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Abstract

Large amount of human motion capture data have been increasingly
recorded and used in animation and gaming applications. Efficient
retrieval of logically similar motions from a large data repository
thereby serves as a fundamental basis for these motion data based
applications. In this paper we present a perceptually consistent,
example-based human motion retrieval approach that is capable
of efficiently searching for and ranking similar motion sequences
given a query motion input. Our method employs a motion pattern
discovery and matching scheme that breaks human motions into
a part-based, hierarchical motion representation. Building upon
this representation, a fast string match algorithm is used for ef-
ficient runtime motion query processing. Finally, we conducted
comparative user studies to evaluate the accuracy and perceptual-
consistency of our approach by comparing it with the state of the
art example-based human motion search algorithms.
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1 Introduction

Due to the subtlety and rich styles of human motions, it is ex-
tremely difficult for animators to manually make up natural and
realistic human movements without considerable efforts. As a con-
sequence, in recent years a large amount of human motion capture
data have been increasingly recorded and used in various computer
graphics, animation, and video gaming applications. The substan-
tial amount of recorded human motion data imposes a challenging
research problem: given a large motion data repository, how to
efficiently retrieve similar motion sequences based on a motion ex-
ample and rank them in a perceptually consistent order? Therefore,
an efficient, perceptually consistent human motion retrieval scheme
serves as a fundamental basis for these applications.

Search engines (e.g., human motion search engines in the context of
this work) are typically measured in terms of the following two cri-
teria: (1) Search Efficiency. The search engines should be capable
of retrieving logically relevant results from a huge data repository
in an efficient way. (2) Search Accuracy. All the search engines
automatically rank search results based on computational scores.
Ideally, the computed rankings are expected to be consistent with

∗e-mail: zdeng@cs.uh.edu
†e-mail: ericgu@cs.uh.edu
‡e-mail: qingli12@cs.uh.edu

Figure 1: Pipeline of this example-based human motion retrieval
approach. Step 1: human hierarchy construction (Section 3.1);
step 2: motion segmentation/normalization (Section 3.2); step 3:
motion pattern detection and indexing (Section 3.3); step 4: hier-
archical pattern matching (Section 4); and step 5: result ranking
(Section 4.1).

humans’ expectations, which is termed as a perceptually-consistent
order in this paper.

In this paper, we present a novel example-based human motion re-
trieval approach capable of efficiently retrieving logically similar
motions from a large data repository in a perceptually consistent
order, given a query motion as input. In this work, we use the term
“logically similar motions” to refer to the motions that share the
same action goal while having different variations. For example,
kicking motions may have various variants such as front kicking
and side kicking, but they are called “logically similar motions” in
this paper.

Fig. 1 illustrates the schematic pipeline of our example-based hu-
man motion retrieval approach. Given a human motion repository,
in the data preprocessing stage, our approach first divides the hu-
man body into a number of meaningful parts and builds a hierar-
chical structure based on the correlations among these body parts
(Fig. 1, step 1). Then, a joint angle based motion segmentation
scheme is employed for each part to partition the original motion
sequences into part-based motion representations, followed by a
segment normalization procedure (Fig. 1, step 2). After these steps,
an adaptive K-means clustering algorithm is then performed upon
these normalized motion segments to extract motion patterns (part-
based representative motion) by detecting and grouping similar mo-
tion segments (Fig. 1, step 3). In this procedure, three types of data
structures are generated to store the transformed motion represen-
tation including a KD-tree based motion pattern library for storing
the details of the extracted motion patterns, motion pattern index
lists, and a dissimilarity map recording the difference between any
pair of motion patterns.
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In the runtime, given a query motion sequence, our approach first
chops it to motion segments and further creates its correspond-
ing motion pattern lists by matching existing patterns in the pre-
constructed motion pattern library (Fig. 1, step 4). Then, we extend
a fast string matching algorithm [Knuth et al. 1977] with a novel
hierarchical decision-fusing scheme to efficiently retrieve logically
similar motion sequences and rank them accordingly (Fig. 1, step
5).

