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Abstract

Quaternion has become one of the most widely used representations for rotational transformations in 3D graphics
for decades. Due to the sparse nature of human motion in both the spatial domain and the temporal domain, an
unexplored yet challenging research problem is how to directly represent intrinsically sparse human motion data
in quaternion space. In this paper we propose a novel quaternion space sparse decomposition (QSSD) model that
decomposes human rotational motion data into two meaningful parts (namely, the dictionary part and the weight
part) with the sparseness constraint on the weight part. Specifically, a linear combination (addition) operation in
Euclidean space is equivalently modeled as a quaternion multiplication operation, and the weight of linear com-
bination is modeled as a power operation on quaternion. Besides validations of the robustness, convergence, and
accuracy of the QSSD model, we also demonstrate its two selected applications: human motion data compres-
sion and content-based human motion retrieval. Through numerous experiments and quantitative comparisons,
we demonstrate that the QSSD-based approaches can soundly outperform existing state-of-the-art human motion
compression and retrieval approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Human motion has become a hot subject of study in numer-
ous fields for decades including, but not limited to: anima-
tion, computer vision , HCI, biomechanics, etc. For example,
in computer animation community, researchers and industry
practitioners use various motion capture techniques to ac-
quire natural and subtle human motion with high fidelity and
further process it for a variety of animation applications.

Concretely, human motion is often computationally rep-
resented as the combination of the root information (trajec-
tory and orientations) and rotations of the hierarchically con-
structed, human skeleton joints. Besides 3D transformation
matrices, Quaternion that was introduced into graphics com-
munity decades ago by Shoemake [Sho85], has become one

† zmy8475@gmail.com
‡ sunhuaijiang@njust.edu.cn
§ zdeng@cs.uh.edu

of the most widely used representations for rotational trans-
formations in 3D graphics. On the other hand, human mo-
tion is sparse by its nature in both the spatial domain and
the temporal domain [LFAJ10]. Existing sparse coding tech-
niques approximate or reconstruct the original data through
sparse linear combination. Thus, besides their linear nature,
they also implicitly assume that the data are in Euclidean
space. By contrast, joint rotations in the human motion data,
represented as transformation matrices or quaternions, are
not in Euclidean space; therefore, naively applying exist-
ing sparse coding techniques to process rotational motion
data would lead to less optimal outcomes or even strange
results [BJJ03].

Therefore, an unexplored yet challenging research prob-
lem is how to directly represent intrinsically sparse human
motion data in quaternion space. Indeed, due to the wide
use and fundamental importance of quaternion in 3D graph-
ics, a sparse representation of human motion in quaternion
space (instead of the traditional Euclidean space) would see
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its wide use in many graphics and animation applications in-
cluding but not limited to human motion compression and
content-based human motion retrieval. Inspired by the need
and challenge, in this paper we propose a novel quaternion
space sparse decomposition (QSSD) model that decomposes
rotational human motion data into two meaningful parts
(namely, the dictionary part and the weight (or called co-
efficient)) part with the sparseness constraint on the weight
part. Specifically, in our QSSD model, a linear combination
(addition) operation in Euclidean space is equivalently mod-
eled as a quaternion multiplication operation, and the weight
of linear combination is modeled as a power operation on
quaternion. Through extensive validations (via both simu-
lation data and real human motion capture data) as well as
direct comparisons with the original K-SVD algorithm, we
validate the robustness, convergence, and accuracy of the in-
troduced QSSD model.

To demonstrate the usefulness and effectiveness of the
QSSD model, without loss of generality, we apply it to two
selected applications: human motion data compression and
content-based human motion retrieval. Through numerous
quantitative comparisons and qualitative evaluation exper-
iments, we demonstrate that the QSSD-based approaches
can soundly outperform existing state-of-the-art human mo-
tion compression and retrieval approaches as well as the ap-
proaches that are based on the original K-SVD algorithm
[AEB06].

The main contributions of this work are: (1) It introduces a
novel sparse decomposition (called QSSD) to encode human
motion data by directly decomposing the rotational motion
data in quaternion space, instead of the traditional Euclidean
space, while minimizing the quaternion space reconstruction
error with the L0 sparseness constraint. (2) The usefulness
and effectiveness of the proposed QSSD model are demon-
strated and validated via two selected applications: human
motion compression and retrieval.

2. Related Work

Sparse representation has gained intense attentions in sig-
nal processing and machine learning community. In general,
sparse representation techniques decompose given signals
into meaningful parts. Its process consists of two steps. The
first step is sparse coding that calculates corresponding coef-
ficients based on the given signals and a group of basis vec-
tors (called dictionary). This step can be solved by pursuit al-
gorithms such as matching pursuit (MP) [MZ93] and orthog-
onal matching pursuit (OMP) [CBL89, DMZ94]. These al-
gorithms select dictionary items and compute corresponding
coefficients using greedy algorithms. Another well-known
pursuit method is the basis pursuit (BP) [CDS01]. Essen-
tially, it replaces L0 norm with L1 norm so that the objec-
tive function becomes convex. The second step is dictio-
nary learning that learns dictionary atoms (i.e., basis vec-
tors) based on the given signals and the sparse coding coeffi-
cients. Method of optimal directions (MOD) [ERKD99] typ-

ically updates the dictionary as a whole by minimizing the
mean squared reconstruction error, which can be formulated
as a least squares problem. Another widely used algorithm
is K-SVD [AEB06]. Different from MOD, the K-SVD ap-
proach updates the dictionary atoms one by one by SVD so
that the basis vectors and coefficients are updated together.

