
76	 November/December 2008	 Published by the IEEE Computer Society� 0272-1716/08/$25.00 © 2008 IEEE

Feature Article

Orthogonal-Blendshape-Based
Editing System for Facial Motion
Capture Data
Qing Li and Zhigang Deng ■ University of Houston

The accuracy and robustness of motion
capture has made it a popular technique
for acquiring preplanned natural human

movements. But owing to its high cost, the com-
puter animation community is searching for ways
to efficiently and intuitively transform prerecorded

motion capture data for novel
applications, such as retargeting
motion capture data to people
with different body proportions.
Although researchers have pur-
sued various methods of editing
body movement, relatively little
research exists on editing facial
motion capture data. In contrast
to body motion, facial motion
capture data don’t have an obvi-
ous internal structure, so anima-

tors can’t directly apply inverse-kinematic models
to this scenario without considerable effort.

In this work, we present a data-driven 3D facial
motion capture editing system that uses the auto-
mated construction of an orthogonal-blendshape
face model and a constrained weight propagation.
Given a collected facial motion capture data set,
we start by performing a region-based principal
component analysis (PCA) decomposition and
constructing a truncated PCA space spanned by
the largest eigenvectors for each anatomical region
of the human face (for example, the left eyebrow).
We then construct an orthogonal-blendshape face
model as follows: each eigenvector of an anatomi-
cal region corresponds to a blendshape basis, so
we regard its PCA coefficient as its blendshape
weight. Our orthogonal model also minimizes the

blendshape interference issue1 that can affect the
efficiency of the overall approach. Because this in-
terference issue is due mainly to the nonorthogonal-
ity of blendshape bases, our approach can minimize
the issue by automatically constructing an orthogo-
nal-blendshape model at the beginning. Finally, we
transform each frame of a new facial motion cap-
ture sequence into blendshape weights by project-
ing it into the PCA spaces mentioned earlier on a
per-region basis. As such, modifying the blendshape
weights (PCA coefficients) is equivalent to editing
the underlying motion capture sequence.

Facial Motion Capture
In the data collection stage, we captured high-
quality 3D facial motions by using a Vicon motion
capture system (see the left panel of Figure 1a). We
directed an actress with 102 markers on her face
to speak a delicately designed corpus (composed of
hundreds of sentences) four times, with each rep-
etition spoken wearing a different facial expres-
sion. In this data recording, we considered a total
of four basic facial expressions: neutral, happiness,
anger, and sadness.

We recorded the facial-motion data at a 120Hz
sampling rate and collected approximately 135
minutes of motion capture data. Owing to track-
ing errors caused by rapid, large head movements
and the removal of unnecessary facial markers, we
used only 90 of 102 markers for this work. After
data capture, we normalized the data by removing
head motion from the motion capture frames as
follows: we first translated all the markers so that
a specific marker was at the local coordinate center
of each frame and then used method based on a

A new data-driven system
combines the automated
construction of an orthogonal
blendshape face model
with constrained weight
propagation to intuitively and
efficiently edit facial motion
capture sequences.

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 77

singular value decomposition (SVD)2 to calculate
head motion. Figure 1b shows the 102 facial marker
layout and the 90 markers we kept.

Region-Based Principal Component
Analysis
We concatenated the 3D positions of each of the
90 valid markers of a single facial-motion capture
frame to form a 270-dimensional facial motion
vector. However, to keep more than 90 percent of
the possible variations of these vectors in a single
truncated PCA space, a retained dimensional-
ity of greater than 20 would result. Furthermore,
because PCA is essentially a global transforma-
tion/reduction, there is no explicit and clear cor-
respondence between PCA eigenvectors and facial
movements. In other words, if users want to edit
a specific facial region, it’s extremely difficult for
them to know how and which PCA coefficients to
adjust. As such, facial-motion editing in the single
truncated PCA space isn’t intuitive for animators.

To automatically maintain the 3D face’s natu-
ral appearance while a user edits the facial region,
we extend the motion propagation algorithm
proposed by Qingshan Zhang and his colleagues3
into a constrained weight propagation technique
that lets animators optionally specify which
blendshape controls (and their weights) shouldn’t
be affected in later editing. Figure 2 shows the
schematic overview of this approach.

