
Interactive 3D Facial Expression Posing through 2D Portrait Manipulation

Tanasai Sucontphunt∗

Dept. of Computer Science

University of Houston

Zhenyao Mo †

University of Southern California

Ulrich Neumann‡

University of Southern California

Zhigang Deng §

Dept. of Computer Science

University of Houston

Figure 1: The top row shows 2D portraits edited by users. The bottom row shows generated 3D facial expressions.

ABSTRACT

Sculpting various 3D facial expressions from a static 3D face model
is a process with intensive manual tuning efforts. In this paper, we
present an interactive 3D facial expression posing system through
2D portrait manipulation, where a manipulated 2D portrait serves
a metaphor for automatically inferring its corresponding 3D facial
expression with fine details. Users either rapidly assemble a face
portrait through a pre-designed portrait component library or in-
tuitively modify an initial portrait. During the editing procedure,
when the users move one or a group of 2D control points on the por-
trait, other portrait control points are adjusted in order to automat-
ically maintain the faceness of the edited portrait if the automated
propagation function (switch) is optionally turned on. Finally, the
2D portrait is used as a query input to search for and reconstruct
its corresponding 3D facial expression from a pre-recorded facial
motion capture database. We showed that this system is effective
for rapid 3D facial expression sculpting through a comparative user
study.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism— [H.5.2]: User Interfaces—Graphics User
Interfaces (GUI)

1 INTRODUCTION

∗e-mail: tanasai@cs.uh.edu
†e-mail:zmo@usc.edu
‡email: uneumann@graphics.usc.edu
§e-mail:zdeng@cs.uh.edu

Sculpting realistic 3D facial expressions from a static 3D face
model is a painstakingly manual process. Various research efforts
including geometric deformation techniques and blendshape ap-
proaches have been attempted to ease the sculpting process. How-
ever, sculpting a sound blendshape face model required by the
blendshape approaches [30, 21, 29] needs painstaking and inten-
sive manual work, even for skilled animators; and it is difficult to
sculpt or control the fine details of a deformed 3D face using geo-
metric deformation techniques [23, 45, 41, 7] without considerable
efforts.

Inspired by the work of [27, 19] that shows sketch-based in-
terfaces are psychologically superior to images in identifying the
human face features, we present an interactive system for rapidly
posing 3D facial expressions with fine details through 2D portrait
manipulation. This work exploits the fact that 2D portraits typically
characterize prominent features of human faces [4], and editing por-
traits in a 2D space is more intuitive than directly working on 3D
face meshes. While 2D portraits may not show certain face de-
tails, e.g., wrinkles, this system automatically fills in these details
of 3D face expressions in a data-driven way: based on an edited 2D
portrait, it searches for the most matched 3D facial motion config-
urations in a pre-constructed facial motion database.

Another distinction of this system is that users can efficiently
combine the characteristics of different facial configurations or even
different human subjects to form a new facial expression that can
be further edited. For example, assuming the users intend to com-
bine the eyebrow/eye characteristics of an existing expression E1

and the mouth characteristics of another existing expression E2 to
form a new facial expression E ′, traditional cut-and-paste methods
or face sketching approaches [7, 26] that directly work in 2D im-
age or 3D face model spaces would have hard time to accomplish
this task. Furthermore, if the two expressive facial poses E1 and E2

are from two different individuals, then this task will become even
more challenging. Using this system, users can efficiently accom-
plish the above task as follows: assemble a 2D portrait by picking
proper portrait components (the eye/eyebrow components of E1 and
the mouth component of E2) from a portrait component library and



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

Figure 2: Schematic overview of this facial expression posing sys-
tem. At runtime, users can either assemble a portrait from the por-
trait component library or edit an existing portrait. The edited portrait
will be adjusted based on the movements of one or a group of con-
trol points. Finally, its corresponding 3D facial expression is inferred
by searching through a KD-tree represented, pre-constructed facial
motion database.

perform further 2D editing on it (if necessary), and then the ex-
pected new 3D facial expression E ′ will be accordingly sculpted.

In this system, users can either rapidly assemble a face portrait
from a constructed portrait component library or edit a given por-
trait. When the users move one or a group of 2D control points
of the portrait, the motion propagation algorithm [46] is optionally
(users can turn this function on or off) used to automatically adjust
other portrait control points to maximally maintain the faceness of
the edited portrait. Finally, to map a 2D portrait to its correspond-
ing 3D facial expression, the portrait is used as a query input to
search for the most matched 3D facial configurations from a pre-
constructed facial motion database, represented as a KD-tree. Fig-
ure 2 shows the schematic view of this 3D facial expression posing
system.