Human motion retrieval has been a hot topic in re-
cent years with the increasing availability of large-scale hu-
man motion capture databases [CMU11,MRC∗07]. Over the
years various motion retrieval approaches have been pro-
posed [FRM94, CCW∗04, LZWM05, CS11]. For example,
Liu et al. [LZWP03] cluster human motions based on the
extracted keyframes using a hierarchical tree. In this way,
each motion can be transformed to a sequence of clusters.
Muller and colleagues [MRC05, MR06] proposed to use ge-
ometric features that encode the spatial relationship among
different joints for motion retrieval. In their method, motion
sequences are represented as geometric features and a fuzzy
algorithm is employed to retrieve similar motions. In addi-
tion, match web structure [KG04], weighted PCA [FF05],
and hierarchical motion patterns [DGL09] have also been
explored for motion retrieval.

Human motion compression has been studied by many
researchers recently [LM06, CBL07, BPvdP07]. For exam-
ple, Arikan [Ari06] proposed a compression scheme for
large motion database. In his work, motion clips are repre-
sented as Bezier curves, and the dimensionality of motion
data is reduced by clustered PCA with negligible visual loss.
Gu et al. [GPD09] proposed a pattern indexing scheme for
motion capture data compression. They extract motion pat-
terns for different body parts by segmenting and clustering
the original motion sequences. Arithmetic coding technique
is used to further compress the resultant motion pattern in-
dices. Tournier et al. [TWC∗09] use a principal geodesics
analysis (PGA) based inverse kinematics technique to re-
store the motion, given five end-joints. In addition, lifting
scheme is used for further compressing the end-joint trajec-
tories by omitting n levels of details.

3. Methodology

3.1. Sparse Representation Basics

Sparse representation techniques learn an overcomplete dic-
tionary D ∈ Rn×K and a sparse weight matrix X ∈ RK×N

that contains no more than L (typically L� K) non-zero el-
ements in each column to maximally reconstruct the given
data Y ∈ Rn×N , where n denotes the dimension of the data,
K denotes the number of dictionary atoms, and N denotes
the number of training data samples. Therefore, the objective
function of sparse representation problem can be formulated
as Eq. (1), where ‖.‖0 is the L0 norm constraint, counting
the non-zero entries of a vector. In this writing, we use Xi∗
and X∗ j to denote the i-th row and j-th column of matrix X ,
respectively.
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min
D,X

{
‖Y −DX‖2

F

}
s.t. ∀ j,

∥∥X∗ j
∥∥

0 ≤ L (1)

Algorithm 1 K-SVD Algorithm

Require: Y ∈ Rn×N , L ∈ N+, K ∈ N+

1: Initialize D
2: repeat
3: /*Sparse coding stage*/
4: for j = 1,2, · · · ,N do
5: Compute X∗ j by any pursuit algorithm to solve:

6: minX∗ j

{∥∥Y∗ j−DX∗ j
∥∥2

2

}
s.t.
∥∥X∗ j

∥∥
0 ≤ L

7: end for
8: /*Dictionary learning stage*/
9: for k = 1,2, · · · ,K do

10: Ω = {i|1≤ i≤ N,Xki 6= 0}
11: E = Y −∑ j 6=k D∗ jX j∗
12: E∗Ω = U∆V T

13: D∗k = U∗1, XkΩ = ∆11V∗1
14: end for
15: until Convergence OR a maximum of iterations are

reached
16: return D and X

Over the years various algorithms have been proposed to
solve the above sparse decomposition equation. It has been
demonstrated that simultaneously solving D and X is com-
plicated and non-convex [AEB06]; however, solving either
D or X while fixing the other is convex. As mentioned in
Section 2, in general, there are two stages to solve the sparse
representation problem: sparse coding and dictionary learn-
ing. Pursuit algorithms [MZ93] can be used for the sparse
coding step. The dictionary D can be solved as a whole by
a least-square solver [ERKD99] or solved column by col-
umn by the K-SVD approach [AEB06]. Since our approach
uses a similar dictionary learning scheme as the K-SVD ap-
proach [AEB06], we will get into more details about this
algorithm in this section. As shown in Algorithm 1, we first
compute the overall error E of the examples (i.e., training
data), which uses dictionary atom D∗k by removing it from
the linear combination. Then, SVD is used to decompose E,
and D∗k and Xk∗ are updated accordingly.