To provide local controls, we adopted an ana-
tomical segmentation scheme to divide the whole
face (using its facial markers) into 10 different re-
gions (see Figure 1b): forehead, left eyebrow, right
eyebrow, left eye, right eye, left cheek, right cheek,
upper lip, lower lip, and jaw. For the markers in
each of the 10 regions, we constructed a separate
PCA space. We experimentally set the reduced di-
mensionality to three because this retains more
than 90 percent of the motion variation for every
facial region.

In our experiments, we found that because we
applied PCA to a specific facial region’s motions,
increasing or decreasing the weights of its largest
three eigenvectors often corresponds to perceptual
movements of that region. For example, when us-
ers increase the weight (PCA coefficient) of the
largest eigenvector for the left eyebrow region, the
left eyebrow is accordingly raised. Figures 3a and
3b (see next page) show two examples of how these
retained eigenvectors approximately correspond to
perceptual movements for certain facial regions.

Automated Orthogonal Blendshape Construction
From the region-based PCA decompositions we’ve
just described, our approach automatically con-
structs an orthogonal-blendshape face model with
30 blendshape bases (each region has three blend-
shape bases and 10 total regions) as follows: a re-
tained eigenvector of each facial region corresponds

Original output Edited output
Used editing

Region-based
PCA spaces

Prerecorded
facial motion

database

Region controls

Automated blendshape
construction

Weight curves

Face

Upper Lower

Weigh propagation

Figure 2.
Schematic
overview. Our
system consists
of two main
components:
after an
orthogonal
blendshape
face model is
automatically
constructed
(the first
stage), users
can perform
various editing
operations on
the constructed
blendshape
face model (the
second stage).

Figure 1. Facial
motion capture
and facial
region-dividing
scheme. 	
(a) Our facial
motion capture
system, (b) the
facial marker
layout we used,
and (c) our
region-dividing
scheme. Blue
and red points
together
represent
the total 102
captured
markers; the
red points are
the 90 markers
we used for this
work.

(a)	 (b)	 (c)

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

78	 November/December 2008

Feature Article

to a blendshape basis, with its projected PCA coef-
ficient serving as its weight. Equation 1 describes
the constructed blendshape model:

MrkMotion MeanMotion C EigVi j
ji

i= + ∗
==
∑∑ , ,

1

3

1

10

jj � (1)

Changing these retained PCA coefficients (equiva-
lent to moving the sliders of blendshape weights)
leads to a change of the underlying facial motion
capture frame. Throughout the remainder of this
article, we use weights and PCA coefficients, as
well as blendshape bases and region-based PCA ei-
genvectors, interchangeably.

The blendshape approach often suffers from an
interference problem due to nonorthogonal blend-

shape bases.1 In this work, the constructed blend-
shape bases are orthogonal because motion markers
in different facial regions don’t intersect each other,
and retained eigenvectors in a facial region are or-
thogonal to each other. As such, our system avoids
blendshape interference or at least minimizes it.

Given a facial motion capture sequence as the
input of an editing task, we can now project every
frame of the sequence to the region-based truncated
PCA spaces and obtain corresponding weights for
all blendshape bases. Animators can then further
edit these continuous weight curves in the time do-
main as shown in the next section.

Automated Weight Propagation
As illustrated in Figure 3, changing the weights
of individual blendshape bases directly affects the
movement of certain facial regions. However, as
discussed previously, the motions of different facial
regions are intrinsically correlated to each other.
On the basis of on the hierarchical PCA-based mo-
tion propagation algorithm proposed by Zhang and
his colleagues,3 we developed a constrained weight
propagation technique to adjust weights automati-
cally while offering flexible user controls.

Specifically, we use a hierarchical PCA3 for
blendshape weight propagation. Initially, we divide
the face into 10 leaf nodes (each corresponding to
a divided region in Figure 2b), and then construct
two intermediate nodes (the upper face and the
lower face). We consider the whole face as the root
of this hierarchy; Figure 4 shows the constructed
hierarchical face structure.

