
Formation Sketching: An Approach to Stylize Groups in Crowd Simulation

Qin Gu∗ Zhigang Deng†

Computer Graphics and Interactive Media Lab, Department of Computer Science

University of Houston

ABSTRACT

Most of existing crowd simulation algorithms focus on the moving
trajectories of individual agents, while collective group formations
are often roughly learned from video examples or manually speci-
fied via various hard constraints (e.g., pre-defined keyframes of ex-
act agent distributions). In this paper, we present an intuitive yet ef-
ficient approach to generate arbitrary and precise group formations
by sketching formation boundaries. Our approach can automati-
cally compute the desired position of each agent in the target for-
mation and generate the agent correspondences between keyframes.
When high-level group formations need to be formed on-the-fly in a
dynamic environment such as “switching to the circle formation at
about one hundred meters ahead", our algorithm will coordinate and
compute appropriate actions for each agent by seamlessly fusing
local formation dynamics and global group locomotion. Through
a number of experiments, we demonstrate that our approach is ef-
ficient and adaptive to variations of group scales (i.e., number of
agents), group positions, and environment obstacles.

Index Terms: I.3.7 [Computer Graphics]: 3D Graphics and
Realism—- Animation; I.3.6 [Computer Graphics]: Methodology
and Techniques—- Interaction techniques

1 INTRODUCTION

In recent years large-scale crowd simulation has been increas-
ingly used in various computer games, movies, virtual training,
and education applications. In most crowd animation systems,
each individual agent is capable of intelligently moving toward its
destination through navigational path-finding algorithms [14; 18;
8], and avoiding collisions with other agents and obstacles through
local behavior control models [23; 6; 22]. Hence, these approaches
can often produce highly realistic simulation of path navigation,
cognitive reaction, collision avoidance, and animation control.

However, up to date, relatively few research efforts have been fo-
cused on dynamically modeling the collective behavior of the entire
crowd or multiple sub-groups in a crowd. In many scenarios, the
collective behavior of a group plays a significant role to exhibit var-
ious macro- attributes of the crowd. From visual simulation point
of view, the collective behavior of a crowd or group is usually ex-
hibited as its general formations. For instance, when a large-scale
battle is simulated in a computer game, the formations of two troops
directly reflect the tactical commands of the controllers.

Currently, the popular means of forming a target group forma-
tion is to specify the desired position of each agent at a particular
moment and then generate realistic transitions between the current
position and the target/destination [32]. Nevertheless, this approach
often requires users to manually specify many spatial correspon-
dence constraints, which is a non-trivial, painstaking task. In par-
ticular, when the simulated crowd includes a large number of agents

∗e-mail: ericgu@cs.uh.edu
†e-mail: zdeng@cs.uh.edu

Figure 1: Schematic structure of our group formation synthesis scheme in a

complete crowd simulation system

or the target formation is an arbitrary shape, it will be even more
challenging.

In this paper we propose an efficient framework to generate pre-
cise group formations in a crowd through an interactive sketching
interface. Specifically, we first evaluate the formation boundary in-
formation from user sketches. The boundaries can be derived from
multiple continuous curves or line strips depicting arbitrary con-
vex or concave shapes, and the combination of using inclusive and
exclusive boundaries gives us flexibility to create holes in a forma-
tion (Section 3). Then, we introduce a new concept called forma-
tion coordinates to find the desired position of each agent in the
new formation while maintaining the adjacency naturalness among
agents as much as possible during the local formation transition.
When a group performs a global movement when forming a local
formation, such as “switching to the circle formation at about one
hundred meters ahead", our model will automatically coordinate
and compute appropriate actions for each agent, by seamlessly fus-
ing inter-group dynamics and within-group dynamics. As shown
in Figure 1, from top to bottom, the final moving velocity of an
agent (group member) is collectively determined by multiple fac-
tors including the target formation, local collision avoidance, and
the navigational factor passed from the higher inter-group level.

The contributions of this work are summarized as follows:

(1) A novel group formation sketching scheme: Given a set of
sketching curves, our method is capable of creating arbitrary for-
mations (target agent distribution) with few parameter tuning. The
new concept of formation coordinates enables our method to be
adaptive to various number of agents, formation shapes and forma-
tion scales (radius) through formalizing a set of relative features.

(2) A hierarchical scheme to fuse a local formation simula-
tion and global group navigation: We minimize the dimension of
the used feature vectors solely for within-group formation control.
Meanwhile, a higher level collision avoidance model and naviga-
tional path-planner are then used to guide the inter-group dynamics
and interactions.

The remainder of this paper is organized as follows. Section 2
gives a brief review of related work. Section 3 describes the work

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

flow to generate target local formations from the user sketching.
Section 4 illustrates our hierarchical model to control group forma-
tions when interacting with different environments or other groups.
Experimental results and performances of our approach are re-
ported in Section 5. Finally, limitations, future directions, and con-
cluding remarks are presented in Section 6.

2 RELATED WORK

Rule-based crowd models are flexible to simulate various au-
tonomous crowd agents through a set of delicately-designed rules.
Reynolds [23; 24] pioneered the concept of Boids that simulates
flocks of birds and schools of fishes via several simple yet effective
steering behavioral rules to keep the group cohesions, while avoid-
ing collisions among group members. Later, as follow-ups, vari-
ous rule-based approaches have been extended and systematically
investigated by adding multi-level group rules [33], human psycho-
logical effects [27], perceptual knowledge of pedestrians [29], cog-
nitive modeling [3], enhancing motion variety [4], behavioral ac-
tions selection [37], or egocentric affordance fields [9]. To handle
more sophisticated environment constraints, a set of special agents,
such proxy agents [36] and situation agents [28], were also pro-
posed to receive classified rules.