The main contributions of this work include: (1) it introduces
a new efficient tool for interactively posing 3D facial expressions,
where a 2D portrait is used as an intuitive user interface and 3D
facial details are automatically filled through a data-driven scheme,
and (2) posing novel 3D facial expressions by combining promi-
nent facial characteristics of existing facial expressions or different
individuals provides a non-traditional while effective means to gen-
erating facial expressions and animations.

The remainder of this paper is organized as follows. A review of
related work is given in Section 2. Section 3 describes facial motion
data acquisition and preprocessing. Section 4 describes how to ren-
der 2D portraits using a model-based approach. Section 5 describes
how to construct a portrait component library. Section 6 details
how to perform editing operations on the 2D portraits. Section 7
describes how to infer or construct 3D facial expressions by search-
ing for the most matched facial motion frames from a pre-recorded
facial motion database, represented as a KD-tree. Experimental and
usability study results are described in Section 8. Finally, in Section
9, concluding remarks are given and future research directions are
discussed.

2 RELATED WORK

Intensive facial animation research efforts have been pursued in
the past several decades [36, 16]. Some of recent research efforts
include 3D face modeling [28, 37, 1], speech animation synthe-
sis [3, 2, 18, 15, 17] and facial animation transferring [35, 44, 40].
In this section we briefly review recent research attempts that are
most related to this work.

Creating various facial expressions by manipulating thin-shell
meshes (3D face models) is a popularized method in industry prac-
tice [12, 23, 43, 45, 41]. For example, the Free Form Deformation
(FFD) technique [39] was successfully extended to deform 3D face
models by introducing a cylindrical structure in control lattices [12]
or assigning weights to control points [23]. Singh and Fiume [41]
present an effective geometric deformation technique to deform 3D
face models by manipulating wire curves that are used as an ap-
proximation to the 3D face models. These approaches generally re-
quire significant manual efforts for tuning control points or curves
in order to sculpt various facial expressions with fine details.

The blendshape approach (or shape interpolation) offers intuitive
tools for sculpting 3D facial expressions [37, 10, 30, 38, 29, 40, 14].
For example, some recent efforts attempt to improve the effi-
ciency of producing muscle actuation based blend shape anima-
tions [10, 40]. The Pose Space Deformation (PSD) approach
proposed by Lewis et al. [30] provides a general framework for
example-based interpolation where the deformation of a 3D sur-
face (face) is treated as a function of a set of abstract parameters,
such as {smile, raise-eyebrow,...}, and a new surface is generated by
scattered data interpolations. However, these approaches generally
require considerable manual efforts to create a set of blendshape
targets.

Essentially, the above geometric deformation approaches and the
blendshape methods are designed to simultaneously move and edit
a group of relevant vertices. However, different facial regions are
correlated each other, and the above approaches typically operate a
local facial region or global shape at one time. Animators need
to switch editing operations on different facial regions in order
to sculpt realistic 3D faces with fine details, which create a large
amount of additional work. In addition, even for skilled animators,
it is difficult to judge which facial pose (configuration) is closer to
a real human face. A number of data-driven facial editing tech-
niques [6, 21, 29, 11, 46, 44, 31] were proposed to address this is-
sue. For example, based on a blendshape representation for 3D face
models, Joshi et al. [21] present an interactive tool to edit 3D face
geometry by learning the optimal way for a physically-motivated
face segmentation. A rendering algorithm for preserving visual re-
alism in this editing was also presented in their approach. Edit-
ing a local facial region while preserving naturalness of the whole
face is another intriguing idea. The geometry-driven editing tech-
nique [46] generates expression details on 2D face images by con-
structing a PCA-based hierarchical face representation from a se-
lected number of training 2D face images. When users move one
or several points on a 2D face image, the movements of other facial
control points are automatically computed by a motion propagation
algorithm.

Generating character animations and 3D facial expressions
through sketching has been also explored by a number of re-
searchers [13, 19, 7, 24, 26]. For example, Chang and Jenkins [7]
present a 2D sketch interface for posing 3D faces. In their work,
users can intuitively draw 2D strokes that are used to search for the
optimal face pose. The work of [13, 24] presents sketching inter-
faces for efficiently prototyping articulated character animations.