The major distinctions of this work include: (1) Flexible search
query. Our approach can take flexible search queries as input, in-
cluding a human motion subsequence, or a hybrid of multiple mo-
tion sequences (e.g., the upper body part of a motion sequence
and the lower body part of another motion sequence). In addition,
users can specify varied significances (importances) to different hu-
man body parts. The significances of different human parts (as a
user-preference profile) are incorporated into the search algorithm,
which ensures the research results are customized and ranked prop-
erly to maximally meet the expectations of individual users. (2)
Perceptually consistent search outcomes. We conducted compar-
ative user studies to find out the correlations between the search
results ranked by computer algorithms including our approach and
the supposedly ideal results ranked by humans. Our study results
show that the motion sequences retrieved by our approach are more
perceptually-consistent than current example-based human motion
search algorithms [Kovar and Gleicher 2004; Liu et al. 2005; Forbes
and Fiume 2005].

2 Related Work

Researchers have pursued various ways of editing and reusing the
captured human motion data while maintaining its intrinsic real-
ism [Fod et al. 2002; Kim et al. 2003; Lee et al. 2006; Yu et al.
2007]. Recent efforts include constructing and traversing motion
graphs [Kovar et al. 2002; Arikan and Forsyth 2002; Beaudoin et al.
2008], example-based motion control or synthesis of constrained
target motion [Lee et al. 2002; Hsu et al. 2004], learning statis-
tical dynamic models from human motion [Brand and Hertzmann
2000; Li et al. 2002], searching in optimized low dimensional man-
ifolds [Safonova et al. 2004; Grochow et al. 2004], and simulating
biped behaviors [Sok et al. 2007].

How to efficiently and accurately retrieve proper motion sequences
from a large unlabeled motion repository is a challenging prob-
lem. Currently, the popularized human motion retrieval idea is
to transform original high-dimensional human motion data to a
reduced representation and then conduct search in the reduced
space [Agrawal et al. 1993; Faloutsos et al. 1994; Chan and Fu
1999; Liu et al. 2003; Chiu et al. 2004; Müller et al. 2005; So
and Baciu 2006; Lin 2006]. For example, Faloutsos et al. [1994]
present an effective subsequence matching method by mapping mo-
tion sequences into a small set of multidimensional rectangles in
feature spaces. Keogh et al. [2004] present a technique to accel-
erate similarity search under uniform scaling based on the concept
of bounding envelopes. Liu et al. [2005] index motion sequences
by clustering every pose in the database into groups that are rep-
resented as simple linear models. Then, a motion sequence can be
represented as the trajectory of the pose clusters it goes through.
Forbes and Fiume [2005] project motion sequences into a weighted
PCA space where the weights are either user-defined or based on
the significances of different parts of the human body. Then, they
use a dynamic time warping algorithm to measure the similarity
between two motion sequences.

Kovar and Gleicher [2004] proposed an efficient motion search and
parameterization technique by precomputing the “match webs” to
describe potential subsequence matches between any pair of mo-

tion sequences. In their approach, a multi-step search strategy is
also employed to incrementally and reliably find motions that are
numerically similar to the query. However, for a large human mo-
tion dataset, it may not be always feasible to build the match webs
for every possible pair of motions in advance. In other words, when
a new motion query (not existing in the database), this approach
need to pre-compute all the match webs between this query and ex-
isting motions in the database, which is not efficient in many cases.
Our approach does not need to perform precomputation between
a novel query motion and the existing motions, but fast transform
the query motion into a part-based, high-level representation in the
runtime.

Based on the observation that numerically similar human motions
may not be logically similar, Müller and his colleagues [Müller
et al. 2005; Müller and Röder 2006] present an efficient semantics-
based motion retrieval system where users provide a query motion
as a set of time-varying geometric feature relationships. In their ap-
proach, the motion retrieval problem is essentially transformed to
a binary matching problem in a geometric relationship space. This
approach successfully demonstrates its scalability, versatility, and
efficiency. However, specifying well-defined geometric (semantic)
relationships for highly dynamic human motions (e.g., boxing) is
non-trivial, especially for novice users.

3 Human Motion Data Preprocessing

The motion data preprocessing step (steps 1, 2, and 3 in Fig. 1) con-
sists of three main steps: body hierarchy construction that partitions
the human body into a number of parts in the spatial domain, mo-
tion segmentation and normalization that segment part-based hu-
man motions and then group them into a set of basic motion pro-
totypes (called motion patterns), which essentially partitions hu-
man motions in the temporal domain, and motion pattern extrac-
tion that detects and discovers patterns by grouping similar motion
segments.

3.1 Body Hierarchy Construction

A hierarchical human structure illustrated in Fig. 2 is constructed
based on the spatial connectivity of the human body. The whole
human body is first divided into ten meaningful basic parts, e.g.,
head, torso, left arm, left hand, etc. and then a hierarchy with four
layers is built accordingly. The hierarchy includes a total of eigh-
teen nodes: ten leaf nodes stand for basic body parts, the parent
nodes in the middle layers correspond to meaningful combinations
of child nodes, and the root node represents the entire human body.

