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is integrated into a system on chip (SoC) consisting of the 
core processor, the digital signal processor, and many 
peripheral controllers. This tight chip integration makes 
it infeasible to physically isolate and measure the SoC’s 
graphics hardware.

Moreover, because smartphone graphics hardware is 
less competent relative to desktop PCs, the smartphone’s 
general-purpose processor still plays a substantial role in 
mobile graphics computing. As a result, many aspects of 
the SoC are involved in 3D graphics computing, which ex-
acerbates the task of isolating and quantifying graphics 
bottlenecks on smartphones.

To tackle these challenges, we used a five-stage, 
abstracted graphics pipeline, inspired by the OpenGL 
for Embedded Systems (OpenGL ES 2.0) graphics 
pipeline, to measure the performance of two game 
benchmarks. We compared five game versions—one 
corresponding to the original source code and the 
other four corresponding to four conditions in which 
we selectively disabled one or more pipeline stages. 
Then, using empirically measured performance and 
power consumption data for three mainstream smart-
phones—the Motorola Droid, HTC EVO, and Motorola 
Atrix 4G—we performed an in-depth quantitative 
bottleneck analysis on performance and power con-
sumption among the pipeline’s five stages. 

D espite the phenomenal growth of mobile applica-
tions in novel categories, such as education and 
lifestyle, gaming applications remain the most 
popular category by a wide margin, according 

to the latest Apple App Store statistics (http://148apps.biz/
app-store-metrics). 

Although 3D entertainment is gaining a market foothold 
in other media, including desktop computing, 3D games 
are still a relative rarity on smartphones, in part because 
mobile and desktop segments differ considerably in feature 
and performance requirements. For example, rendering 
effects such as aliasing and imperfect shading can result 
in reduced image quality because the smartphone screen 
is viewed closer to the observer’s eyes compared with 
a PC.1 Also, 3D graphics and games are power-hungry  
applications in general, which can be a major limitation for 
battery-powered smartphones. 

To improve the performance and energy efficiency of 3D 
mobile games, a clear research priority is to identify and 
quantify bottlenecks in the games’ 3D graphics pipeline. 
Intensive efforts have attempted to characterize the per-
formance and power consumption of desktop 3D games,2 
but undertaking the same task for smartphones is much 
more challenging. Unlike PCs, mobile architectures are 
designed for small dies, low hardware cost, and low power 
consumption. As such, smartphones’ graphics hardware 
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Our analysis revealed that the geometry stage is the 
main bottleneck in 3D mobile games and confirmed that 
game logic significantly affects power consumption.

SMARTPHONE PLATFORMS 
Efforts to characterize the performance and power con-

sumption of 3D desktop games include dynamic workload 
characterization on graphics architecture features,2 3D graph-
ics performance modeling,3 and the power modeling of 3D 
graphics architecture.4,5 Modern smartphones use signifi-
cantly different graphics hardware, which makes it extremely 
difficult to apply these study results to smartphones. 

Unlike previous work that has attempted to break down 
power at the system level,6 our work focuses on the per-
formance and energy characterization of mobile graphics 
in the context of mobile SoC architectures that represent 
state-of-the-art design. 

Table 1 lists the technical specifications of the three 
smartphone platforms in our study: the Droid was equipped 
with Texas Instruments’ Open Multimedia Application Plat-
form (OMAP 3430), the EVO with Qualcomm’s Snapdragon 
S2, and the Atrix with Nvidia’s Tegra 2. 

The OMAP PowerVR GPU architecture consists of three 
main modules: 

•	 a tile accelerator, which stores the scene data and di-
vides the screen into tiles; 

•	 an image synthesis processor, which performs hidden 
surface removal to determine visible pixels; and

•	 a texturing and shading processor, which uses a uni-
fied shader architecture with programmable functions.

The Snapdragon Adreno GPU offers a similar program-
mable graphics pipeline. However, the memory controller 
in the PowerVR GPU is a 32-bit low-power double-data-rate 
interface (LPDDRI) and can run at up to 200 MHz, which 
offers a 56 percent increase in memory bandwidth, com-
pared to the Adreno GPU’s 128 MHz. Moreover, although the 
Adreno GPU’s streaming texture unit can combine video 
and images with 3D graphics, it has only two such texture 

units, relative to the PowerVR GPU’s four. Therefore, the 
theoretical fill rate of the texture units in the Adreno GPU 
is lower than that in the PowerVR GPU (133 to 250 million 
versus 250 to 300 million texels per second). 

The GeForce ULV (ultralow voltage) GPU in Nvidia’s Tegra 2  
has a different architecture than either the PowerVR or 
Adreno GPU. First, it uses an immediate mode renderer 
instead of a tile accelerator. Second, it uses completely 
separate vertex and pixel cores with different core archi-
tectures, rather than a unified shader architecture. 