3 FACIAL MOTION ACQUISITION AND PROCESSING

We captured high-fidelity 3D facial motions using a VICON mo-
tion capture system (the left panel of Fig. 3). An actress with mark-
ers on her face was directed to speak a delicately designed corpus



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

Figure 3: The left shows a facial motion capture system. The middle
panel shows the facial markers used in this work. The right panel
shows the 71 portrait control points on a human face.

Figure 4: Illustration of how to generate corresponding portrait con-
trol point frame (seventy-one 2D portrait control points) from a 3D
motion capture frames composed of ninety 3D facial markers.

four times, and each repetition was spoken with a different facial
expression. In this data capture, a total of four basic facial expres-
sions were recorded: neutral, happiness, anger and sadness, and
the data recording rate was 120 Hz. A total of ninety facial markers
(the middle panel of Fig. 3) were used in this work.

After data capture, we normalized the facial motion data by re-
moving head motion as follows. All the markers were first trans-
lated so that a specific marker was at the local coordinate center of
each frame, and then a Singular Value Decomposition (SVD) based
approach [5] was used to remove head motion.

However, in the follow-up 2D portrait rendering algorithm (Sec-
tion 4), seventy-one 2D portrait control points (illustrated in the
right panel of Fig. 3) are needed as one of its inputs. Most of these
seventy-one portrait control points are on the tight boundaries of
eyebrows, eyes, and the mouth. It should be noted that the seventy-
one portrait control points (the right panel of Fig. 3) are not exactly
enclosed in the ninety facial markers (the red points in middle panel
of Fig. 3). Hence, we need to generate corresponding seventy-one
2D portrait control points for any 3D facial motion capture frame
(the ninety 3D facial markers). As shown in Fig. 4, first, based on a
motion capture frame and the specified correspondences between
markers and vertices, the feature point based deformation tech-
nique [25] is used to deform a static 3D face model. Then, given
specified mappings between seventy-one portrait control points and
the vertices of 3D face geometry, the 3D positions of these specified
seventy-one vertices on the deformed 3D face are transformed and
projected to a 2D plane, which outputs corresponding seventy-one
2D portrait control points. In this way, a pair between a 3D facial
motion capture frame and its corresponding portrait control point
frame was created. These pairs will be used in Section 7. These
seventy-one 2D control points were referred collectively as a por-
trait control point frame.

4 2D PORTRAIT RENDERING

In this section we briefly describe the algorithm to render a 3D face
model to a line drawing portrait. Portraiture is one of the most im-
portant genres in art [4]. However, there appears to be little research
that addresses issues specific to automatic portrait rendering. Chen
et al. generate frontal portraits from face photographs mimicking
the style of a particular artist [9] or line drawings of frontal faces
in a “manga” style using a data-driven scheme [8]. The creation
of an interactive interface for non-photorealistic rendering [22] and
the automated generation of pencil drawings from 3D models [42]
were also proposed.

Although many image-based techniques (e.g., artistic filters in
Adobe Photoshop) are capable of transforming photographs into
stylized drawings, they are unable to properly handle face pho-
tographs. This is due to the facts that: 1) image-based techniques
place strokes without understanding what the subjects are; 2) as hu-
mans we are very sensitive to the faces of our own kind, and even
a small mistake in a portrait (like a misplaced stroke) may destroy
the likeness and even faceness.

It is known that artists are heavily guided by their prior knowl-
edge of face structure. This general strategy is adopted in the por-
trait rendering process of this work: instead of treating a face as a
generic image, we use a prior model of the face to locate and em-
phasize important face features and deemphasize unimportant de-
tails. A model-based method [32] is used to render 2D portraits in
this work. This approach enables the generation of attractive line
renderings of faces while offering a range of stylization and sim-
plification options. The portrait rendering process is schematically
illustrated in Fig. 5.

Figure 5: Schematic illustration of the portrait rendering process used
in this work.

In stage 1, first, as shown in Fig 4, seventy-one feature points
outlining eyebrows, eyes, nose, and lips are computed from a given
3D face model (geometry and texture). The 3D coordinates of these
seventy-one points are view-invariant, and this is performed one
time per 3D face model. Second, given a specific view, seventy-
one feature points are projected into an image plane (red dots on
the face model in Fig 5), and face and nose silhouette lines (view-
dependent) are calculated using the same algorithm as described
in [22] (blue dots on the face model in Fig. 5). Thus we obtain a
complete 2D face model (i.e., feature points as shown in Fig 5).