For each node in Figure 4, we construct a truncated
PCA space. We retain the 20 most dominant eigen-
vectors (corresponding to the largest 20 eigenvalues)
for the root node in this work, the most dominant
10 eigenvectors for the two intermediate nodes (the
upper face and the lower face), and the three most
dominant eigenvectors for the 10 leaf nodes.

This weight propagation procedure follows two
rules: it chooses to move up prior to moving down
in the hierarchy, and it visits each node only once.
The propagation works as follows:

When users change a blendshape basis’s weight,
the propagation starts at the lowest hierarchy,
which is one of the 10 left nodes.
The change of blendshape weights propagates
up to the middle of the hierarchy (the upper or
lower face node) and then moves up to the root
node (the entire face).
Finally, the propagation moves down again to the
middle node that it hasn’t yet visited and keeps
going up and down until it visits all the nodes.

■

■

■

(–63.21, 1.24) (–42.37, 1.24) (–32.49, 1.24) (–20.54, 1.24)

(–15.38, 5.61) (3.78, 5.61) (10.06, 5.61) (29.42, 5.61)

(a)

(b)

(–2.51, 20.00) (2.38, 20.00) (5.12, 20.00) (8.43, 20.00)

(16.57, –9.81) (21.23, –9.81) (33.15, –9.81) (45.73, –9.81)

Figure 3. Examples of perceptual correspondences between the retained
eigenvectors and facial movements: (a) Dominant principal component
analysis (PCA) coefficient controls for the left eyebrow region. Duples
show the PCA coefficients; when the first PCA coefficient is increased,
the left eyebrow is raised. (b) Dominant PCA coefficient controls for the
lower lip region. Duples in the figure show the PCA coefficients. When
the first PCA coefficient is increased, the lower lip opens more.

Right
eyebrow

Right
eye Left

cheek
Left

eyebrow
Left
eye Right

cheek
Lower

lip

Upper
lip

Face

Upper Lower

Forehead Jaw

Figure 4. Face
hierarchy
for weight
propagation.
The whole face
(root) has two
sublevels (the
upper face and
the lower face),
and has ten
leaf nodes that
correspond to
separate facial
regions.

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 79

For each node it visits, our approach projects the
facial markers contained in the node to the PCA
subspace spanned by the node’s retained principal
components. In other words, the projection is the
best approximation of the propagated motions in
the node’s PCA subspace. For more details about
this propagation algorithm, please refer to the
work of Zhang and his colleagues.3 Figures 5 and

6 show two examples of how this weight propa-
gation technique automatically adjusts weights to
make the edited 3D face appear more natural.

To illustrate the process, we briefly summarize
the motion propagation algorithm’s basic steps in
Figure 7. Here, F represents any node in the hier-
archy, δV represents the displacement vector of all
markers, and Proj(δV, F∗) denotes the projection

Figure 5. The first example of weight propagation results: (a) The initial face (before editing), (b) the edited
3D face (the editing operation is the lower lip stretching, just before the weight propagation starts), and
(c) its propagated results (after weight propagation). Comparing (b) and (c), we clearly see that the weight
propagation process properly adjusted the weights to make the whole face look more natural.

(a)	 (b)	 (c)

Figure 6. The second example of weight propagation results: (a) The initial face (before editing), (b) the
edited 3D face (the editing operation is the right eyebrow raising, just before weight propagation starts), and
(c) the propagated results (after weight propagation). Note that after weight propagation, not only is the
right eyebrow properly adjusted, but the left eyebrow is also automatically adjusted accordingly.

(a)	 (b)	 (c)

Figure 7.
The weight
propagation
algorithm.
Input: F∗,
the selected
node in the
hierarchy.

 1: set h to the hierarchy level of F∗.;
 2: if hasBeenProcessed(F∗) then
 3: 	 return;
 4: end if
 5: Compute Proj(δV,F∗);
 6: Update δV with Proj(δV,F∗);
 7: Set hasBeenProcessed(F∗) to be true;
 8: for ∀ F ⊆ (level(F) = h − 1 and F ∩ F∗ = NonEmpty) do
 9: 	 WeightPropagation(F);
10: end for
11: for ∀ F ⊆ (level(F) = h + 1 and F ∩ F∗ = NonEmpty) do
12: 	 WeightPropagation(F);
13: end for

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

80	 November/December 2008

Feature Article

of the F∗ part of δV to the truncated PCA space
of the node F∗.