Immediate mode renderers have dominated PC appli-
cations, while tile-based renderers have been prevalent in 
embedded or low-power devices. Relative to immediate 
mode GPU architectures, tile-based renderers fetch only the 
visible texels, while immediate mode renderers fetch texels 
for every pixel in a polygon. Tile-based renderers require 
only one frame-buffer access to output final color; immedi-
ate mode renderers need multiple buffer accesses to output 
final color. However, as geometric complexity increases, 
immediate mode renderers are the better option because 
tile-based renderers must process all the polygons in a 
tile for each pixel. Immediate mode renderers use explicit  
Z-buffering to resolve this issue.7

CHARACTERIZATION DESIGN
Similar to the OpenGL ES 2.0 pipeline, we use a logical, 

abstracted graphics pipeline to describe mobile graphics ar-
chitecture. Unlike previous efforts to quantitatively analyze 
power consumption using a mobile 3D graphics pipeline,1 
we measure both performance and power consumption in 
real-world 3D games or graphics applications. 

As Figure 1 shows, the abstracted graphics pipeline con-
tains five stages, consecutively executed:

•	 Application. The CPU executes the 3D graphics ap-
plication. This stage also involves the graphics system 
driver running on the CPU and calling OpenGL APIs 
into actions that the GPU executes. 

•	 Geometry. The processor calculates the vertex attri-
butes and positions within the 3D scene according to 

Table 1. Technical specifications summary for three smartphone SoC models. 

Specification OMAP 3430 Snapdragon S2 Tegra 2

CPU ARM Cortex A8 QSD 8650 Dual-core ARM Cortex 9

GPU PowerVR SGX 530 Adreno 200 GeForce ULV

CPU clock (MHz) 600 800 1,000

GPU clock (MHz) 200 256 128

GPU memory (MHz) 200 128 600

Polygon fill rate (millions of triangles per sec) ~90 ~70 ~80

Pixel fill rate (megapixels per sec) ~250 ~133 ~1,200
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performs fetching, mapping, and filtering operations 
on texture data only on that size, which minimizes the 
texturing workload.

•	 Disable	fragment	shading. Instead of running every 
complex shader for each pixel, as in the original graph-
ics program, we run only a simple stub shader, thus 
removing most of the pixel-shading workload.

We performed all these isolation and disabling trans-
formations without using profiler tools, primarily because 
profiler tools typically have their own associated runtime 
and energy consumption overhead, which is extremely 
difficult to eliminate in data postprocessing.

Experimental setup and procedure 
We chose Quake	3, a first-person shooter game, and 

XRace, a car race game, as our representative 3D mobile 
game benchmarks. In the past several years, both game 
categories have dominated the top 10 list of preferred An-
droid 3D games.

Quake	3, which uses OpenGL or OpenGL ES as its graph-
ics engine, has been one of the most successful 3D desktop 
games in the past few decades.8 The latest release of Quake	3  
uses predominantly state-of-the-art vertex and pixel pro-
grams, which extensively exploit the capability of modern 
mobile graphics processors. 

XRace uses OpenGL ES 2.0 for rendering and is repre-
sentative of optimized graphics on modern mobile SoCs.

We believe that characterizing these cutting-edge games 
sheds significant light on how real-world 3D graphics and 
game applications run on modern mobile platforms. 

For both Quake	3 and XRace, we generated five game 
versions: one that corresponds to the original source code 

the scene organization. Tasks include multiplying ver-
tices by model view and projection matrices, executing 
vertex shaders, and so on. 

•	 Texture	fetching. The processor performs texture data 
fetch workloads. 

•	 Fragment	shading. The processor executes various 
pixel shaders to process fragments and screen pixels, 
as well as operations that use textures. 

•	 Pixel	processing. The processor performs the fixed 
function operations to further process pixels after 
fragment shading, such as reading and writing color 
components, reading and writing depth and stencil 
buffers, and alpha blending.

Disabling pipeline stages
Similar to graphics performance profilers such as gDEBugger,  

we used a scheme to evaluate the selected benchmarks in 
which we disabled some or all graphics pipeline stages. Our 
scheme consists of four possible code transformations:

•	 Disable	graphics. We disable all the pipeline stages by 
disabling all the OpenGL commands that push vertices 
or texture data into the graphics pipeline. 

•	 Disable	rasterization. We disable all the stages except 
the geometry stage by forcing all W-coordinates in 
the scene to be negative (changing W to –|W|) after 
model-view and projection transformations. Geometric 
operations proceed as usual before rasterization, but 
there are no rasterization and follow-up operations 
because all vertices now have negative W-coordinates 
and are thus culled.

•	 Disable	 texture	 fetching. We force OpenGL to use  
2 × 2 pixel stub textures. Consequently, the pipeline 

Figure 1. (a) Abstracted mobile graphics pipeline, which consists of five stages, and (b) experimental setup. The pipeline is designed 
to measure both performance and power consumption in actual 3D games by isolating pipeline stages and analyzing them to 
identify bottlenecks. The study used the Quake 3 and XRace 3D games as benchmarks
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battery’s voltage and current, with a sampling rate of 1 kHz, 
and used a host PC to store the collected data. We then 
calculated instant power consumption by multiplying the 
voltage and current every 1 ms. Finally, we computed the 
average every 100 ms to reduce random noise and potential 
errors from the measuring process.