In stage 2, the process of portrait rendering is conceived as a
transformation from a general image-derived description to a sim-
plified and stylized representation of a face, guided by consulting
the obtained face model. The input is the obtained 2D face model
and the face image rendered from the 3D model, the output is a line
drawing portrait.

A generic line stroke set is obtained by detecting edges (at sev-
eral scales) in the rendered face photograph. Each stroke is assigned



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

Figure 6: The left panel illustrates the Portrait Component Library
(PCL) and the right panel shows the portrait control points. In the left
panel, users select portrait components from the portrait component
library. In this figure, three portrait components (for left eye, right
eye and the mouth, respectively) are assembled to a complete 2D
portrait.

an importance by consulting the model. The strokes are then fil-
tered according to their importance and their length and strength.
The level of detail or simplification can be controlled by adjusting
thresholds on the stroke filtering.

5 PORTRAIT COMPONENT LIBRARY

The purpose of Portrait Component Library (PCL) is to provide a
rapid prototyping tool to assemble a portrait by simply clicking. For
a prominent part of a human face, such as left eye area (includ-
ing eyebrow), users can simply browse and pick one from a set of
pre-defined left eye portrait components. These selected portrait
components (one from each category) are assembled into a new 2D
portrait that is typically used as an initial portrait for further editing.
Figure 6 illustrates the portrait component library.

Now we describe how to construct the above portrait component
library. As mentioned in Section 3, given the collected motion cap-
ture data, a large number of 2D portrait control point frames are
generated. For a portrait control point frame, the 2D portrait con-
trol points that lie in a component area (e.g., the mouth area) are
concatenated to form a vector. Then the K-means clustering algo-
rithm [20] is applied to these vectors to find their cluster centers,
which are regarded as representatives of this category of portrait
component. Finally, these representative portrait points are ren-
dered using the above portrait rendering algorithm (Section 4). In
this work, we experimentally divide a portrait into three compo-
nents (left eye area, right eye area, and the mouth area) and set K
(the number of clusters) to 10.

6 2D PORTRAIT EDITING

Given an existing 2D portrait, either default or assembled from the
portrait component library, users are able to edit it by moving one
or multiple portrait control points (the right panel of Fig. 6). When
portrait control points are edited, the motion propagation algorithm
proposed in [46] is adapted to automatically adjust the edited por-
trait to maximally maintain its naturalness and faceness.

We use a hierarchical principle component analysis [46] for this
motion propagation. Essentially, we first divide the face into region
nodes, then, we compute PCA separately for each node. Next, we
form the tree from these nodes in order to propagate the motion pro-
jection from a leaf node to the whole tree at run-time. Initially, we
divide the portrait into seven leaf nodes (left eye, left eyebrow, right
eye, right eyebrow, nose, upper lip, and lower lip), and then con-
struct two intermediate nodes (the upper face and the lower face).
Finally, the whole portrait is regarded as the root of this hierarchy.
Fig. 7 shows this portrait hierarchical structure.

Figure 7: Illustration of the portrait hierarchy for motion propagation.

The rules for the above motion propagation procedure are 1) it
chooses to move upward prior to downward in the hierarchy and 2)
it visits each node only once. The propagation works as follows:
first, when the users move portrait control points, the propagation
starts at the lowest hierarchy which is one of the seven left-nodes.
Then, it propagates upward to the middle of the hierarchy (upper or
lower face nodes). Then, it moves upward to the root node that is
the entire face. After that, it moves downward again to the middle
node that it has not visited yet and it keeps going upward and down-
ward until all nodes are visited. For each node it visits, it projects
the control points contained in the node to the subspace spanned
by the principal components of the node. In other words, the pro-
jection is the best approximation of the propagated motions in the
PCA subspace of the node.

We precomputed a eigen-vector matrix EigMx and a mean vector
MEAN from 2D portrait control points of each hierarchical node
(Fig. 7). As such, each node in the hierarchy holds its own version
of EigMx and MEAN. In our experiment, to cover at least 90% of
the variation, we keep the largest 20 eigenvectors for the entire face
node, 10 for the upper and the lower face nodes, and 3 for each of
the seven leaf nodes.