3.2. Quaternion Combination

Quaternion is one of the popular ways to represent rotational
transformations [Sho85]. However, since quaternions are not
located in Euclidean space, directly applying linear combi-
nation in Eq. (1) to quaternions will be less optimal or even
meaningless. In this work, we introduce quaternion combi-
nation to solve the quaternion space sparse decomposition
problem.

For convenience, we first introduce some notations and
basic knowledge of quaternions. A rotational transforma-
tion can be representated as a unit quaternion, and we de-
note the unit quaternion space as S3. A quaternion, q =

[
cos θ

2 ;nsin θ

2

]
(n is a vector), represents a rotation of an-

gle θ about axis n. Its power operation by scalar t is defined
as qt =

[
cos tθ

2 ;nsin tθ
2

]
[DKL98].

If Q ∈ R4n×N (called quaternions array) contains n×N
quaternions, we use Q̂i j to denote the i-th quaternion in
the j-th column of Q. We also extend various quaternion
operations on Q, including lnQ, eQ, and Qt (t is a real
scalar value), to act on each quaternion in Q. In addition,
if S ∈R4n×N is another quaternions array, we extend quater-
nion multiplication to QS to denote element-wise multipli-
cation of quaternions between Q and S.

In order to let sparse decomposition algorithm function on
quaternions, we also define a meaningful combination be-
tween quaternions, d, and a set of weights, x, as follows:
d⊗ x = d̂1� x1⊕ d̂2� x2⊕·· ·⊕ d̂m� xm, where x ∈ Rm is
the weight vector, d ∈ R4m contains m quaternions. Accord-
ing to the linear combination of transformations [Ale02],
quaternion power d̂xi

i is a good candidate for d̂i � xi. The
⊕ operation combines two quaternions together to form a
new quaternion, that is, combining two rotational transfor-
mations. In this work, quaternion multiplication d̂id̂ j is used
to denote d̂i⊕ d̂ j. Since the quaternion multiplication is non-
commutative, the combination order should be given. Eq. (2)
summarizes the defined quaternion combination.

d⊗ x = d̂xo1
1 d̂xo2

2 · · · d̂
xom
m (2)

Here the combination order, o1, o2,...,oi,...,om, denotes
the order of selected bases in our algorithm. Also, assume
D ∈ R4n×K is the quaternion dictionary and each column
has n quaternions, and X ∈ RK×N is the weight matrix. In
this work, the quaternion combination of D and X is defined
in Eq. (3).

D⊗X =
D̂11 D̂12 · · · D̂1K
D̂21 D̂22 · · · D̂2K

...
...

. . .
...

D̂n1 D̂n2 · · · D̂nK

⊗


X11 X12 · · · X1N
X21 X22 · · · X2N

...
...

. . .
...

XK1 XK2 · · · XKN



=


D̂1∗⊗X∗1 D̂1∗⊗X∗2 · · · D̂1∗⊗X∗N
D̂2∗⊗X∗1 D̂2∗⊗X∗2 · · · D̂2∗⊗X∗N

...
...

. . .
...

D̂n∗⊗X∗1 D̂n∗⊗X∗2 · · · D̂n∗⊗X∗N


(3)

3.3. QSSD Algorithm

The goal of QSSD is to decompose data matrix Y ∈ R4n×N

to quaternion combination D⊗X with the sparseness con-
straint on X , and each column of Y contains n quaternions.
Typically, the dot product between two unit quaternions is
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used to to measure their distance [BJJ03]. In order to dis-
tinguish quaternion dot product from quaternion multiplica-
tion, in this writing, we explicitly use · to denote the dot
product of quaternions. Therefore, the cost function of the
QSSD problem is defined by the following Eq. (4) (derived
from Eq. (1)).

max
D,X

N

∑
i

n

∑
j

Ŷ ji · (D̂ j∗⊗X∗i),s.t.∀i,‖X∗i‖0 ≤ L (4)

Our core idea of optimizing the above objective function,
Eq. (4), is similar to the K-SVD approach [AEB06]. Basi-
cally, it alternately optimizes the two parts, D and X . As
such, our algorithm has two main steps: the first is called
quaternion sparse coding step and the other is quaternion
dictionary learning step.

In the quaternion sparse coding step, we compute the
weight matrix X , by fixing D, via a two-phase protocol:
(1) identifying a particular dictionary atom (abbreviated as
atom in the remaining writing) that can maximally reduce
the residual, and the chosen atom is called the best atom;
(2) adding the chosen best atom to the list and computing
corresponding coefficients based on all the selected atoms.

In the first phase, we conduct a logarithm operation on
residual vector and each atom, and then calculate the pro-
jection between them. To the end, the atom with the largest
projection value is chosen as the best atom in this step. After
the best atom is selected, we need to compute the coefficient
of this atom. Eq. (5) mathematically describes this process,
where R denotes the residual that contains n quaternions, d
is the selected dictionary atom, and x is the unknown coeffi-
cient. After straightforward mathematical derivation, the co-
efficient x can be obtained by solving a least squares system
shown in Eq. (6).