Another research line of crowd simulations is force-based model.
It was originally derived from human social force study, first pro-
posed by Helbing and Molnár [6]. Later, it was further applied
and generalized to other simulation scenarios such as densely pop-
ulated crowds [22] and simulation of pedestrian evolutions [13].
Several recent efforts have introduced the continuum theory into
the crowd simulation domain [1; 34]. The core idea of these meth-
ods is to replace local collision avoidance with continuous flows
throughout the simulation grids. Narain et al. [19] further introduce
unilateral incompressibility constraints to successfully simulate ex-
tremely large crowds, e.g., more than 100,000 agents in a crowd.

In recent years, significant efforts have been attracted to model
sophisticated crowd behaviors using example-based (or called data-
driven) approaches. For example, subtle agent features can be ex-
tracted from pre-recorded 2D video [16; 15; 17] and these features
can be incorporated into crowd simulations. 3D motion capture
data were also exploited to calibrate crowd simulations [21]. Fur-
thermore, the motion graphs concept [10], widely known in single
character animation synthesis, was also introduced to guide crowd
agents [12; 31].

Group formation is a vital collective characteristic of many
crowds. An off-line optimization method was proposed in [35] to
fit the flocking agents to a pre-defined 3D geometry. Silveira et al.
[30] introduce a “group map" concept to generate the boundary for-
mation but without considering the inside agent distribution. Other
approaches typically combine heuristic rules with explicit hard con-
straints to produce and control sophisticated group formations. For
example, Takahashi et al. [11] proposed a shape manipulation tech-
nique to deform an existing group formation as a whole. Their re-
cent work [32] developed a spectral-based group formation control
scheme. However, in their approach, if a group of agents are form-
ing a certain formation, the exact agent distributions at a number
of keyframes need to be manually specified by users, which is non-
trivial manual work if the target formation contains a large number
of agents. By contrast, our approach only requires a few of intuitive
user sketches to specify the general boundaries of a formation. The
final agent distribution is automatically generated by an efficient
online optimization pipeline.

Rodrigues et al. proposed a space colonization algorithm to sim-
ulate several steering behaviors [25; 26]. In these approaches, a
target formation is represented as high-density spray markers to at-
tract agents moving towards the target space. If the target space
has been occupied, the agent will try to keep probing other avail-
able spaces in the formation. Compared with these approaches, our
approach is more user-friendly and controllable to navigate all the

group agents towards the desired target positions while maintaining
their local neighborhoods as much as possible. On the other hand,
Ju et al. [7] also successfully generated several collective crowd
behaviors in their most recent work by blending existing crowd ex-
amples. Their approach is powerful in simulating rough collective
features in a flexible crowd but not suitable for animators who re-
quire strict spatial formation matching. Our scheme, from this point
of view, can tackle this limitation through precisely fitting forma-
tion boundaries.

3 ESTIMATING GROUP FORMATION

Manually keyframing and specifying hundreds of agents to pre-
define a target crowd formation is a painstaking and labor-intensive
task even for skilled animators. In this section, we describe how
to automatically compute the agent distribution in the target group
formation from arbitrary, user-sketched boundaries. In other words,
the problem can be posed as: “Given a particular number of agents,
how can we reposition the agents in a way that the overall agent
arrangement closely fits the sketch. Meanwhile, the general adja-
cency information around each agent should be retained as much
as possible." The second constraint can be observed in most forma-
tion transitions in the real world. For example, during a transition
from a square group formation to a circle one, an agent located in
the top-left of the formation will prefer to keep this relative position
within the group all the time despite the change of formation shapes
and scales.

3.1 Sketching Interface

Different from other sketching scheme mostly focusing on crowd
locomotion controls [20], our sketching interface provides users an
interactive tool to freely sketch the target formation by drawing any
closed curves or line strips on the simulation plane (left of Figure
2). Those curves are then considered as target formation boundaries
to constrain the group agents. In order to generate holes within
some special formations like a circle ring formation, we introduce
a new exclusive boundary type opposing to the traditional inclusive
boundary. Combining these two types of boundaries, our system
can generate sophisticated formations such as English characters
(Figure 3).

Figure 2: Computing formation coordinates from a user sketch: Left - sketch

boundary, Middle - Initial formation template through filling boundaries, and

Right - computing formation coordinate of position A through eigenvectors

3.2 Filling Formation

Given the formation boundaries and the original agent distribu-
tion, we construct its corresponding formation template as an over-
sampled candidate space (i.e. template points more than agent num-
bers) for the target agent distribution. The template points represent
possible candidate target positions for group agents (middle of Fig-
ure 2). A two-step sampling approach is applied to generate the
template. First, we evaluate the desired target positions on the for-
mation boundaries by evenly re-sampling all the sketch curves. The
rest of the procedure becomes filling the region that is inside of the
inclusive boundaries but outside of the exclusive boundaries, with
discrete points. We extend the traditional Flood-Fill algorithm to
tackle this problem. Specifically, our queue-based implementation
discretely fills the curved boundary with user-specified sampling

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

units through a horizontal scan-line traversal order. See Appendix
A for more details of this algorithm. For both steps in the filling
procedure, the parameter selection of the sampling unit is critical
to the final simulation result. A small sampling unit guarantees the
over-sampled space for the group agents, while may break the bal-
ance between the agents at the formation boundaries and the agents
inside the formation. Discussion of the optimal sampling unit se-
lection is described in Section 3.6.