To make this section readable, we briefly summarize the basic
steps of the motion propagation algorithm [46] in Algorithm 1.
In the following algorithm description, F represents any node in
the hierarchy, δV represents the displacement vector of all control
points, and Pro j(δV,F∗) denotes the projection of the F∗ part of
δV to the truncated PCA space of the node F∗.

Algorithm 1 PortraitMotionPropagation

Input: F∗, the selected node in the hierarchy.

1: set h to the hierarchy level of F∗.;
2: if hasBeenProcessed(F∗) then
3: return;
4: end if
5: Compute Proj(δV ,F∗);
6: Update δV with Proj(δV ,F∗);
7: Set hasBeenProcessed(F∗) to be true;
8: for ∀ F ⊆ (level(F) = h−1 and F ∩F∗ = NonEmpty) do
9: PortraitMotionPropagation(F);

10: end for
11: for ∀ F ⊆ (level(F) = h+1 and F ∩F∗ = NonEmpty) do
12: PortraitMotionPropagation(F);
13: end for

Figure 8 shows an example of the portrait editing when users
move a control point on the left eyebrow. As we can see from this
figure, other control points are adjusted accordingly. It is notewor-
thy that the adjustments of the other control points in the left eye-
brow area are noticeable.



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

Figure 8: An example of motion propagation for portrait control
points. Note that the back portrait (not updated) is used as a ref-
erence.

7 3D FACIAL EXPRESSION GENERATION

In this section, we describe how to generate corresponding 3D fa-
cial expression based on an edited 2D portrait. In this work, we
transform this 3D facial expression generation problem to an op-
timal search problem. Given the fact that a 2D portrait is essen-
tially determined by the seventy-one 2D portrait control points (of
a portrait control point frame), and all pairs of portrait control point
frames and 3D motion capture frames are precomputed in Section 3,
we are able to formalize this search problem: given a portrait con-
trol point frame Pquery (query input), we search for the optimal 3D
facial motion capture frame FRM∗ from all pairs {< Pi,FRMi >}
in the database, assuming distance(Pquery,P∗) is minimum among
all possible distances {distance(Pi,Pquery)}.

Considering the large size of the collected facial motion capture
data, we choose a KD-tree [33] as our data structure for the above
search due to its efficiency. Our KD-tree scheme consists of an
off-line preprocessing and an on-line searching. In the off-line pre-
processing stage, we reduce the dimensionality of the concatenated
seventy-one 2D points (total 142 dimensions) to 10 dimensions in
its truncated PCA space, while retaining more than 95% of vari-
ation. Meanwhile, we need to convert Pquery to ten dimensional
PCAquery by projecting Pquery to the same PCA space. Figure 9 il-
lustrates the constructed KD-tree in this system. In this work, the
Simple KD-tree library [34] was used.

Figure 9: Illustration of the KD-tree structure in this work.

At run-time, the PCAquery is used as a query input to search
through the constructed KD-tree to obtain the K nearest neighbors.
We interpolate the searched K 3D motion capture frames to gener-
ate a new 3D motion capture frame that is used to deform a static
3D face model. The interpolation weights are computed based on
the Euclidean distance between the retained PCA coefficients of the
query input and the retrieved K nearest neighbors. In this work, we
experimentally set K=3. Finally, given a 3D facial motion capture
frame, the feature-point based deformation technique [25] is used
to deform a static 3D face model accordingly.

Figure 10: A snapshot of this running facial expression posing sys-
tem.

Figure 11: Facial expressions on various 3D face models are simul-
taneously sculpted based on the portrait (middle panel) that is being
interactively manipulated.

8 RESULTS AND USER STUDIES

We developed this 3D facial expression posing system using VC++.
Figure 10 shows a snapshot of the running system. As shown in
Fig. 10, its interface is composed of three panels: the portrait com-
ponent library (left), a 2D portrait window (middle), and a gener-
ated 3D face window (right). Users can drag desired portrait com-
ponents from the library (left) to the portrait window, and then edit
the assembled or initial portrait. Meanwhile, the 3D face view win-
dow (right) will be interactively updated based on the 2D portrait
(middle) that is being interactively edited. In addition, multiple
3D face models can be edited simultaneously in this system (Fig-
ure 11).

After 3D facial expressions are generated, users can view and
manipulate them from different angles. One advantage of this new
approach is that certain face details are automatically sculpted on
3D facial expressions, although they cannot be explicitly specified
in 2D portraits. Figure 12 shows a specific example.