We choose a human hierarchy representation, because it provides a
logical control granularity [Gu et al. 2008]. Furthermore, a multi-
layer hierarchy naturally take care of the correlations among several
human parts that will be exploited for follow-up motion similarity
computation (Section 4.1). In this work, we use joint angles rather
than 3D marker positions for representing human motion data, due
to the fact that the joint angle representation is convenient for uni-
fying the motions of human bodies with different bone sizes [Beau-
doin et al. 2008].

3.2 Motion Segmentation and Normalization

Typically, raw data from motion capture systems are long motion
sequences with high variances, e.g., tens of minutes. However, the
motions of interest in many applications are shorter motion clips
that satisfy users’ specific requirements. Therefore, an automated
motion segmentation process that adaptively chops the long mo-
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Figure 2: Illustration of the constructed human hierarchy used in
this work.

tions into short clips is necessary for the later motion retrieval algo-
rithm.

A number of techniques had been developed for human motion seg-
mentation. For example, the angular acceleration of motion has
been extensively used for motion segmentation and analysis [Bindi-
ganavale 2000; Zhao 2001; Fod et al. 2002; Kim et al. 2003].
Badler and Bindiganavale [1998] use the zero-crossings of the sec-
ond derivatives of the motion data to detect significant changes in
the motion, e.g. spatial constraints. Li et al. [2007] employ multi-
class Support Vector Machine classifiers to segment and recognize
motion streams by classifying feature vectors. Gu et al. [2008]
use the weighted sum of all the marker velocities as a threshold
to segment human motion sequences. Principal Component Analy-
sis (PCA) was also proposed for motion segmentation [Barbic et al.
2004], which is based on the assumption that the intrinsic PCA di-
mensionality of a motion will increase dramatically when a new
type of motion is detected.

In this work, we use the Probabilistic Principal Component Anal-
ysis (PPCA) method for motion segmentation proposed by Bar-
bic et al. [2004]. Besides dimension reduction, the PPCA-based
method [Barbic et al. 2004] further computes a probability value
for each data point to measure how well the data point is fitted into
the existing data distribution. If a peak value is detected right af-
ter a valley value, and the difference between them is larger than a
threshold R, then a new segmentation point is claimed. Since we
process each body part separately, R value used in this work is ex-
pected to be smaller than the original threshold value used in [Bar-
bic et al. 2004].

This motion segmentation process is applied to the joint angle rep-
resentation of human motion data. Also, for each body part in the
constructed human hierarchy (Fig. 2), a separate motion segmenta-
tion process is performed. Due to its adaptivity, the chopped motion
segments typically have different numbers of frames. A normaliza-
tion procedure therefore is applied to normalize all the motion seg-
ments to have the same number of frames (termed as the reference
frame number). In this work, we compute the average frame num-
ber from previous segment as the reference frame number. Cubic
Spline interpolation is applied to generate new frames during this
normalization process. Table 1 shows the average frame numbers of
motion segments (before normalization) and the variances of eight
selected body parts.

Body parts Head LeftHand LeftArm RightArm
Average frames 18.32 8.43 11.39 12.75
± variance ± 2.32 ± 6.43 ± 6.54 ± 7.34
Body parts Torso RightLeg LeftFoot RightFoot

Average frames 13.43 11.24 6.75 6.05
± variance ± 5.65 ± 5.12 ± 5.35 ± 5.88

Table 1: The average frame numbers of motion segments (before
normalization) and the variances of eight selected body parts.

3.3 Motion Pattern Extraction

A motion pattern is a representative motion segment for a node (i.e.,
a body part) in the constructed human hierarchy (Fig. 2). To extract
motion patterns from the normalized motion segments, an adaptive
K-means clustering algorithm [Dehon et al. 2001] is used to group
similar motion segments together.

Our motion pattern extraction algorithm can be described as fol-
lows. Starting from an initial K (the number of clusters), the K-
means clustering algorithm is applied to group the normalized mo-
tion segments. Meanwhile, an error metric is computed to measure
the quality of the clustering. If the error metric is larger than a
specified threshold, then K is increased and the K-means clustering
algorithm is called again. This iterative process continues until the
clustering error metric is smaller than the threshold. Decreasing the
threshold value will generate more clusters at the expense of more
computing time. In this work, the initial value of K is experimen-
tally set to 10. The error metric can be defined in the following two
ways: the first is the average clustering error, and the other is the
maximum clustering error. In our experiment, we found that the
maximum error metric gave better results, although its computation
is more time-consuming.