3.3 Formation Coordinates

The formation template includes a reference space for the target
agent distribution. The target formation can be created through se-
lectively filling the template. In other words, we need to find the op-
timal correspondences between agents and template points. How-
ever, the original world coordinates of each group agent provides
little information directly usable for our purpose. For example, it
is hard to find a good corresponding position in the template for
an agent having a world coordinate (10, 0, 10) due to the shape
and scale variations of user sketches. A new metric therefore is
needed to represent the agent positions containing collective group
information. In this work, we propose Formation Coordinate, a
normalized relative pattern representation partially similar to polar
coordinate, to serve our purpose.

We first compute the weighted group center, pc, by averaging all
agent positions (assuming a total of n members in the group). Then,
the following relative features are extracted and considered for each
group member or each template point (Figure 2).

1. Relative orientation to the formation center, cot (0 - 360 de-
grees): When forming a certain formation, an agent (i.e.,
group member) only needs to know its own general orienta-
tion within the group with respect to the current group center
and any pre-defined direction. However, if users want to con-
tinuously rotate the formation to align the inter-group velocity
(Section4.2), our system needs to multiply the rotation matrix
while computing the agent relative orientation.

2. Relative normalized distance to the formation center, cdt (0
- 1): With the above cot , the relative distance cdt can to-
gether define the current relative position of an agent within
the group. Furthermore, its normalized representation ensures
it can be conveniently used for scalable runtime simulations
(e.g., varied target formation scales). The denominator of the
normalization is the radius of the formation. Simply using a
constant value for this radius, such as the furthermost agent
distance will result in a poor estimation for non-circular for-
mation shape. An ideal radius would be computed based on
a set of distances from formation center to every boundary
pixel. However, it is not efficient to compute such a large
number of radiuses regardless of agent distribution. Instead,
we retrieve eight most representative formation radiuses from
the agent or template point distribution. For example, on the
right of Figure 2, we first apply a singular value decompo-
sition on the 2D distribution (z coordinates are temporarily
ignored), and then use the two resulting eigenvectors as new
orthogonal axes (red and blue lines) to evenly generate the
eight radiuses by the vectors from the center to the eight inter-
section points on the boundary (dashed lines). When perform-
ing the normalization, we search for the closest radius as the
normalization factor. In our experiments, this method is fast
enough for our real-time application and provides acceptable
results.

Given a point A in the world space (Figure 2), the formation
coordinate can be finally formulated as a three dimensional feature
vector (cdt ,cotx,coty) where the cotx and coty are two components

of the normalized vector from the formation center to the point A to
represent the relative agent orientation.

In our experiments, a total number of eight radiuses appeared to
be a good threshold to balance the computational performance and
the final formation quality. It is also noteworthy that our compact
representation of group formation (i.e., the above feature vectors)
only contains relative information with respect to the group center,
regardless of arbitrary positioning of the group. The general move-
ment of the group (center) as a whole is dynamically determined in
the higher inter-group level (refer to Section 4.2).

Figure 4: Generating the target formation based on the correspondences

of formation coordinates: (Top-Left) Original agent distribution, (Bottom-Left)

Finding corresponding positions in the formation template, and (Right) the

final agent distribution after point-based relaxation.

3.4 Finding Correspondences

When transiting one formation to another, it is essential to find the
correspondence between an agent’s original position and its new
position in the target formation. Typically, previous approaches
manually specify the target position and its corresponding agent
in the original formation via keyframing. By contrast, our method
focuses on automatically finding the corresponding positions in the
formation template, and then using the selected position to evaluate
the final target position through a later relaxation process (Section
3.5).

Our correspondence finding scheme is based on the following
two-fold assumption: (1) In the target formation, agents on the
boundaries must closely fit the boundary curves to clearly demon-
strate the desired formation shape sketched by users. This is crucial
to user perception since profile is the most important feature to dis-
tinguish one formation from others. (2) Each agent prefers to keep
its adjacency condition as much as possible. Similar to the princi-
ple of least effort used in [5], it is less likely that a group member
would take more perceived efforts to go across the formation to
reach a more distant position if a closer yet reachable one is avail-
able. In our approach, this assumption can be realized by searching
for the closest formation coordinate.

Finding agents on the boundaries: In order to guarantee the
exact boundary representation, every boundary point in the forma-
tion template needs to have one and only one corresponding agent
to fit in. Hence this process must be the first step of the correspon-
dence finding procedure. We first convert positions of all the agents
in the original distribution into relative formation coordinates, as
described in Section 3.3, and store the results in a KD-tree data
structure. For each point on the template boundaries, its world co-
ordinate is also converted to formation coordinate in a similar way.
Consequently, the agent corresponding to every boundary point can
be computed by finding the nearest neighbor in the KD-tree (point
B at the bottom-left of Figure 4).