When there is more than one selected atom, we calcu-
late all the coefficients by block coordinate descent algo-
rithm [Ber99]. Basically, the method first divides the set of
variables into blocks. Then, the objective function is opti-
mized alternately in an iterative manner. In each iteration,
it solves one block while keeping other blocks fixed. In our
algorithm, we set each coefficient as a block and the result
calculated from Eq. (6) is set as the initial value for the new
selected atom. The quaternion sparse coding algorithm (Al-
gorithm 2) repeats until the residual is small enough or the
sparseness constraint is satisfied.

max
x

n

∑
i

R̂i · d̂x
i

R = [cos
θ1
2

;u1 · sin
θ1
2

; · · · ; cos
θn

2
;un · sin

θn

2
]

dx = [cos
xφ1
2

;v1 · sin
xφ1
2

; · · · ; cos
xφn

2
;vn · sin

xφn

2
]

(5)

x ·


φ1
2
...

φn
2

=


arctan(u1 ·v1 tan θ1

2 )
...

arctan(un ·vn tan θn
2 )

 (6)

Algorithm 2 describes the process of this quaternion
sparse coding step. It is noteworthy that since the non-
commutativity of quaternion multiplication, the selection or-
der of the dictionary atoms matters. However, the dictionary
atoms are selected by a greedy strategy, assuming that the
coefficients of the selected atoms are ordered in a descend-
ing manner. Therefore, we add this constraint as a stopping
rule in the block coordinate descent algorithm so that the
magnitude of the coefficient of a dictionary atom indicates
its order of selection.

Algorithm 2 Quaternion Sparse Coding

Require: Y ∈ R4n×N , L ∈ N+, D ∈ R4n×K

1: for i = 1,2, · · · ,N do
2: R = Y∗i
3: repeat
4: pro j = (lnR) · (lnD)
5: k = argmax{pro j}, add k to P
6: Compute Xk based on Eq. (6)
7: Compute XP by block coordinate descent algo-

rithm
8: R = Y∗i(D∗P ⊗XP )−1

9: until Convergence OR the number of elements in P
≥ L

10: end for
11: return X

We now turn to the second step, process of updating the
dictionary together with the non-zero coefficients in quater-
nion space. Its core idea is to make both X and D fixed, ex-
cept removing the k-th column in D and its corresponding
row in X . Based on the K-1 fixed dictionary atoms and their
coefficients, we could easily calculate the residual, denoted
as E, but it needs to be careful with left multiplication or
right multiplication. Therefore, the optimization problem be-
comes how to find the closest solution to best approximate
E, as described in Eq. (7). Because there is no quaternion
multiplication introduced, it equals to the linear system (Eq.
(7)). To the end, Eq. (8) can be derived from the objective
function of the sub-problem.

We use SVD algorithm to decompose lnE = U∆V T . The
first column of U is defined as the solution to lnD∗k, which
can be transformed back to quaternion space through an ex-
ponential operation. The solution to the coefficient vector
Xk∗ is defined as the first column of V multiplied by the
largest singular value ∆(1,1). Algorithm 3 shows the pro-
cess of this quaternion dictionary learning step.

In sum, our QSSD algorithm repeats the above two steps
until it converges or a maximum number of iterations are
reached. A full description of our algorithm is given in Al-
gorithm 4.
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E∗i ≈ DXki
∗k ⇔ lnE∗i ≈ (lnD∗k) ·Xki (7)

min
D∗k ,Xk∗

‖lnE− (lnD∗k) ·Xk∗‖2
F (8)

Algorithm 3 Quaternion Dictionary Learning

Require: Y ∈ R4n×N , K ∈ N+, D ∈ R4n×K , X ∈ RK×N

1: for k = 1,2, · · · ,K do
2: for j = 1,2, · · · ,N do
3: Φ1 = {m|1≤ m≤ K,Xm j > Xk j}
4: Φ2 = {m|1≤ m≤ K,Xm j < Xk j}
5: E∗ j = (D∗Φ1 ⊗XΦ1 j)−1Y (D∗Φ2 ⊗XΦ2 j)−1

6: end for
7: Ω = {i|1≤ i≤ N,Xki 6= 0}
8: lnE∗Ω = U∆V T

9: D∗k = eU∗1 , XkΩ = ∆(1,1)V∗1
10: end for
11: return D, X

Algorithm 4 QSSD Algorithm

Require: Y ∈ R4n×N , L ∈ N+, K ∈ N+

1: Initialize quaternion dictionary D by randomly selecting
columns from Y

2: repeat
3: Update X based on Algorithm 2
4: Update each column of D and its corresponding row