As described in the above Section 3.2, the threshold parameter R
is used in the above PPCA-based motion segmentation process for
the purpose of balancing search accuracy and algorithm runtime ef-
ficiency. In our implementation, we experimentally set R to 0.05,
0.1, 1.0 and 15 for level 4 to level 1, respectively. We choose larger
R values for body parts at upper levels, because a body part at an
upper level usually has a larger motion variation than a part at a
lower level due to its higher DOFs. For instance, the “left hand +
left arm” part has more final clusters than that of the “left arm” part
using the same segmentation and clustering parameters. Therefore,
we increase R for the parts at upper levels to prevent the number
of clusters being overwhelmingly large. This will greatly speed up
the processing time and save the storage space, and the resulted ac-
curacy loss can be made up by the follow-up hierarchical similarity
score propagation from lower levels (Section 4.1). Table 2 shows
the final cluster numbers of 18 parts of the body hierarchy when the
maximum error metric and four databases with different sizes are
used.

In the procedure of the human motion data preprocessing, the fol-
lowing three data structures are generated: (1) Motion Pattern Li-
brary: The mean (representative) motion segments, obtained from
the above motion pattern extraction process, are stored as motion
patterns in a library. We store the motion pattern library as a kd-
tree structure [Moore and Ostlund 2007] due to its efficiency. (2)
Motion Pattern Index Lists: Each human motion sequence is trans-
formed to a total of eighteen lists of pattern indexes (each node in
the hierarchy has a pattern index list). In this step, besides these pat-
tern index lists, we also retain the mappings between these pattern
index lists and the original motion subsequences. In other words,
the pattern index lists (integer index streams) are used only for the
search purpose. (3) Pattern Dissimilarity Maps: A dissimilarity
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Database Size 56MB 456MB 976MB 1452MB
Level 1

Wholebody 315 447 758 981
Level 2

Upperbody 196 314 465 707
Lowerbody 282 402 628 955

Level 3
Head+Torso 86 167 203 287

Left arm+hand 242 356 498 722
Right arm+hand 213 372 542 804

Left leg+foot 301 441 722 1024
Right leg+foot 288 408 685 978

Level 4
Head 42 102 134 169
Torso 121 256 376 432

Left arm 133 275 311 405
Right arm 116 308 346 431
Left hand 277 645 902 1221

Right hand 234 667 822 1145
Left leg 115 245 356 412

Right leg 123 272 416 487
Left foot 392 778 1022 1313

Right foot 342 802 1156 1354

Table 2: Final cluster numbers of the 18 parts of the body hier-
archy in four motion databases with different sizes: 56MB (170
motions, 68,293 frames), 456MB (396 motions, 556,097 frames),
976MB (542 motions, 1,190,243 frames), and 1452MB (941 mo-
tions, 1,770,731 frames).

value is computed between any pair of motion patterns based on
their Euclidean distance. These dissimilarity values are stored in
a map (called pattern dissimilarity map). Numerical similarity be-
tween two full-body motion sequences is not necessarily equivalent
to their logical similarity mainly due to their high dimensionality.
Since in this work we break the full-body motion into a part-based
hierarchy, the motions of each part has a much lower dimensional-
ity than the full-body motions.

4 Runtime Motion Retrieval

Algorithm 1 Runtime Motion Retrieval Algorithm
Input: the pattern index lists in the library S[n][18][ ], the query pattern index lists
of the query motion sequence Q[18][ ], and the user-defined weight vector W [18].
Note that each motion sequence contains 18 pattern index lists.
Output: motion similarity rank list R[n], motion similarity score vector V [n].
Define: pattern index list similarity score matrix M [n][18].

1: for i = 1 to n do
2: for j = 1 to 18 do
3: M [i][j]= PatternIndexListSimilarityComp(S[i][j][ ], Q[j][ ], W [j])
4: end for
5: end for
6: V [n]=Similarity Propagation(M [n][18])
7: R =QuickSort(V )
8: return (R,V )

The runtime motion query processing module (steps 4 and 5, Fig.
1) first transforms a given query motion to its motion pattern index
lists by locating the closest motion patterns in the pre-constructed
pattern library. This transformation is done for each node in the hu-
man hierarchy tree separately. Note that this transformation step is
very fast, since the adaptive K-means clustering step that occupies
the majority of computing time in the motion data processing stage

(Section 3) is not needed. Then, our approach computes similarity
scores between the query pattern index lists and existing pattern
index lists by extending the classical Knuth-Morris-Pratt (KMP)
string match algorithm [Knuth et al. 1977], detailed in follow-up
Section 4.1. Finally, the search results (motion sequences) are
ranked by hierarchically fusing similarity scores.