Finding agents within the boundaries: Next, we need to find
the corresponding target positions for the rest of the agents. Un-

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

Figure 3: Generating arbitrary formations from random agent distributions (Left-most) through inclusion sketch (white boundaries) and exclusion sketch (red

boundaries)

like the boundary fitting described above, we cannot find one-to-
one correspondence between each inner template point and the rest
agent, since the formation template is an over-sampled space. In-
stead of finding corresponding agent based on each template point,
in this step, we inversely evaluate the corresponding template point
for each of the non-boundary agents that are not selected in the
previous step. Similarly, the formation coordinate of each agent
is used to find the closest neighbor in the template. If the closest
neighbor has been occupied, we iteratively search the next closest
neighbor. The resultant formation coordinate of the template point
is then converted back to its world coordinate as the agent target
position (point A in the bottom-left of Figure 4).

3.5 Relaxation

Until this step, we have already generated the exact profile and
general inner-distribution of the target formation. However, the
agent distribution inside the formation boundaries is not evenly dis-
tributed due to the fact that the number of evenly distributed tem-
plate points is larger than the number of non-boundary agents. To
deliver the final formation result, a few relaxation steps are needed
to optimize the agent distribution. Unlike the element-based relax-
ation used in many geometric deformation algorithms, the virtual
connections among group members typically should not be strictly
fixed during the simulation, especially in a transition between two
significantly different formations. To this end, we perform a point-
level relaxation on the non-boundary agents using boundary points
as relaxation constraints. For each agent, the impacts of its sur-
rounding neighbors are evaluated via a Radial Basis Function with
Gaussian kernel (detailed in Algorithm 1). The parameter speed is
a constant to all the agents to control the relaxation progress while
the relaxation weight w varies among agents to indirectly control
the “evenness" of agent distributions. Larger weights will make an
agent faster to be relaxed and tend to push other agents to form
sparser areas. Although we only pre-script the agent weights in our
experiments, they can be assigned in multiple ways such as a brush
sketch interface.

Note that, in the above Algorithm 1, the function updateDistri-
bution() requires a re-creation operation if the KD-tree data struc-
ture is used, which costs Θ(n logn). Performance is a critical issue
for an agent-based crowd simulation since it has to update every
agent individually at each time interval. In our implementation, the
n logn complexity is reduced to n by registering agents into a dis-
cretized grid at each update. The function closestPoints() therefore
simply collects the agents registered in the surrounding cells with
the complexity of Θ(1).

3.6 Sampling Refinement

The selection of a proper sampling unit is critical to the success of
the proposed formation generation pipeline (described from Sec-
tion 3.2 to Section 3.5). If the sampling unit is too large, it may risk
the under-sampling of the formation template so that some “redun-
dant" agents cannot find their corresponding positions in the target
formation. On the other hand, if the sampling unit is too small, it
may lead to a bad balance between the number of boundary agents

Algorithm 1 Point-based Formation Relaxation

Input: bPoints, constraint boundary points.

Input: iPoints, points to be relaxed.

Input: η, relaxation iterations.

Input: β, Gassian constant parameter (β > 0).

Input: speed, moving rate of relaxation in each iteration.

Input: w, relaxation weight.

Output: rPoints, outputted relaxed points inside the boundaries.

1: rPoints = iPoints;

2: for each η do

3: allPoints = rPoints + bPoints;

4: updateDistribution(allPoints);

5: for each rPoint in rPoints do

6: neighbors = closestPoints(rPoint);

7: for each neighbor in neighbors do

8: d = distance(rPoint, neighbor);

9: v = v + d × exp(−β×d2);

10: end for

11: rPoint = rPoint + v
numO f Neighbors

× speed× w;

12: end for

13: end for

14: return rPoints;

and non-boundary agents (an example is shown in the right of Fig-
ure 5). Since we force the exact boundary fitness, there might be
not enough agents to fill the area within the boundaries. In this
case, the non-boundary agents will appear to be sparsely distributed
in the target formation even with the above relaxation process. To
this end, we propose an automatic way to compute the near-optimal
sampling unit, described as follows.

Figure 5: Refining the sampling unit: (Left) Our automatic sampling optimiza-

tion, (Right) a too small sampling rate specified by users.

First, we follow the formation filling process (described in Sec-
tion 3.2) using any small constant sampling unit, such as 100 as
opposed to the world grid unit as 1000. Once the initial formation
template is generated, we compute the near-optimal sampling unit
as shown in Equation 1. We compute the number of points on the
initial boundary b′ and the square root of the number of points in-
side the initial boundary f ′. Since the ratio between these two num-
bers is approximately a constant for a formation in spite of different
scales, we can estimate the desired number of boundary agents b by

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

solving the quadratic Equation 2 so as to infer the sampling unit by
dividing the total length of the user-sketched boundaries. Note if
the sampling unit is shorter than the radius of each agent when the
skeching boundary is extremely small, the agents will be pushed
away from each other by the local repulsion force so as to break the
sketching boundary.

samplingUnit =
ρ× p

b
(1)

b2 +(2× (n+

√

f ′

b′
))×b+n2 = 0 (2)

In Equations 1 - 2, ρ denotes the length of the user-sketched
curves, n denotes the number of agents, and parameter p is a per-
centage value (0-1). Due to the possible offset errors and curve
direction variations during re-sampling, p ranging from 0.8 to 0.9
would provide plausible results based on our experiments. The left
of Figure 5 shows the re-generated target formation when the new
sampling unit is used.