in X based on Algorithm 3
5: until Convergence OR a maximum number of iterations

are reached
6: return D, X

4. Validations of the QSSD Model

4.1. Validation via Simulation Data

We validated the proposed QSSD algorithm via simulation
data to test whether it can converge and recover the origi-
nal dictionary that is used to generate the quaternion dataset.
To generate the simulation data, we first randomly gener-
ated a 4n×K matrix, where n denotes the number of quater-
nions in one data sample and K denotes the number of dictio-
nary atoms. We refined D to let each column contain n unit
quaternions. D is called the original simulation dictionary. A
K×N coefficient matrix X (N is the number of data samples)
was generated randomly, and X is a sparse matrix with only
L non-zero values in each column. The data samples Y were
created by quaternion combination of L different dictionary
atoms. As mentioned in section 3.3, the order of quaternion
combination in our algorithm is the descending order of the
coefficients. To validate this, when we generate Y , we first
sort the columns of X in a descending order based on their
absolute values, and then combine the corresponding dictio-
nary atoms by quaternion multiplication, by following the
column order. In our experiment, we set n = 20, K = 20,
L = 5, and N = 500.

We applied our QSSD algorithm to the above generated
simulation dataset: the dictionary was initialized by ran-
domly selecting 100 samples, and the maximum number
of iterations was set to 100. We use Eq. (9) to compute
the reconstruction error and its unit is degree. The com-
puted dictionary was compared with the original simula-
tion dictionary by the dictionary distance measure described
in [AEB06]. It can be summarized as follows: based on each
column of the computed dictionary, the closest column in the
original simulation dictionary is identified. Then, L2 distance
is computed to measure the difference/distance between the
two columns (i.e., dictionary atoms), as shown in Eq. (10).

E =
180.∑N

i=1 ∑
n
j=1 |arccos(Ŷ ji · (D̂ j∗⊗X∗i))|

π

(9)

DictDist = 1−|D∗i · D̃∗i| (10)

where D∗i is the recovered/computed dictionary atom and
D̃∗i denotes the identified, corresponding dictionary atom in
the original simulation dictionary.

We consider one dictionary atom is recovered correctly if
its corresponding distance (away from the original simula-
tion dictionary atom) is less than 0.01. In our experiments,
Restoration Ratio is computed to indicate the ratio of the
correctly recovered dictionary atoms. Fig. 1 shows the er-
ror curves and restoration ratios of the simulation data with
different noise levels (noiseless, 40dB and 100dB). As indi-
cated in this figure, it is clear that the proposed QSSD algo-
rithm not only can converge soundly, but also can robustly
recover (i.e., inversely compute) almost all the original sim-
ulation dictionary atoms with different levels of noise.

4.2. Validation via Real Human Motion Data

Human motion data preprocessing: At the data prepro-
cessing step, we first choose the reference pose (often the
first frame of a motion clip). All the joints’ rotations are con-
verted to quaternion representation, and then we compute the
angular displacements from the reference pose to all other
poses. Note that the same motion data preprocessing step is
also applied to the selected applications (refer to Section 5.1
and Section 5.2).

Validation experiments: We carried out several exper-
iments on real human motion capture data to validate the
training and test errors. In the experiments, we selected
two sets of human motion data from the CMU mocap
database [CMU11]. The first dataset (called the walking mo-
tion dataset) only contains walk motions with various styles,
and the other set (called the mixed motion dataset) contains
various motion types including walk, jump, dangle, climb,
and tai chi. Given the two human motion datasets, angular
displacements are extracted using the above motion data pre-
processing procedure. Then, we randomly selected 80% data
as the training data and the remaining 20% as the test data.
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Figure 1: The simulation data based validation results by the
proposed QSSD algorithm. (Top): The reconstruction error
curves of our QSSD algorithm based on the simulation data
with different levels of noise (noiseless, 40dB and 100dB).
(Bottom): The computed restoration ratios by our QSSD al-
gorithm for the same set of simulation data.

All angular displacements are converted to a quaternion
array, and we applied both our introduced QSSD algorithm
and the K-SVD approach [AEB06] to the same quaternion
array. The training data is used to learn the dictionary, and
then given the constructed dictionary, we apply the sparse
coding step on the test data. In the experiments, the same
parameters were used in both our QSSD algorithm and the
K-SVD approach. Specifically, we set L = 15, K = 2000,
and set the maximum number of iterations to 50. We ran
the procedure 10 times, and at each time different portions
of the data were used as the training data and the test data.
Table 1 shows the average errors of both the methods on
the two datasets. The error is calculated based on Eq. (11),
where Y and Ỹ represent the original and reconstructed data,
respectively. The error unit is degree per joint per frame.

E =
180.∑N

i=1 ∑
n
j=1 |arccos(Ŷ ji · ˆ̃Y ji)|

nNπ

(11)

As shown in Table 1, with the same parameter setting, our
QSSD algorithm can achieve lower fitting errors than the
K-SVD approach (i.e., directly applying the linear combi-
nation based sparse representation technique [AEB06] onto
quaternion data). The results validate the effectiveness of our
QSSD algorithm on real quaternion-represented human mo-
tion data.