Constrained Weight Propagation
To automatically maintain the face’s natural ap-
pearance, the weight propagation algorithm in Fig-
ure 7 will affect all facial regions when a specific

region’s weights (controls) are being edited. How-
ever, in some scenarios, automated propagation
results might not be exactly what users need—for
instance, when they want to exaggerate the edited
3D face’s expressiveness or keep current configu-
rations of certain facial regions as stationary as
possible and not have them spoiled by later edit-

Geometrically deforming a 3D face model is a natural way
to generate facial animation. However, manually sculpt-

ing faces every two to three frames is a painstaking process,
with repetitive manual work needed to produce realistic
facial animation with appropriately fine details. Owing to its
efficiency and simplicity, the blendshape approach is widely
used for keyframing facial animations. Recent research efforts
focus on ways to both reduce blendshape interference by
selected motion attenuation1 and map facial motion capture
sequences to blendshape face models.2

Essentially, geometric deformation and blendshape ap-
proaches are designed to simultaneously move and edit
a group of relevant vertices of facial geometry. However,
human-facial motion is the consequence of subtle skin
deformation supported by the relaxation and contraction
of hidden facial muscles, where the motions of various fa-
cial regions are intrinsically correlated to each other. Local
region-based or global deformation approaches often
require users to switch editing operations in different facial
regions to produce 3D facial animation with a fine level of
detail. Furthermore, it’s extremely difficult to judge which
facial pose is closer to a real human face.

Several data-driven facial animation editing techniques
attempt to address this issue by exploiting rich correla-
tions in collected data sets.1,3–7 Erika S. Chuang and her
colleagues apply the bilinear model to transform an input
2D facial animation sequence to a new one with a differ-
ent expression.4 Most recently, Daniel Vlasic and his col-
leagues successfully applied the multilinear model for the
purpose of facial animation transferring.5

Yong Cao and his colleagues apply the independent
component analysis (ICA) algorithm to recorded expres-
sive facial motion capture data, and then interpret certain
ICA components as expression or speech components.6
Because their technique is essentially performed on a
whole-face basis, each ICA component is not purely local
and often affects facial movements nonlocally. As such,
making local adjustments on specific facial regions is not
well addressed in their work.

Based on a blendshape representation for 3D face
models, Pushkar Joshi and his colleagues present an
interactive tool for editing 3D face geometry by learning
controls through physically motivated face segmenta-
tion. Their approach presents a rendering algorithm for
preserving visual realism in the editing.7 However, it also

requires a processed blendshape face model as an input,
while our approach does not and adaptively constructs
a blendshape face model from a static 3D face model.
Furthermore, in order to output edited facial motion cap-
ture data (sequences) in Joshi’s work, a mapping algorithm
from the weights of the blendshape model to 3D marker
motions is additionally required.

The geometry-driven face-image-editing technique
generates expression details on 2D images by constructing
a PCA-based hierarchical representation from a selected
number of training 2D face images. When users move one
or several points on the 2D image, a motion-propagation
algorithm automatically computes the movements of other
facial control points.3 Most recently, Edwin Chang and
Odest Chadwicke Jenkins presented a 2D sketch interface
for posing 3D faces. In their work, users can intuitively draw
2D strokes to search for the optimal facial pose.8

References
	 1.	 J.P. Lewis et al., “Reducing Blendshape Interference by

Selected Motion Attenuation,” Proc. ACM Siggraph Symp.

Interactive 3D Graphics and Games, ACM Press, 2005, pp.

25–29.

	 2.	 Z. Deng et al., “Animating Blendshape Faces by Cross

Mapping Motion Capture Data,” Proc. ACM Siggraph Symp.

Interactive 3D Graphics and Games, ACM Press, 2006, pp.

43–48.