Alg. 1 describes the runtime human motion retrieval algorithm. It
includes two main processes: (1) PatternIndexListSimilarityComp
computes the motion similarity scores of each body part between
the pattern index list of the query motion and that of any existing
human motion in the data repository. Note that each full-body mo-
tion sequence has been transformed to 18 pattern index lists (Fig. 2).
(2) Similarity Propagation computes the weighted rankings of re-
trieved motions by hierarchically propagating the similarity scores.
Our approach also provides a control granularity on its search and
ranking strategy as follows: it allows users to set their search prefer-
ences by assigning varied significances/weights to different human
parts. For instance, users can specify the following search prefer-
ence: 35% for the left arm, 45% for the right arm, 20% for the legs,
and zero for other parts. These weights can be incorporated into the
similarity propagation process later to rank the retrieved motions.

4.1 Computation of Motion Similarity

Since both the query motion and existing motion sequences in the
data repository are transformed to pattern index lists, the core part
of this motion search process is to compute similarity between two
pattern index lists with different lengths. Given a pattern index list
is an integer index sequence, we can formulate this motion sim-
ilarity computation problem as a matching problem between two
integer/character streams, and it can be efficiently solved using fast
string match algorithms. Different from the traditional character
string match case where the number of possible characters is fixed
and limited, in this work we cannot always expect to find a per-
fect match between two motion pattern index lists due to the large
number of distinctive 3D human motion patterns, e.g., at a thousand
level as shown in Table 2. Consequently, a “quasi-match” between
two similar motion patterns need to be computed and taken into
account in our pattern match process. The pre-computed pattern
dissimilarity maps that store the distance measure between any pair
of motion patterns are designed for this purpose.

In this work, we extend the classical Knuth-Morris-Pratt (KMP)
string match algorithm [Knuth et al. 1977] for motion pattern simi-
larity computation as follows. If the distance (via pattern dissimilar-
ity maps) between two patterns is less than a pre-defined threshold
MaxTolerance, then the two patterns are considered as a quasi-
match. If the number of consecutive quasi-match pattern indexes
is no less than a threshold MinConNum, the matching score is
increased; otherwise, if a pattern index fails to find its quasi-match,
the dissimilarity value between the two comparing indexes is sub-
tracted from the matching score. At the end of the algorithm, the
matching score is normalized based on the length of the matching
pattern index list. Alg. 2 describes this KMP-based motion similar-
ity computation algorithm. Its time complexity is Θ(N), where N
is the number of motion sequences in the data repository. Setting
MaxTolerance to 0.02 and MinConNum to 5 achieved good
results in our experiments.

Using the above motion similarity computation algorithm (Alg. 2),
we compute the matching/similarity scores between the query mo-
tion and the motions existing in the data repository, part by part
(Fig. 2). As described in Section 3.1, the upper a node is in the
human hierarchy tree, the more global motion information it con-
tains; and vice versa. Furthermore, two motions may exhibit high
local similarities while having notable differences from the global
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Algorithm 2 KMP-based motion similarity computation algorithm
Input: a source pattern index list S[ ], a query pattern index list Q[ ], pattern
dissimilarity map DM [ ][ ], and a user-defined weight for the specific body part
Weight.
Output: motion similarity score Score.

1: Compute next value vector nextval[ ] of the query pattern index list
2: Score← 0, MatchCount← 0, i← 0, j ← 0

3: while i <Length(S) do
4: if DM [S[i]][Q[j]]≤MaxTolerance then
5: MatchCount←MatchCount + 1, i← i + 1, j ← j + 1

6: else
7: MatchCount← 0

8: Score← Score−DM [S[i]][Q[j]]

9: if nextval[j] = −1 then
10: i← i + 1, j ← 0

11: else
12: j = nextval[j]

13: end if
14: end if
15: if MatchCount ≥ MinConNum then
16: Score← Score + Weight

17: end if
18: end while
19: Score← Score/Length(S)
20: return Score

perspective (Fig. 3 shows an example). Therefore, we want to fuse
similarity scores at different layers for the purpose of result rank-
ing. Its basic idea is to propagate the similarity scores of the nodes
at the deeper (more local) layers up to their parent nodes (more
global) in the hierarchical tree, and after every propagation, we up-
date the similarity score list of the corresponding parent nodes. The
propagation continues until the root node (the whole human body)
is reached.