Since in our QSSD, we replace linear combination with
quaternion combination, it runs slower than the K-SVD ap-

Dataset Walking Mixed
Training Error (QSSD) 0.0030 0.0052

Test Error (QSSD) 0.0053 0.0105
Training Error (K-SVD) 0.0135 0.0148

Test Error (K-SVD) 0.0271 0.0293

Table 1: Comparison of the average training and test errors
by our QSSD algorithm and the K-SVD approach [AEB06]
for two different motion datasets.

proach [AEB06]. Table 2 shows the average running time
per iteration (the unit is second per iteration) of our QSSD
algorithm and the K-SVD approach, with various parameter
settings.

N 1000 5000
K 50 100 50 100
L 5 10 5 10 5 10 5 10

K-SVD 0.8 1.8 0.9 2.0 3.6 9.1 3.7 9.5
QSSD 1.8 3.1 2.1 4.2 6.6 13.3 8.2 14.9

Table 2: Comparison of the average running time (seconds)
per iteration by our QSSD algorithm and the K-SVD ap-
proach [AEB06] with various parameter settings. The used
computer’s configuration is: 2.8GHz Intel Core i7 Processor
and 4GB memory.

5. Selected Applications

To demonstrate the usefulness and effectiveness of the pro-
posed QSSD model, we apply it to two selected applications:
human motion compression and content-based human mo-
tion retrieval.

5.1. Human Motion Compression

Our proposed QSSD model can also be directly used for
lossy human motion compression. It works as follows: (1) At
the compression step, we preprocess human motion data us-
ing the same protocol described in Section 4.2 to extract the
reference pose, the root information (trajectory and orienta-
tions), and all the joints’ rotations. Then, the root informa-
tion and all the joints’ rotations are compressed in different
ways. Basically, we first employ the multiscale representa-
tion algorithm [TWC∗09] to initially compress both the root
information and all the joints’ rotations. After that, we de-
compose the initially compressed joints’ rotations using the
QSSD algorithm to obtain the dictionary and weights. Fi-
nally, an arithmetic coding technique [Say05] is used to fur-
ther compress the dictionary and weights, the initially com-
pressed root information, and the reference pose. (2) At the
decompression step, the dictionary and weights, as well as
the reference pose, are first decoded by the arithmetic cod-
ing technique [Say05]. Then, all the joints’ rotations are re-
covered by quaternion combination based on the obtained
dictionary and weights, followed by the multiscale represen-
tation decompression algorithm [TWC∗09]. Finally, the de-

c© The Eurographics Association 2012.



M. Zhu, H. Sun, and Z. Deng / Quaternion Space Sparse Decomposition for Motion Compression and Retrieval

coded root information is added to recover the original mo-
tion sequence. Fig. 2 shows the pipeline of our QSSD-based
human motion compression process (decompression is its in-
verse process).

Preprocessing

QSSD

Multiscale
representation
compression

Arithmetic coding

Mocap data

Coded sequence

Root dataReference pose

Compressed
root data

Dictionary

Coefficients

Compressed
joints’ data

Joints’ data

Figure 2: The pipeline of our QSSD-based human motion
compression approach

In our experiment, we omitted three levels of details in the
multiscale representation step. The parameters used in our
QSSD algorithm are: L = 15, K = 2000, and the maximum
number of iterations is set to 50. It is noteworthy that we do
not keep the order of dictionary atoms during the compres-
sion procedure, but sort them in a descending order during
the decompression procedure.

We extracted two test datasets from the CMU motion cap-
ture database [CMU11]: the first mixed motion dataset con-
tains various types of motions including jump, climb, walk,
dangle, tai-chi, etc (subjects #1, #2, #5, #6, #9, #12 in the
CMU mocap database), and the second dataset only contains
walk motions with various styles. Table 3 details the statis-
tics of the used test datasets.

A sound error metric is required to quantitatively evaluate
the quality of the recovered (decompressed) motion data by
any lossy data compression algorithms. In our experiment,
we use two error metrics that are employed in previous work:
the ARMS metric [GPD09] and the distortion rate [Kar04].
For the sake of completeness, the original definitions of the
two metrics are described in Eqs. (12) and (13), respectively.

ARMS =
∑

Mkr#
j=1

√
(∑Mkr#

i=1
∥∥Pi− P̂i

∥∥2)/Mkr#

Frame#
(12)

DistortionRate = 100

∥∥P− P̂
∥∥

‖P−E(P)‖ (13)

Here P represents the joints’ trajectories in the original
data, P̂ represents the joints’ trajectories in the recovered
data, and E(P) represents the mean pose. The unit of ARMS
is centimeter.

A major distinction between our QSSD-based compres-
sion approach and existing human motion compression ap-
proaches (e.g., the work of [Ari06, GPD09]) is that our ap-
proach directly compresses the rotational motion data in
quaternion space, while existing compression approaches
[Ari06, GPD09] typically compress the markers’ 3D tra-
jectory data. In order to perform a fair comparison, in our
QSSD-based motion decompression process, we compute
the joints’ trajectories based on the reconstructed rotation
data and then calculate the ARMS metric and the distortion
rate.