4 GENERATING FORMATIONS IN CROWD SIMULATIONS

Now we describe how to simulate the transition to form the esti-
mated target formation described above. In particular, our runtime
crowd formation generation algorithm can handle target formations
with any scale (independent of the original formation scale) due
to the use of relative formation coordinates. Also, a force-based
crowd behavior model is employed to handle fast local collision
avoidance.

4.1 Formation Adjustment

The force that drives an agent from its original position to its esti-
mated target position can simply be the direction vector between the
two positions. However, this force only considers the group forma-
tion factor. Driven solely by the estimated formation distribution,
each agent will perform the movement directly to the desired target.
Typically, this works reasonably well for sparse groups. However,
in a dense group, such pure formation-driven strategy cannot fully
avoid agent collisions. As such, a local collision model is needed
to refine within-group collision avoidance.

In this work, we employ a force-based model [22] for the above
collision avoidance task due to its capability of handling very high
density crowds. Therefore, the final within-group velocity is ad-
justed as follows.

Vwithin = w1V f +w2

n−1

∑
i=1

fi (3)

Here the second term is the summed velocity driven by the com-
bination of collision avoidance forces and repulsion force from
neighboring group members and obstacles [22], and the weights
balance the expected speed of formation generation (w1) and the
expected accuracy of collision avoidance (w2).

4.2 Hierarchical Group Control

In the previous sections, we assume all the agents in a group only
move and change formations relative to a fixed group center. How-
ever, in many crowd simulations, a group of agents are often re-
quired to form or maintain a certain group formation while they
are moving to other locations. Explicitly encoding such global
movements in the obtained group formation feature vectors will
inevitably increase computational costs. On the other hand, di-
rectly solving the absolute velocity of each agent through traditional
heuristic crowd models will easily break the collective group forma-
tion in a dynamic environment (top of Figure 6).

In this work, we introduce a novel two-level hierarchical group
control scheme, that is, breaking the full group dynamics to within-
group dynamics and inter-group dynamics so that the final absolute
velocity of an agent can be computed as follows.

V = (w1V f +w2Vc)+(w3Vgn +w4Vgc) (4)

Here V f and Vc denote the first local formation velocity term and
second local collision avoidance term as shown in Equation 3, Vgn

denotes the inter-group navigational velocity, and Vgc denotes the
inter-group collision avoidance. It should be noted that, in Equa-
tion 4, the weights, w3 and w4, balance the expected accuracy of
way-point following of the group and the expected accuracy of the
group’s collisions with other groups or environments, respectively.

At the inter-group level, each group in the scene is considered
as a single entity. Any collision avoidance and path planner model
can be applied on the group entity as a whole just as the single agent
simulation. Then, the obtained inter-group velocity is passed to the
within-group dynamics as the local navigational velocity. Thus,
Equation 4 can also be equivalently formulated as follows.

V =Vwithin +Vinter = w1V f +w2Vc +wlnVln (5)

Here Vln is the local navigational velocity passed from the com-
bined inter-group velocities. It is noteworthy that, in our actual
implementation, we use the above Equation 4, not Equation 5. The
latter is mainly used to reveal the hierarchical composition.

The main advantages of our hierarchical velocity representation
are:

• Simplifying the formation dynamics to a partially static pro-
cess,

• Maintaining the collective feature of the group since all the
group members share the same local navigator,

• And reducing the computational costs by replacing the path-
planning of individuals with the global group path-planning.

Note that our hierarchical scheme does compute collision avoid-
ance twice. However, compared with the number of agents, the
number of groups in the scene is typically much smaller so that the
additional global collision avoidance will not have noticeable im-
pact on the overall runtime performance. In our experiments, we
found the two-level collision avoidance can better keep the forma-
tions when avoiding obstacles, due to the fact that instead of eas-
ily scattering agents caused by local collision avoidance, the inter-
group dynamics tend to guide all the agents to avoid an obstacle as
a whole if possible (bottom of Figure 6) from the group perspective.

In the follow-up result section, we will demonstrate several se-
lected applications of our hierarchical group control scheme. In
addition, four important weights (w1, w2, w3, and w4) are used in
the above Equations 3 and 4. In this work, these weights are empir-
ically determined (shown in Table 1).

Scenario w1 w2 w3 w4

Arbitrary formations (Fig. 3) 0.6 0.4 n/a n/a

Single group dynamics (Fig. 7) 0.4 0.2 0.3 0.1

Single character and group 0.3 0.2 0.4 0.1
(top of Fig. 8)

Three groups 0.5 0.2 0.2 0.1
(bottom of Fig. 8)

Table 1: Weight distributions (refer to Equations 3 and 4) used for all the

simulations shown in this paper

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

Figure 6: A random formation (Left column) forms a triangle formation (Right column) without (Top) and with (Bottom) our hierarchical group control. The different

transition progresses (Left Middle column - Right Middle column) show that our hierarchical scheme can better preserve the collective behavior of a group when

encountering obstacles. The bottom group bypasses the building obstacles as a whole when changing the formation gradually. Note the agents further away

from the obstacles (red dot) automatically choose a longer path with larger orbitting radius to save spaces for closer agents (blue dot) in the formation.