Figure 3: Two motion sequences have high local similarities (up-
per/lower part) but different global movements.

In this similarity propagation process, the similarity scores of child
nodes are propagated up to their parent nodes with an even ratio.
For instance, assuming the similarity score list of the right foot node
is Srf , and the similarity score list of the right leg node is Srl,
then the propagated similarity score list Sprfl = 1/2 × Srf +
1/2×Srl. Meanwhile, we computed a similarity score list for every
parent node itself. We need to combine the propagated score list
(from the child nodes) with that of the parent node. A parameter, α,
is introduced to control the proportion between the global motion
similarity (from the parent nodes) and the local motion similarity
(propagated from child nodes). For instance, let Srfl be the original
computed similarity score list of the RFoot + RLeg node, Sprfl

be the list propagated from the child nodes, we update the similarity
score list as Surfl = α × Srfl + (1 − α) × Sprfl. Setting α=0.5
achieved good results in our experiments.

5 Results and Evaluations

To test and evaluate our approach, we collected a large set of hu-
man motion sequences from the public CMU motion capture data
repository [cmu 2007] as our test dataset. In the remainder of this
section, we will describe the processing time and storage statistics
information of our approach, comparative accuracy experiment re-
sults, and user study experiments.

5.1 Time and Storage

To provide detailed time and storage of our method, we tested it
on four datasets with different sizes (56MB, 170 motions,68,293
frames; 456MB, 396 motions, 556,097 frames; 976MB, 542 mo-
tions, 1,190,243 frames; and 1452MB, 941 motions, 1,770,731
frames). All experiments were conducted on a computer with a
Intel Duo Core 2GHz CPU and 2GB memory. Table 3 shows its
processing time and storage information. When computing the av-
erage search time per query, the average duration of the used query
motions was about 10 seconds.

Database size (MB) 56 456 976 1452
Preprocessing time (min) 2 25 64 121

MPL size (MB) 0.45 2.04 3.42 4.28
MPIL size (MB) 0.37 7.30 11.7 18.6
PDM size (MB) 0.72 12.4 26.8 49.9

Search time per query (ms) 11 39 56 72

Table 3: Search time, processing time, and storage information of
our approach when motion databases with different sizes are used.
Here MPL represents the constructed “Motion Pattern Library”,
MPIL represents the constructed “Motion Pattern Index Lists”, and
PDM represents the constructed “Pattern Dissimilarity Maps”.

5.2 Search Accuracy

To evaluate the search accuracy of our approach, we conducted an
accuracy evaluation experiment similar to the one in [Kovar and
Gleicher 2004]. Its basic idea is to use the same query motion ex-
amples to search in two different types of datasets: the first one
(single type motion dataset) is the labeled motion dataset with the
same semantic category (e.g., walking), and the second one (mixed
motion dataset) is the original, unlabeled motion dataset mixed with
various motion categories. For this experiment, we manually col-
lected a set of motions (56 MB) consisting of 170 sequences, 68,293
frames from the CMU motion capture dataset [cmu 2007]. Based
on the original semantic labels of the motions, we divided this mo-
tion set into five semantic categories: walking, running, jumping,
kicking and basketball-playing with 56, 41, 40, 16, and 17 motion
sequences, respectively. It should be noted that each individual data
file may still contained multiple actions. For example, a basketball-
playing motion file may contains several walking cycles.

Based on the search outcomes from the above different datasets
(in this experiment, we only consider the top N search results,
N=20), we computed a true-positive ratio as the accuracy crite-
rion that is defined as the percentage of the top N results searched
from the mixed dataset are in the correct/expected single-type mo-
tion dataset. Here we assume the searched results from the labeled
single-type motion dataset with the same category are ground-truth.
In this experiment, we also compared our approach with three cur-
rent example-based motion retrieval algorithms [Kovar and Gle-
icher 2004; Liu et al. 2005; Forbes and Fiume 2005]. Fig. 4 plots
the computed true-positive ratios from this experiment.
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Figure 4: Comparisons of the true-positive ratio achieved by the
chosen four methods in our accuracy evaluation experiment.