Table 3 shows comparison of the compression results in-
cluding compression ratio, reconstruction error, and com-
pression/decompression time. Since the same algorithm pa-
rameters are used, our QSSD-based motion compression ap-
proach achieves the same compression ratios as the K-SVD
based approach [AEB06]. However, the former achieves
much lower reconstruction errors than the latter. Also, as
shown in Table 3, our QSSD-based approach significantly
outperforms the two selected state-of-the-art motion com-
pression approaches [Ari06, GPD09] in terms of both com-
pression ratio and reconstruction quality. In terms of algo-
rithm efficiency, although the decompression efficiencies of
the QSSD-based approach, the K-SVD based approach, and
[GPD09] are sufficiently close, but all the three are faster
than [Ari06]. Also, our QSSD-based approach consumes
more computational time to compress motion data than the
other three approaches.

Fig. 3 shows the compression ratio curves of our QSSD-
based approach, [Ari06] and [GPD09] on motion datasets
with various sizes. Our QSSD-based approach significantly
outperforms the other two comparative approaches in terms
of compression ratio. Also, we can observe a clear trend that
our QSSD-based approach achieves an increasingly higher
compression ratio when the size of the motion dataset is
larger, compared with the other two approaches [Ari06,
GPD09]. Fig. 4 shows side-by-side comparisons between
the original character poses (blue skeleton) and the recon-
structed character poses (green skeleton) by our QSSD-
based approach. As shown in this figure, the visual differ-
ence between the original poses and the reconstructed poses
is negligible.

5.2. Content-based Human Motion Retrieval

The goal of content-based motion retrieval is to find simi-
lar motion sequences in a database given a query motion.
Therefore, a sound similarity measure is crucial to the suc-
cess of any motion retrieval algorithms. Linear subspace de-
composition methods (e.g., the work of [FF05]) project hu-
man motion data to a low dimensional subspace in order to
cluster similar motions. However, human motion data lie on
a nonlinear manifold [EL04]; as such, straightforward lin-
ear methods would lead to less accurate motion retrieval
outcomes. By contrast, our QSSD algorithm replaces lin-
ear combination with quaternion combination, which can de-
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Dataset Parameter QSSD-based K-SVD based [GPD09] [Ari06]

Walk motions
Compressed size(MB) 1.8 1.8 2.4 3.1

(Original size: 111MB
Compression ratio 62 62 46 36

Total frame #: 145828
ARMS (cm) 1.33 5.86 4.12 4.31

Total clip #: 121)
Distortion rate 2.64 6.22 5.43 5.87

Compression time (ms/ f rm) 42.5 23.9 2.7 0.9
Decompression time (ms/ f rm) 0.8 0.7 0.7 1.0

Mixed motions
Compressed size(MB) 1.7 1.7 2.5 2.7

(Original Size: 93.5MB
Compression ratio 55 55 37 35

Total frame #: 122846
ARMS (cm) 1.92 6.25 5.32 5.87

Total clip #: 75)
Distortion rate 2.91 8.70 6.36 6.55

Compression time (ms/ f rm) 48.4 25 3.1 1.0
Decompression time (ms/ f rm) 0.7 0.6 0.7 1.2

Table 3: Comparison of motion compression results among our QSSD-based approach, the K-SVD [AEB06] based compres-
sion approach, and the two selected state-of-the-art human motion compression approaches [Ari06, GPD09]. Here the used
walk/mixed motion datasets are the same as those used in Table 1. The experiments were conducted on an off-the-shelf desktop
computer (2.8GHz Intel Core i7 Processor and 4GB memory).
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Figure 3: Compression ratio curves by our QSSD-based ap-
proach, [Ari06] and [GPD09] on motion datasets with var-
ious sizes. The used datasets are: walk motion (left) and
mixed motion (right).

Figure 4: Side-by-side comparison between the original (the
blue skeleton, odd columns) and the compressed (the green
skeleton, even columns) character poses by our QSSD-based
motion compression approach. The three motion clips (From
top to bottom: 12_04 (tai chi), 01_13 (climb, go under, jump
down), 02_10 (wash self)) are selected from the CMU mo-
cap database.

compose and represent the high dimensional human motion
data in a more meaningful way.

Our QSSD-based motion retrieval approach works as fol-
lows: (1) At the offline processing stage, angular displace-
ment data is first extracted through motion data preprocess-
ing (refer to Section 4.2). Then, each motion is decomposed
to a dictionary and corresponding weights by the QSSD al-
gorithm. (2) At the runtime stage, given a query motion, we
first decompose it to the dictionary part and the weight part
using the QSSD algorithm. After that, we compute the dis-
tance between the dictionary decomposed from the query
motion and the dictionaries decomposed from existing mo-
tions in the database. Finally, based on the computed dictio-
nary distances, we can find and rank the similar motions. Fig.
5 shows the pipeline of our QSSD-based motion retrieval ap-
proach.