	 3.	 Q. Zhang et al., “Geometry-Driven Photorealistic Facial

Expression Synthesis,” Proc. Symp. Computer Animation,

Eurographics Assoc., 2003, pp. 177–186.

	 4.	 E.S. Chuang, H. Deshpande, and C. Bregler, “Facial

Expression Space Learning,” Proc. Pacific Graphics 2002, IEEE

CS Press 2002, pp. 68–76.

	 5.	 D. Vlasic et al, “Face Transfer with Multilinear Models,” ACM

Trans. Graphics, vol. 24, no. 3, 2005, pp. 426–433.

	 6.	 Y. Cao, P. Faloutsos, and F. Pighin, “Unsupervised Learning

for Speech Motion Editing,” Proc. Symp. Computer Animation,

Eurographics Assoc., 2003, pp. 225–231.

	 7.	 P. Joshi et al., “Learning Controls for Blend Shape Based

Realistic Facial Animation,” Proc. Symp. Computer Animation,

Eurographics Assoc., 2003, pp. 35–42.

	 8.	 E. Chang and O.C. Jenkins, “Sketching Articulation and

Pose for Facial Animation,” Proc. Symp. Computer Animation,

Eurographics Assoc., 2006, pp. 271–280.

Related Work

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 81

ing. Here’s a specific example: animators put the
mouth to the correct shape but want to edit the
cheeks’ expressiveness to make the face look hap-
pier. In this case, if they move the cheek controls,
the weight propagation algorithm will automati-
cally adjust the mouth shape, which isn’t what the
animators want.

Our system uses a constrained weight propaga-
tion technique to achieve this flexibility. It works as
follows. First, animators specify which facial regions
are constrained (for example, left/right eyebrows)
and won’t be affected by later weight propagations.
On the basis of the predefined mappings between
markers and regions, our algorithm sets special
flags on the markers of these constrained facial re-
gions. Next, we need to modify the weight propa-
gation procedure (Figure 7). The leaf nodes of the
constrained facial regions (in this example, left/
right eyebrow nodes) are exempt from processing,
so when our algorithm processes their parent nodes
(in this example, the upper and whole face node),
markers with special flags won’t be updated.

Constrained weight propagation provides an ac-
cessible tool for animators to balance the trade-off
between user controls and automation; Figures 8
and 9 show two specific examples. Figure 8a shows
an original face (deformed on the basis of a 3D
facial motion capture frame), and Figure 8b shows
the edited results when users raise the left or right

cheeks. Notice that the weight propagation proce-
dure automatically opens the mouth here without
constraints. Figure 8c shows the result of con-
strained weight propagation—three regions (upper
lip, lower lip, and jaw) are the constrained regions,
so the mouth and jaw remain untouched while the
cheeks are moved to the right place.

Figure 9 shows another application of constrained
weight propagation. Notice that in Figure 9b, the
weight propagation procedure without constraints
affects the eyebrows and eyes (from an angry ex-
pression to a neutral one). Figure 9c shows the re-
sult of constrained weight propagation—five facial
regions (forehead, left eyebrow, right eyebrow, left
eye, and right eye) are constrained, so the eyebrows
and eyes remain untouched while the mouth is
moved to the intended closed position.

Besides modifying blendshape weights frame
by frame, animators can also edit a sequence of
frames by directly manipulating corresponding
weight curves: we first fit a Catmull-Rom spline
based on the weight sequence of each blendshape
control, which lets the animators edit control
points on the Catmull-Rom spline. We chose this
spline primarily because of its smooth interpola-
tion and local control properties.

Results and Experiments
We developed our 3D facial motion capture data

Figure 8. Constrained weight propagation example 1: (a) An original face, (b) the edited result with weight
propagation to raise left and right cheeks, and (c) the edited result with constrained weight propagation so
that upper lip, lower lip, and jaw region remain untouched.

(a)	 (b)	 (c)

Figure 9.
Constrained
weight
propagation
example 2: 	
(a) An original
face, (b) the
edited result
with weight
propagation,
resulting in
effects to
eyebrows and
eyes, and 	
(c) the edited
result with
constrained
weight
propagation so
that forehead, 	
left eyebrow,
right eyebrow,
left eye and 	
right eye
remain
untouched.