Figure 7: Single group transitions with four formations and four naviga-

tional way-points: by combining the within-group and inter-group dynam-

ics, our model is spatially translatable. This figure shows a group with 100

agents heading to 4 navigational way-points (center of sketchings) sequen-

tially driven by the inter-group dynamics, while forming and maintaining the

specified 4 types of formations. When the global velocity changes its direc-

tions dramatically (4 corners of the figure), the within-group dynamics still

attempt to maintain the formation consistent with the correct relative orienta-

tions.

5 RESULTS AND RUNTIME PERFORMANCES

In this section, we demonstrate several applications of our forma-
tion and hierarchical group control approach. A force-based, Hi-
DAC crowd simulation model [22] was used to handle collision
avoidance for both single agent and group entity to avoid inter-agent
and inter-group collisions. A regular PC with 2.4 GHz CPU, 2GB
memory and Nvidia GF260 was used in our experiments. For each
crowd agent, articulated 3D human models (700 to 800 polygons)
and high-quality motion capture primitives with 30 joints (62 DOF)
were used to drive his/her walking animations. The detailed anima-
tion results can be found in the enclosed demo video.

5.1 Static Formations

We designed a set of crowd simulation experiments to evaluate
the within-group dynamics, that is, the agents in a single group
were driven by their relative formation velocities and local colli-

sion avoidance. At the beginning of the simulation, we computed
the group center of the initial agent positions and fixed the target
group formation center at the same position. Two sets of exam-
ples were used in this test. Figure 3 shows a group of 100 au-
tonomous agents forming several English word formations through
the freeform formation sketches that are composed of inclusive and
exclusive boundary curves. The results show that our within-group
formation features can effectively capture main characteristics of
the formation sketches. In the actual implementation, there is a
trade-off between movement smoothness and formation accuracy.
For instance, when an agent evaluates his/her appropriate velocity
heading to his/her target position (destination), the position may
have been temporarily taken by other agents. This situation will
result in unsmooth movements of the agent; the agent may con-
tinuously attempt to reach the exact position in the target formation
while pushed away by the collision avoidance forces. Therefore, we
specify a “termination threshold" for the movements of each agent.
At each update, if the difference between the target (ideal) position
and the current position is smaller than the termination threshold,
we stop the formation process and the agent becomes stable at the
current location. In our experiments, we experimentally set the ori-
entation vector and distance thresholds to (0.1, 0.1) and 1/20 of the
formation radius, respectively.

5.2 Single Group Dynamic Interactions

In this experiment, we assume the entire crowd is a single group. It
moves and interacts with different environments while forming or
maintaining a certain group formation. This type of group forma-
tion and interaction is often observed in various military operations
and performance shows. During the runtime, we let users dynami-
cally sketch the formation boundaries at any location with specified
target group orientations, and employed the widely-used A* path-
finding algorithm [2] as the global navigator for the group entity.
However, we did not use global path planner for each agent be-
cause our local formation control will guarantee each agent move
along the group. Figure 7 shows a group with 100 agents heading
to 4 navigational way-points sequentially driven by the inter-group
dynamics. Given a group destination and an expected target forma-
tion type, our approach automatically generated accurate group po-
sitions and orientations from one way-point to another, and success-
fully simulated different group formations and their inter-formation
transitions. As shown in the enclosed demo video, the agents man-
aged to successfully maintain the group formation while moving
toward the specified destinations.

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

5.3 Multiple Group Interactions

In many applications such as computer games, a user need to con-
trol the main character to interact with autonomous groups in the
virtual world. For example, an infantry squad needs to follow a
user-controlled character heading toward a target location. Tradi-
tional AI typically pre-scripts the position of each agent relative to
the main character’s position. This simple and heuristic solution is
fast at the expense of the loss of animation and variation realism.
Our method, on the other hand, is much more flexible while main-
taining the desired group formation as similar as possible (top of
Figure 8). In this simulation, the global navigational way-points
are constrained by the main character’s positions and updated with
the user’s actions.

Another typical multiple group interaction scenario is formation
combinations in large-scale performance shows, as shown in the
bottom of Figure 8. In this simulation, we also used an existing
force-based model [22] to handle inter-group and within-group col-
lision avoidance. When three group formations were interleaved
with each other, our hierarchical group control scheme (Section
4.2) can automatically ensure the formation maintenance of all the
involved groups. For the animation results, please refer to the en-
closed demo video.

Figure 8: Top: In this simulation, users directly control the main character

walking ahead of others like a squad leader. The other autonomous agents

will act like followers to follow the leader as close as possible. At the same

time, they need to keep their square formation. Since the main character is

much more flexible with respect to rotation in the real-world. We add an an-

gular rotation constraint to the squad group to prevent it from rotating too fast

so that the squad appears certain “lag" to the main character’s (the leader’s)

action. Bottom: It shows three groups of agents forming a combined forma-

tion together in a big performance show. Each group starts with a random

agent distribution, and the three groups are relatively distant. Then, they

simultaneously transit to a combined interleaved formation. With the inter-

group navigational velocity and within-group formation velocity, most agents

are capable of reaching the plausible positions without scattering via local

collision avoidance.

5.4 Runtime Performances

Runtime performance has always been one of the most critical is-
sues for an agent-based crowd simulation system since the system
need to update every agent individually at each update step. We
made the update interval of group formation control larger than the
update frequency of high-level simulation and staggered the update
of different agents. This can efficiently utilize the computational

resource while maintaining perceptually believable formation tran-
sitions.