As shown in the above Fig. 4, in terms of the true-positive ra-
tio, our approach generally slightly outperformed the other three
methods except the jumping case where the true-positive ratio of
the Kovar-Gleicher approach is slightly higher than that of our ap-
proach. In particular, our approach achieved a significantly higher
true-positive ratio than the other three when querying basketball-
play motions. We argue its main reason is that our motion retrieval
approach is performed on both the motion segment level (temporal
domain) and the part-based level (spatial domain), and thus is par-
ticularly suited for the cases where a complex motion sequence (the
basketball-play motion in this experiment) is used as a query input.

5.3 Comparative User Study

We also compared our approach with three current human motion
search approaches including the match-webs based motion search
algorithm proposed by Kovar and Gleicher [2004], the piecewise
linear space based algorithm proposed by Liu et al. [2005] and
the weighted PCA based algorithm proposed by Forbes and Fi-
ume [2005] through a comparative user study. It is noteworthy
that we did not choose the semantic-based motion retrieval algo-
rithms [Müller et al. 2005; Müller and Röder 2006] into this com-
parative user study, because it is difficult to perform sound com-
parisons between the semantic-based motion retrieval algorithms
and pure example-based motion search algorithms due to their sig-
nificant differences in input requirement: a set of geometric feature
relationships over time [Müller et al. 2005; Müller and Röder 2006]
versus one motion example required by our approach and the other
three algorithms [Kovar and Gleicher 2004; Liu et al. 2005; Forbes
and Fiume 2005].

In this study, we aim to study the following usability questions: (1)
are the retrieved motions by our approach ranked in an approximate
perceptually-consistent order? in other words, are they consistent
with human perception? and (2) what is the comparative perfor-
mance of our approach when comparing it with current example-
based motion search approaches [Kovar and Gleicher 2004; Liu
et al. 2005; Forbes and Fiume 2005]? We are aware that thoroughly
and comprehensively evaluating the perceptual consistency of the
searched motion results is another challenging research topic be-
yond this work. In our experiment, to approximate the perceptual
outcomes from our humans, we asked experiment participants to
subjectively rate the motion similarity between a query motion ex-
ample and each of its corresponding searched motions (Fig. 5). The
size of the motion dataset used in this study is about 456 MB, en-
closing 396 different motion sequences and 556,097 motion capture
frames. Motion types enclosed in the test dataset vary from simple
motions (e.g., walking, jumping, and running) to complex motions
(e.g., dancing, boxing, and climbing). Since the Kovar-Gleicher
method [Kovar and Gleicher 2004] cannot take new query motion

(not in the database) at runtime, we pre-computed the match webs
between the chosen query motions and all the motions in our test
dataset.

Figure 5: An example of side-by-side comparison animation clips
(one is a query motion example, and the other is one of search re-
sults) used in this study.

We picked a walking motion, a running motion, and a basketball-
playing motion as our three query motions. Given the same test
inputs (the three chosen query motions), the top-ranked six results
by each of the four approaches (our method, and the other three
algorithms [Kovar and Gleicher 2004; Liu et al. 2005; Forbes and
Fiume 2005]) were chosen into our user evaluation. In other words,
a total of 72 searched motions (=3 examples × 4 approaches × 6
top-ranked motions per query) were used for this comparative user
study. For each of the searched motions, we further expanded it to a
corresponding side-by-side comparison clip (one side is a searched
motion, and the other side is its corresponding query motion. Re-
fer to Fig. 5). We then mixed the 72 side-by-side comparison clips
and showed them in a random order to a total of twenty-four partici-
pants. Most of the participants are graduate students in sciences and
engineering fields in a university, aging from twenty-two to thirty-
five. The participants were first shown a short tutorial to demon-
strate how to assign an appropriate similarity scale to a side-by-side
comparison clip. In this study, the range of participants’ similarity
ratings is from 1 to 10, where 10 stands for “identical” and 1 stands
for “completely different”. After viewing each side-by-side com-
parison clip for a maximum of four times, the participants were
asked to rate a similarity score based on their visual perception.

Based on the participants’ ratings, we computed the average simi-
larity ratings and the standard deviation achieved by the four chosen
approaches (Table 4). As shown in Table 4, in most of cases, our
approach achieved higher average similarity ratings than the other
three, which is more obvious at the case of the basketball-playing
motion query.