(a)	 (b)	 (c)

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

82	 November/December 2008

Feature Article

editing system using VC++ on a Microsoft Win-
dows XP system. Figure 10 shows a snapshot of
the running system. As shown, the interface has
four panels: Three of these panels (bottom left,
top right, and bottom right) can display facial mo-
tion capture data in two different modes: point
rendered (each marker is rendered as a 3D point)
or deformed. In the deformed 3D face display, we
use a feature-point-based deformation technique5
to distort a static 3D face model based on 3D fa-
cial motion capture data.

We’ve conducted more than 50 experiments us-
ing our system, including improving the animation
quality of some initial synthesized or captured fa-
cial-motion sequences and exaggerating the expres-
siveness of some existing facial-motion sequences.

In future work, we plan to extend our data-
driven facial motion editing system in two

different directions. For example, given the map-
pings between predesigned blendshape face mod-
els and automatically constructed ones in this
work, we can efficiently retarget any facial mo-
tion capture sequence to predesigned blendshape
faces. As such, animators can conveniently ani-
mate and edit predesigned blendshape face mod-
els. We would also like to explore enhancing this
facial motion editing technique with high-level

feedback. For instance, when animators are per-
forming an editing operation (such as expression
exaggeration) on facial motion data, our system
can intelligently compute the exaggerated expres-
siveness of the edited motion and provide instant
feedback for further editing.�

Acknowledgments
A new faculty research startup fund at the University
of Houston funded this research. Special thanks go to
Jose Baez-Franceschi, George Toderici, and Xiaohan Ma
for face model preparation, Ulrich Neumann, J.P. Lewis,
Joy Nash, Murtaza Bulut, and Carlos Busso for facial
motion data capture and post-processing, and Tanasai
Sucontphunt for writing the facial deformation code.

References
	 1.	 J.P. Lewis et al., “Reducing Blendshape Interference

by Selected Motion Attenuation,” Proc. ACM Siggraph
Symp. Interactive 3D Graphics and Games (I3DG 05),
ACM Press, 2005, pp. 25–29.

	 2.	 C. Busso et al., “Natural Head Motion Synthesis
Driven by Acoustic Prosody Features,” Computer
Animation and Virtual Worlds, vol. 16, nos. 3–4,
2005, pp. 283–290.

	 3.	 Q. Zhang et al., “Geometry-Driven Photorealistic
Facial Expression Synthesis,” Proc. Symp. Computer
Animation, Eurographics Assoc., 2003, pp. 177–186.

	 4.	 P. Joshi et al., “Learning Controls for Blendshape
Based Realistic Facial Animation,” Proc. Symp.
Computer Animation, Eurographics Assoc., 2003, pp.
35–42.

	 5.	 S. Kshirsagar, S. Garchery, and N.M. Thalmann,
“Feature Point Based Mesh Deformation Applied
to MPEG-4 Facial Animation,” Proc. Deform 2000,
Kluwer, 2000, pp. 23–34.

Qing Li is a PhD student in the Department of
Computer Science at the University of Houston. Her
research interests include computer graphics, computer
animation, virtual-human modeling, and animation.
Li received her BS in computer science from the Bei-
jing University of Chemical Technology. Contact her
at qingli12@cs.uh.edu.

Zhigang Deng is an assistant professor of computer
science and the founding director of the Computer
Graphics and Interactive Media Lab at the Univer-
sity of Houston (http://graphics.cs.uh.edu). His re-
search interests include computer graphics, computer
animation, and visualization. Deng received his PhD
in computer science from the University of Southern
California. Contact him at zdeng@cs.uh.edu.

Figure 10. Our system in action. The top-left panel is a blendshape
control window in which users can select a facial region and move
its weight sliders, the bottom-left panel displays the edited results
without weight propagation, the top-right panel displays the original
facial motion capture sequence, and the bottom-right panel displays
the edited facial-motion sequence (the final output) after constrained
weight propagation is applied.

Authorized licensed use limited to: University of Houston. Downloaded on November 13, 2008 at 21:36 from IEEE Xplore. Restrictions apply.