With our hierarchical group control scheme, we are able to sim-
ulate a crowd up to 400 agents with 30 FPS (frames per second)
before the rendering bottleneck, which is higher than most pure
example-based crowd simulation methods. To quantify the over-
head of our approach, we compared the average FPS rates with
and without our group formation control scheme combined with
the heuristic collision avoidance model [22]. Table 2 shows that
our group formation control scheme only added a small amount of
overhead on top of the higher-level crowd simulation system.

crowd size original FPS new FPS overhead

100 agents 140.1 135.5 3.8%

200 agents 100.5 97.2 4.0%

300 agents 55.2 53.4 4.1%

400 agents 34.6 33.3 3.7%

Table 2: Runtime performance statistics: the overhead is computed by com-

paring the unlimited FPS rates between the original HiDAC model and the

HiDAC model with our group formation control approach.

6 DISCUSSION AND CONCLUSIONS

The central objective of this work is to provide a flexible sketching-
based framework to generate arbitrary group formations in a crowd.
Unlike example-based approaches, our method can freely create the
precise crowd representations specified by users, instead of limited
by the number of training examples. The result of our formation
estimation algorithm can be incorporated into most of agent-based
crowd simulation pipelines. We also propose a two-level hierar-
chical scheme to embed our group formation control into dynamic
environments as well as simulate realistic multi-group interactions.

Most heuristic crowd simulation methods typically focus on the
action of each agent based on his/her local information such as ad-
jacent neighbors in the crowd. However, many real-world crowd
scenarios such as battles between two sides and football games are
required to consider the global information of each group and inter-
actions between different groups. Also, distinguished from the pre-
vious work by Takahashi et al. [32] that is focused on generation of
the transitions between key-frames via various hard constraints, our
approach is designed to automatically generate scalable and adap-
tive group formations. Thus, using our approach, users only need to
specify several intuitive features such as formation sketches, group
locations, and group environments to generate large-scale interact-
ing crowds with arbitrary yet controllable formations.

Certain limitations still exist in the current work. First, our ap-
proach set the agent distribution in the target formations to be nearly
even by default, since even distribution is desired in many forma-
tion scenarios such as the grand ceremony shows. However, if a
user want to specify partially denser or sparser areas intentionally,
manual scripting of the relaxation weights in the Algorithm 1 is
required in the current system. We plan to develop a more interac-
tive sketching interface, such as a brush tool, to tackle this issue.
Second, agents in our approach directly move towards the target
positions when computing within-group velocities. In many real
world scenarios, group members tend to show sophisticated behav-
iors while approaching the target, such as following a curve path.
We plan to take this issue into our future work to further increase
the simulation realism. Also, the current work does not consider
the exact time constraint for every agent as most of group editing
tools (e.g., the work of [11]). We plan to explore a time-dependent
velocity to tackle this issue in the future.

ACKNOWLEDGEMENTS

This work is supported in part by NSF IIS-0914965, Texas NHARP
003652-0058-2007, and research grants from Google and Nokia.

to appear in the Proceedings of Graphics Interface (GI) 2011, May 2011

Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the agencies.

REFERENCES

[1] S. Chenney. Flow tiles. In SCA ’04, pages 233–242, 2004.
[2] R. Dechter and J. Pearl. Generalized best-first search strategies and

the optimality of A*. the Journal of ACM, 32(3):505–536, 1985.
[3] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: Knowl-

edge, reasoning and planning for intelligent characters. In Proc. of

SIGGRAPH ’99, pages 29–38, 1999.
[4] Q. Gu and Z. Deng. Context-aware motion diversification for crowd

simulation. IEEE Computer Graphics and Applications, March (on-

line first) 2010.
[5] S. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha.

Pledestrians: A least-effort approach to crowd simulation. In SCA’10.
[6] D. Helbing and P. Molnár. Social force model for pedestrian dynamics.

Physical Review E, 51(5):4282+, 1995.
[7] E. Ju, M. G. Choi, M. Park, J. Lee, K. H. Lee, and S. Takahashi.

Morphable crowds. ACM Transaction on Graphics, 29:140:1–140:10,

December 2010.
[8] A. Kamphuis and M. H. Overmars. Finding paths for coherent groups

using clearance. In SCA ’04, pages 19–28, 2004.
[9] M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos. Egocentric affor-

dance fields in pedestrian steering. In I3D’09, pages 215–223, 2009.
[10] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Transac-

tion on Graphics, 21:473–482, 2002.
[11] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi. Group motion editing.

In Proc. of ACM SIGGRAPH ’08, volume 27, page 80, 2008.
[12] Y.-C. Lai, S. Chenney, and S. Fan. Group motion graphs. In SCA ’05,

pages 281–290, 2005.
[13] T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein. Modifications of the

helbing-molnar-farkas-vicsek social force model for pedestrian evolu-

tion. Simulation, 81(5):339–352, 2005.
[14] F. Lamarche and S. Donikian. Crowd of virtual humans: a new ap-

proach for real time navigation in complex and structured environ-

ments. Computer Graphics Forum, 23:509–518, 2004.
[15] K. H. Lee, M. G. Choi, Q. Hong, and J. Lee. Group behavior from

video: a data-driven approach to crowd simulation. In SCA ’07, pages

109–118, 2007.
[16] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by example.