We conducted a comparative usability study on this system. A
total of ten human subjects were asked to use both the Maya soft-
ware and this system for the task of sculpting target 3D facial ex-
pressions. Since our target group is non-artist users but the people
who is able to manipulate the computer in a good level, all the par-
ticipants are computer science undergraduate or graduate students.
They have an intermediate level skill of using basic tools of Maya,
and were also trained to use this new system for one minute before
the official start of this user study.

The scenario of this study was designed as follows:

1. Each participant is assigned four target facial expressions (2D
images).



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

Figure 12: 3D face details are automatically generated using this
system.

Figure 13: The first example of our user study. The top left is the
target facial expression image. The top right is the sculpted 3D face
expression using the Maya by a participant. The bottom is the posed
3D facial expression using this proposed system by the same partic-
ipant.

2. Each participant need to sculpt 3D facial expressions that are
sufficiently close to the given target facial expression images,
using this system and the Maya software respectively.

3. A professional animator judges whether the sculpted 3D facial
models by the two tools (this system and the Maya software)
are acceptable (i.e., close enough).

4. We record the time that each participant spend to get the
sculpting task done using the two specified tools.

The average time using this system is less than 2 minutes for each
2D face image, and the average time using the Maya is about 27
minutes for each 2D face image. Our experimental result revealed
that compared with traditional 3D tools such as the Maya, this 3D
facial expression posing system can significantly save users’ efforts
for the task of sculpting 3D facial expressions. Figures 13 and 14
show two examples of sculpted facial expressions by the partici-
pants in this study.

In addition, at the end of the user study, we collected feedback
from the participants regarding the usability of this system. A part
of the feedback is as follows: (1) by using this system, they spend
less time to deal with the 3D navigation gadget (e.g., zooming and
rotation) to manipulate 3D vertices and meshes, which helps them
focus on the shapes of the 3D faces they are working on. (2) In the
course of interactive sculpting, the intermediate facial expression

Figure 14: The second example of our user study. The top left is the
target facial expression image. The top right is the sculpted 3D face
model using the Maya by a participant. The bottom is the posed 3D
facial expression using this proposed system by the same participant.

results produced by this system appear more natural than the Maya.
This reduces significant repetitive efforts of re-adjusting 3D face
models for them. (3) The Portrait Component Library (PCL) of this
system is useful for them to get a good start and save their time.

We also generated numerous 3D facial expression results using
this system. Figures 1and 15 show the resulting 2D portraits (top
row) and corresponding 3D facial expressions on different 3D face
models (other rows).

9 DISCUSSION AND CONCLUSIONS

In this paper, we present an interactive, data-driven 3D facial ex-
pression posing system through 2D portrait manipulation. This sys-
tem is built on top of a pre-recorded facial motion capture database.
This system allows users intuitively edit 2D portraits and then auto-
matically generates corresponding 3D facial expressions with fine
details. The 2D portrait allows users to focus on the face features
and provides a more intuitive manipulation mechanism over tradi-
tional 3D editing systems. By conducting a comparative user study,
we showed that this system can be effectively used as a rapid pro-
totyping tool for 3D facial expression generation.

Certain limitations exist in this current system. First, since we
use a pre-recorded facial motion dataset, it is hard to predict how
much data we need to collect to guarantee the generation of realis-
tic 3D facial expressions for arbitrary 2D portrait input. However,
this can be alleviated by acquiring more data if needed. Second,
the number of the available portrait components and the number of
portrait control points are still quite limited. Adding more portrait
details into the system is one of the future directions that we plan to
pursue.

In the future, we plan to improve its 2D portrait editing proce-
dure. For example, it will allow users edit portraits from different
viewing angles, rather than limited to the front view in current sys-
tem. Another area that we will look into is to develop a free-hand
2D portrait drawing tool and make the system more intuitive and
friendly to users, especially novice users. In addition, current sys-
tem can only interpolate new facial expressions from the existing
facial motion dataset and cannot deal with exaggerated portraits.
As future work, we plan to develop a portrait exaggeration function
and seamlessly convert the exaggerated portraits to corresponding
3D facial expressions by a hybrid of machine learning and geomet-
ric deformation algorithms.