Preprocessing QSSD Dictionaries of
database

Query Similarity ResultsDictionary of query

Offline

Mocap data

Figure 5: The pipeline of our QSSD-based human motion
retrieval approach

In our experiment, we used the publicly accessible, seg-
mented human motion database [MRC∗07]. Seven differ-
ent types of human motions were chosen, including walk,
hop, jumping jack (abbreviated as “jjack"), kick, punch,
squat, and elbow-to-knee (abbreviated as “etk") exercises.
The parameters used in the QSSD-based approach are: K = 5
and L = 2. To compute the distance between two dictio-
nary atoms (Eq. (10)), we first find the optimal one-to-
one map between two dictionaries by minimizing the to-
tal distance. For the purpose of comparison, we also per-

c© The Eurographics Association 2012.



M. Zhu, H. Sun, and Z. Deng / Quaternion Space Sparse Decomposition for Motion Compression and Retrieval

formed the same experiment using the original K-SVD ap-
proach [AEB06] on the same dataset, with the same param-
eter setting. In addition, we compared the QSSD-based ap-
proach with four state-of-the-art motion retrieval approaches
[LZWP03, KG04, FF05, DGL09].

True-Positive Ratio is defined as the percentage of the top
N retrieved motions that have the same label as the query
motion. In our experiment, N was set to 20. To calculate
the average true-positive ratio for each type of motion, ev-
ery motion clip in the dataset was used as the query motion
once. Fig. 6 shows the comparison of the true-positive ratios
by all the approaches. For all the test cases, the QSSD-based
approach significantly outperforms the original K-SVD ap-
proach. Also, for most test cases (except the kick motion),
the QSSD-based motion retrieval approach outperforms the
other selected comparative approaches in terms of retrieval
accuracy (i.e., the true-positive ratio).
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Figure 6: The motion retrieval results by the QSSD-based
approach, the K-SVD based approach [AEB06], and four se-
lected human motion retrieval approaches [LZWP03,KG04,
FF05, DGL09]. Six horizontal lines illustrate the averaged
true-positive ratios by the six approaches.

Confusion matrix is another widely used criterion to eval-
uate a classification algorithm. It can clearly reveal the con-
fusion level between any two classes. In this work, a sim-
ilar experiment was conducted to obtain a motion retrieval
confusion matrix: besides the number of correctly retrieved
motion clips, we also considered the number of mistakenly
retrieved motions clips in the top N results.

Fig. 7 shows the obtained retrieval confusion matrices by
the original K-SVD approach (left panel) and the QSSD-
based human motion retrieval approach (right panel). In this
figure, the diagonal elements are the correct retrieval rates of
different types of motions, and the off-diagonal elements are
the rates of mistakenly retrieved results. For example, for the
jjack motion at the right panel, the average true-positive ratio
of all the jjack motion queries is 98%, and only at 2% cases,
the jjack motions are incorrectly retrieved as punch motions.
The results demonstrate that the QSSD-based approach can
incur much lower confusions between different types of hu-
man motions than naively applying the K-SVD algorithm to
human motion data.

6. Discussion and Conclusions

We introduce a novel quaternion space sparse decomposition
(QSSD) model that decomposes rotational human motion
data into a dictionary part and a weight part. Its core idea is
to replace linear combination, heavily used in current sparse
learning literature, with quaternion combination that is first
introduced in this work, during the data decomposition pro-
cedure. Through extensive validations as well as direct com-
parisons with the original K-SVD algorithm [AEB06], we
validate the robustness, convergence, and accuracy of the in-
troduced QSSD model.

The introduced QSSD model can be potentially used for a
variety of human motion related applications. For the sake
of demonstration, we apply the QSSD model to two se-
lected applications: human motion compression and content-
based human motion retrieval. Through extensive experi-
ments and comparisons, we show that the QSSD-based ap-
proaches can significantly outperform the original K-SVD
based approaches as well as the state-of-the-art motion com-
pression and retrieval approaches at most cases.

The current QSSD model has two major limitations: (1)
Due to the expensive computational cost of quaternion com-
bination (compared with linear combination), the QSSD
model takes significant computational time, which is evident
in Table 3. As the future work, we plan to alleviate this lim-
itation by exploiting the capability of GPUs or multi-core
CPU to accelerate the computation of quaternion combina-
tion operations in the QSSD model. (2) Except the sparse-
ness constraint on the weight part, no other constraints (e.g.,
non-negativity or affinity constraint) is applied to the weight
part or to the dictionary part during the data composition
process. Consequently, the decomposition results are less in-
tuitive for certain applications such as human motion anal-
ysis and character motion editing/synthesis. In the future,
we plan to extend the current QSSD model by properly in-
corporating the non-negativity and/or affinity constraint to
the weight part or the sparseness constraint to the dictionary
part so that the obtained QSSD dictionary/weights would be
more interpretable, intuitive and semantically valid for many
animation applications.
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