilities
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and dependencies in head motion patterns. We are planning to collect more data from different subjects

to address the challenging questions triggered by this topic.

We are also studying the relation between the speech and other facial gestures, such as eyebrow motion.

If these gestures are appropriately included, we believe that the overall facial animation will be perceived

to be more realistic and compelling.
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