Query Our Kovar and Forbes and Liu
motion method Gleicher 04 Fiume 05 et al. 05
Walking 7.92± 0.82 7.97± 1.07 7.09± 0.77 7.03± 0.61
Running 8.13± 1.48 7.69± 1.56 6.92± 1.45 7.26± 2.97

Basketball
-playing 7.84± 1.58 4.92± 1.92 5.52± 2.27 4.45± 1.55

Table 4: The average motion similarity ratings ± the standard de-
viations achieved by the four chosen approaches.

To look into whether the searched motions by these four chosen
approaches are ranked in an approximate perceptually-consistent
order, we analyzed the same user rating data from a new perspec-
tive. Given a query motion example, any of the retrieved motion
results, Ri, has a rank, Ci, assigned by the above four approaches
(we called this ranking as its computer-based ranking). Ci is from 1
to 6, since we only chose the six top-ranked results from each query
into this study. Meanwhile, based on the average user ratings, we
also obtained a human-based perceptual ranking, Hi, for Ri. Fig. 6
shows the correlation between the computer-based rankings 〈Ci〉
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Figure 6: The plotted correlation analysis of the computer-based rankings 〈Ci〉 versus the human-based perceptual rankings 〈Hi〉, for the
three chosen query motions. Note that the radius of circles is proportional to the variance of the user ratings.

and the human-based perceptual rankings 〈Hi〉. In its three subfig-
ures, X axis is 〈Ci〉 and Y axis is 〈Hi〉. Therefore, the perceptual
consistency of a motion search approach (i.e., results are ranked in a
perceptually-consistent order) is reflected in the linearity of plotted
curves in these two figures.

To further quantify the linear correlation between 〈Ci〉 and 〈Hi〉,
we performed the Canonical Correlation Analysis (CCA) [Dehon
et al. 2000] on them, because CCA provides a scale-invariant op-
timum linear framework to measure the correlations between two
streams. Table 5 shows the computed CCA coefficients for the
chosen four approaches. These CCA coefficients reveal that our
approach is more perceptually consistent than the other three ap-
proaches [Kovar and Gleicher 2004; Liu et al. 2005; Forbes and
Fiume 2005].

Query Our Kovar and Forbes and Liu
motion method Gleicher 04 Fiume 05 et al. 05
Walking 0.8285 0.7142 0.7142 0.5999
Running 0.9428 0.9428 0.8857 0.8857

Basketball
-playing 0.9428 0.6571 0.0857 0.8857

Table 5: The computed Canonical Correlation Analysis (CCA) co-
efficients of the four approaches for the three chosen query motion
examples.

6 Discussion and Conclusions

In this paper, we present a perceptually consistent, example-based
human motion retrieval technique based on a hierarchical pattern
extraction and matching scheme. Given a query motion, our ap-
proach can efficiently retrieve logically similar motions from a large
motion data repository. The efficiency of our approach directly ben-
efits from the fast performance of the classical KMP string match-
ing algorithm [Knuth et al. 1977] and the KD-tree structure [Moore
and Ostlund 2007]. To evaluate the accuracy and usability of our
approach, we conducted comparative user studies to measure its
search accuracy by comparing our approach with three the state of
the art, example-based motion search algorithms [Kovar and Gle-
icher 2004; Liu et al. 2005; Forbes and Fiume 2005]. By analyzing
user study results, we found that our approach is measurably effec-
tive in terms of search accuracy, and its search motion results are
automatically ranked in an approximately perceptually-consistent
order.

Our approach is flexible in terms of query input: a hybrid of mul-
tiple motion sequences, e.g., the upper body part of a motion se-

quence from 1 to 500 frames and the lower body part of a second
motion sequence from 1000 to 1500 frames, can be used as a novel
query input. We are aware that a random combination of multi-
ple human motion sequences may generate unnatural human mo-
tions. However, this function is still useful when users have small
or limited query motions, because they can generate (or reorganize)
novel query motions using various automatic motion fusing algo-
rithms [Ikemoto and Forsyth 2004].

Certain limitations still exist in our approach. Current approach
does not consider the path/motion trajectory of the root of the hu-
man in the retrieval algorithm. As such, given one query motion,
its search results may enclose human motion sequences with com-
pletely different paths/trajectories, which might not be what users
expect. For example, when the query motion is a sequence where a
character is playing basketball while turning right, our approach
may put a turn-left, basketball-playing motion at its top-ranked
search result. In addition, most of internal parameters used in cur-
rent approach are experimentally determined, which may not be op-
timal. In future work, we plan to perform in-depth analysis on the
association between the used parameter values and its algorithm
performances, in hope that it could help to resolve the optimized
parameter setting for this motion retrieval approach.
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