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

Figure 15: Six edited portraits (top row) and corresponding generated 3D facial expressions (other rows, each row for a different 3D face model).



to appear in the Proceedings of Graphics Interface (GI) 2008, Windsor, Ontario, Canada, May 2008

10 ACKNOWLEDGEMENTS

Tanasai Sucontphunt was supported in part by fellowship from the
Ministry of Science and Technology, Royal Thai Government. We
also would like to thank George Toderici and Jose Baez-Franceschi
for building 3D face models used in this work.

REFERENCES

[1] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D

faces. In Proc. of SIGGRAPH’99, pages 187–194, 1999.

[2] M. Brand. Voice pupperty. In Proc. of SIGGRAPH’99, pages 21–28,

1999.

[3] C. Bregler, M. Covell, and M. Slaney. Video rewrite: Driving visual

speech with audio. In Proc. of SIGGRAPH’97, pages 353–360, 1997.

[4] R. Brilliant. Portraiture. Reaktion Books, 2001.

[5] C. Busso, Z. Deng, U. Neumann, and S. Narayanan. Natural head

motion synthesis driven by acoustic prosody features. Computer Ani-

mation and Virtual Worlds, 16(3-4):283–290, July 2005.

[6] Y. Cao, P. Faloutsos, and F. Pighin. Unsupervised learning for

speech motion editing. In SCA’03: Proc. of the 2003 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, 2003.

[7] E. Chang and O. Jenkins. Sketching articulation and pose for

facial animation. In SCA’06: Proc. of the 2006 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, 2006.

[8] H. Chen, Z. Liu, C. Rose, Y. Xu, H.-Y. Shum, and D. Salesin.

Example-based composite sketching of human portraits. In NPAR’04:

Proc. of the 3rd International Symopsium on Non-Photorealistic Ani-

mation and Rendering, pages 95–153, 2004.

[9] H. Chen, Y.-Q. Xu, H. Shum, S. Zhu, and N. Zheng. Example-based

facial sketch generation with nonparametric sampling. In ICCV 2001,

pages 433–438, 2001.

[10] B. W. Choe and H. S. Ko. Analysis and synthesis of facial expres-

sions with hand-generated muscle actuation basis. In Proc. of IEEE

Computer Animation, pages 12–19, 2001.

[11] E. S. Chuang, H. Deshpande, and C. Bregler. Facial expression space

learning. In Proc. of Pacific Graphics’02, pages 68–76, 2002.

[12] S. Coquillart. Extended free-form deformation: A sculpturing tool for

3D geometric modeling. Computer Graphics, 24:187–193, 1990.

[13] J. Davis, M. Agrawala, E. Chuang, Z. Popović, and D. Salesin. A

sketching interface for articulated figure animation. In SCA ’03: Proc.

of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 320–328, 2003.

[14] Z. Deng, P. Chiang, P. Fox, and U. Neumann. Animating blendshape

faces by cross mapping motion capture data. In I3DG’06: Proc. of the

2006 ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games, pages 43–48, 2006.

[15] Z. Deng and U. Neumann. eFASE: Expressive facial animation syn-

thesis and editing with phoneme-isomap controls. In SCA’06: Proc.

of ACM SIGGRAPH/EG Symposium on Computer Animation, pages

251–259, Vienna, Austria, 2006.

[16] Z. Deng and U. Neumann. Data-Driven 3D Facial Animation.

Springer-Verlag Press, 2007.

[17] Z. Deng, U. Neumann, J. Lewis, T. Y. Kim, M. Bulut, and

S. Narayanan. Expressive facial animation synthesis by learning

speech co-articulation and expression spaces. IEEE Transaction on

Visualization and Computer Graphics, 12(16):1523–1534, 2006.

[18] T. Ezzat, G. Geiger, and T. Poggio. Trainable videorealistic speech

animation. ACM Trans. Graph., pages 388–398, 2002.

[19] B. Gooch, E. Reinhard, and A. Gooch. Human facial illustra-

tions: Creation and psychophysical evaluation. ACM Trans. Graph.,

23(1):27–44, 2004.

[20] T. Hastie, R. Ribshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer-Verlag,

2001.

[21] P. Joshi, W. Tien, M. Desbrun, and F. Pighin. Learning controls for

blend shape based realistic facial animation. In SCA’03: Proc. of the

2003 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-

mation, pages 35–42, 2003.

[22] R. Kalnins, L. Markosian, B. Meier, M. Kowalski, J. Lee, P. Davidson,

M. Webb, J. Hughes, and A. Finkelstein. WYSIWYG NPR: drawing

strokes directly on 3D models. In Proc. SIGGRAPH 2002, pages 755–

762, 2002.