Computer Graphics Forum, 26:655–664, 2007.
[17] A. Lerner, E. Fitusi, Y. Chrysanthou, and D. Cohen-Or. Fitting behav-

iors to pedestrian simulations. In SCA ’09, pages 199–208, 2009.
[18] R. A. Metoyer and J. K. Hodgins. Reactive pedestrian path following

from examples. In CASA’03, page 149, 2003.
[19] R. Narain, A. Golas, S. Curtis, and M. C. Lin. Aggregate dynamics

for dense crowd simulation. ACM Transaction on Graphics, 28(5):1–

8, 2009.
[20] M. Oshita and Y. Ogiwara. Sketch-based interface for crowd anima-

tion. In Proceedings of the 10th International Symposium on Smart

Graphics, pages 253–262, 2009.
[21] S. Paris, J. Pettre, and S. Donikian. Pedestrian reactive navigation for

crowd simulation: a predictive approach. CGF, 26:665–674, 2007.
[22] N. Pelechano, J. M. Allbeck, and N. I. Badler. Controlling individual

agents in high-density crowd simulation. In SCA ’07, pages 99–108,

2007.
[23] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral

model. In Proc. of ACM SIGGRAPH ’87, pages 25–34, 1987.
[24] C. W. Reynolds. Steering behaviors for autonomous characters. In

Game Developers Conference 1999, pages 763–782, 1999.
[25] R. A. Rodrigues, A. de Lima Bicho, M. Paravisi, C. R. Jung, L. P.

Magalhães, and S. R. Musse. Tree paths: A new model for steering

behaviors. In Proceedings of the 9th International Conference on In-

telligent Virtual Agents, IVA ’09, pages 358–371, 2009.
[26] R. A. Rodrigues, A. de Lima Bicho, M. Paravisi, C. R. Jung, L. P. Ma-

galhaes, and S. R. Musse. An interactive model for steering behaviors

of groups of characters. Applied Artificial Intelligence, 24:594–616,

July 2010.

[27] T. Sakuma, T. Mukai, and S. Kuriyama. Psychological model for ani-

mating crowded pedestrians. Computer Animation and Virtual Worlds,

16(3-4):343–351, 2005.
[28] M. Schuerman, S. Singh, M. Kapadia, and P. Faloutsos. Situation

agents: agent-based externalized steering logic. The Journal of Com-

puter Animation and Virtual Worlds, 21(3‐4):267–276, 2010.
[29] W. Shao and D. Terzopoulos. Autonomous pedestrians. In SCA ’05,

pages 19–28, 2005.
[30] R. Silveira, E. Prestes, and L. P. Nedel. Managing coherent groups.

Comput. Animat. Virtual Worlds, 19(3-4):295–305, 2008.
[31] M. Sung, L. Kovar, and M. Gleicher. Fast and accurate goal-directed

motion synthesis for crowds. In SCA ’05, pages 291–300, 2005.
[32] S. Takahashi, K. Yoshida, T. Kwon, K. H. H. Lee, J. Lee, and S. Y. Y.

Shin. Spectral-based group formation control. Computer Graphics

Forum, 28:639–648, 2009.
[33] D. Thalmann, S. R. Musse, and M. Kallmann. Virtual humans’ be-

haviour: Individuals, groups, and crowds. In International Conference

on Digital Media Futures, volume 1, page 122, 1999.
[34] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. In Prof.

of ACM SIGGRAPH ’06, pages 1160–1168, 2006.
[35] J. Xu, X. Jin, Y. Yu, T. Shen, and M. Zhou. Shape-constrained flock

animation. Comput. Animat. Virtual Worlds, 19(3-4):319–330, 2008.
[36] H. Yeh, S. Curtis, S. Patil, J. van den Berg, D. Manocha, and M. Lin.

Composite agents. In SCA ’08, 2008.
[37] Q. Yu and D. Terzopoulos. A decision network framework for the

behavioral animation of virtual humans. In SCA ’07, pages 119–128,

2007.

Appendix A The pseudo-code Algorithm 2 is based on the traditional Flood-Fill

algorithm that was originally designed for a continuous space (e.g. pixel by pixel). In

our work, when checking the connected neighbors of each sampling point inside the

formation template, we use a function PointInBound() to check if a point is inside the

polygon composed from the boundary points. There are a number of ways to evaluate

this problem. We choose the angle sum solution due to its robustness in 3D space.

Furthermore, to avoid sampling points too close to the boundaries, the PointInBound()

function actually checks four points with constant offsets (top, bottom, left, right) to

the current checkpoint.

Algorithm 2 Discrete Flood-fill Algorithm

Input: bPoints, boundary points.

Input: unitX, a sampling unit to traverse the template.

Input: unitY, a sampling unit to traverse the template.

Output: fPoints, outputted filled points inside the boundaries.

1: q = new empty queue;

2: q.push(startingPoint);

3: while q is not empty do

4: checkPoint = q.front();

5: left = checkPoint - unitX;

6: while PointInBound(left) && notChecked(left) do

7: fPoints.push(left);

8: top = left + unitY;

9: if PointInBound(top) && notChecked(top) then

10: q.push(top);

11: end if

12: bottom = left - unitY;

13: if PointInBound(bottom) && notChecked(bottom) then

14: q.push(bottom);

15: end if

16: left = checkPoint - unitX;

17: end while

18: perform the same steps for its neighbors at the right

19: queue.pop(checkPoint);

20: end while

21: return fPoints;