[23] P. Kalra, A. Mangili, N. Thalmann, and D. Thalmann. Simulation of

facial muscle actions based on rational free from deformations. In

Eurographics’92, volume 11, pages 59–69, 1992.

[24] O. A. Karpenko and J. F. Hughes. Smoothsketch: 3D free-form shapes

from complex sketches. ACM Trans. Graph., 25(3):589–598, 2006.

[25] S. Kshirsagar, S. Garchery, and N. M. Thalmann. Feature point based

mesh deformation applied to mpeg-4 facial animation. In Proc. De-

form’2000, Workshop on Virtual Humans by IFIP Working Group

5.10, pages 23–34, November 2000.

[26] M. Lau, J. Chai, Y.-Q. Xu, and H.-Y. Shum. Face poser: inter-

active modeling of 3D facial expressions using model priors. In

SCA’07: Proc. of the 2007 ACM SIGGRAPH/Eurographics sympo-

sium on Computer animation, pages 161–170, 2007.

[27] K. R. Laughery and R. H. Fowler. Sketch artist and identi-kit proce-

dure for recalling faces. Journal of Applied Psychology, 65(3):307–

316, 1980.

[28] Y. Lee, D. Terzopoulos, and K. Waters. Realistic face modeling for

animation. In Proc. of SIGGRAPH’95, pages 55–62, 1995.

[29] J. Lewis, J. Mooser, Z. Deng, and U. Neumann. Reducing blendshape

interference by selected motion attenuation. In I3DG’05: Proc. of the

2005 ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games, pages 25–29, 2005.

[30] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: A uni-

fied approach to shape interpolation and skeleton-driven deformation.

In Proc. of SIGGRAPH’00, pages 165–172, 2000.

[31] Q. Li and Z. Deng. Facial motion capture editing by automated orthog-

onal blendshape construction and weight propagation. IEEE Com-

puter Graphics and Applications, 2008, (to appear).

[32] Z. Mo, J. Lewis, and U. Neumann. Improved automatic carica-

ture by feature normalization and exaggeration. In SIGGRAPH 2004

Sketches, 2004.

[33] A. Moore. An intoductory tutorial on KD-trees. PhD Thesis: Efficient

Memory based Learning for Robot Control, PhD Thesis Technical Re-

port No. 209, 1990. University of Cambridge.

[34] A. Moore and J. Ostlund. Simple kd-tree library.

http://www.autonlab.org/, 2007.

[35] J. Y. Noh and U. Neumann. Expression cloning. In Proc. of SIG-

GRAPH’01, pages 277–288, 2001.

[36] F. Parke and K. Waters. Computer Facial Animation. 1996.

[37] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. Salesin. Syn-

thesizing realistic facial expressions from photographs. In Proc. of

SIGGRAPH’98, pages 75–84, 1998.

[38] H. Pyun, Y. Kim, W. Chae, H. W. Kang, and S. Y. Shin. An example-

based approach for facial expression cloning. In SCA’03: Proc. of the

2003 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-

mation, pages 167–176, 2003.

[39] T. Sederberg and S. Parry. Free-form deformation of solid geometry

models. In Proc. of SIGGRAPH’96, volume 20, pages 151–160, 1996.

[40] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic determination of fa-

cial muscle activations from sparse motion capture marker data. ACM

Trans. Graph., 24(3):417–425, 2005.

[41] K. Singh and E. Fiume. Wires: A geometric deformation technique.

In Proc. of SIGGRAPH 98, pages 405–414, 1998.

[42] M. Sousa and J. Buchannan. Computer-generated pencil drawing. In

Proc. SKIGraph’99, 1999.

[43] M. Viad and H. Yahia. Facial animation with wrinkles. In Proc. of

Eurgraphics Workshop on Animation and Simulation, 1992.

[44] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer with

multilinear models. ACM Trans. Graph., 24(3):426–433, 2005.

[45] C. Wang and D. R. Forsey. Langwidere: A new facial animation sys-

tem. In Proc. of IEEE Computer Animation, pages 59–68, 1994.

[46] Q. Zhang, Z. Liu, B. Guo, and H. Shum. Geometry-driven photoreal-

istic facial expression synthesis. In SCA’03: Proc. of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages

177–186, 2003.