We ran each version of Quake	3 and XRace on the three 
smartphones, measured its game demo running time, and 
recorded its associated power trace. To eliminate any system 
caching effect, we rebooted the smartphones before measure-
ment. We repeated the measurement of each version of Quake	3  
and XRace 10 times and computed the average. 

and four that correspond to the 
four stage-disabling conditions. To 
make our characterization process 
repeatable, for each stage-disabled 
version, we ran a traced game	demo 
on smartphones to measure its per-
formance and power consumption. 
Figure 2 shows select snapshots for 
each game. 

A game demo is a recorded se-
quence of game playing, such as 
FOUR.dm 89 for Quake	3 (available 
from the original package file in the 
game CD), that we can reproduce 
on different runs. We first read 
each frame in the recorded game 
sequence—map type, character 
positions, weapon information, 
number of enemies, and so on. We 
then reconstructed this sequence in the 3D scene and ren-
dered it on the screen using the mobile CPU and GPU. We 
could then consecutively read and render the subsequent 
frames.

To force the game engine to exhaust CPU and GPU re-
sources, we ran the game demo as  fast as possible without 
dropping any frame. Hence, completion time is a sound 
performance measure or indicator.

To measure each smartphone’s power consumption, 
we first hacked its battery and inserted a sensing resistor 
to measure the current from the battery. We used a data 
acquisition (DAQ) system to simultaneously measure the 

Figure 2. Snapshots of the game demos for Quake 3 (top) and XRace (bottom) with 
different graphics pipeline stages disabled. The study involved five versions of each 
game—the original and four versions that correspond to four stage-disabling conditions.
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Table 2. Raw running time and power consumption for original code and four transformations 
(stage-disabled program versions).

Code version

Motorola Droid HTC EVO Motorola Atrix 4G

Quake 3 XRace Quake 3 XRace Quake 3 XRace

Original
   Time (s)
   Power (mW)

44.9
944.2

15.5
460.9

64.7
1,005.7

24.5
490.1

40.8
918.9

14.6
377.2

Disable graphics
   Time (s)
   Power (mW)

20.3
417.2

6.3
260.5

20.2
402.5

6.8
273.5

18.6
432.4

5.8
216.5

Disable rasterization
   Time (s)
   Power (mW)

31.7
653.6

10.1
378.2

45.2
669.9

15.2
366.6

31.4
648.9

8.9
302.9

Disable texture fetching
   Time (s)
   Power (mW)

39.2
869.4

13.4
411.1

53.0
892.7

19.4
401.4

38.4
846.6

12.8
291.7

Disable fragment shading
   Time (s)
   Power (mW)

39.0
815.0

13.5
447.3

59.0
873.8

21.9
466.4

38.7
833.4

13.6
367.8
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CHARACTERIZATION RESULTS 
Table 2 shows the raw running time and power mea-

sured with different code transformations. We calculated 
the running time and power consumption of each pipe-
line stage using simple subtraction operations between 
the original and the stage-disabled versions, or between 
two stage-disabled versions. Table 3 and Figure 3 show 
the performance and power consumption breakdown 
as well as bottlenecks we identified. Our results point to 
several patterns in the pipeline stages.

Impact of geometry stage 
As Table 3 shows, the geometry stage uses a major 

portion of power and computing time, consuming more 
than 40 percent of total computing time and more than 
35 percent of total power on all three platforms. Arguably, 
scene complexity makes the geometry stage a boundary 
on performance and energy consumption, even with scene 
organization techniques such as binary space partition-
ing, which both games use. Quake	3 uses highly complex 
scenes, which could account for its high power consump-
tion relative to XRace.

Fragment shading versus pixel processing
Table 3 also shows that the fragment shading stage 

consumes a larger portion of power and computing 
time than the pixel processing stage on both the Motor-
ola Droid and HTC EVO. On modern mobile GPUs, such 
as the PowerVR and Adreno, pixel-processing work-
loads in the GPU frame buffer are dispatched to on-chip 
hardware units. These modern mobile GPUs employ a 
programmable shader architecture so that graphics 
and game developers can use software to create more 
realistic and rich shading effects. However, hardware 
implementation avoids most of the software implemen-
tation instruction fetching, decoding, and execution 
overhead, which results in power consumption and 
performance gains over the chip. 

On the Motorola Atrix 4G platform, consumption is just 
the opposite: pixel processing consumes a larger portion 
of computing time and power than the fragment-shading 
stage. One possible explanation is the architectural differ-
ence between the Atrix 4G and the other two platforms, which 
use a tile-based graphics architecture. The GeForce ULV GPU 
must perform pixel-processing operations over the entire frame 

Table 3. Running time and power consumption for each pipeline stage.

Pipeline stage

Motorola Droid HTC EVO Motorola Atrix 4G

Quake 3 XRace Quake 3 XRace Quake 3 XRace

Application
   Time (s)
   Power (mW)

20.3
417.2-

6.3
260.5

20.2
402.5

6.8
273.5

18.6
432.4

5.8
216.5

Geometry
   Time (s)
   Percentage total time
   Power (mW)
   Percentage total power

11.4
46.3

236.4
44.6

3.8
41.3

117.7
58.7

25.0
56.2

267.4
44.3

8.4
47.5
93.1
42.9

12.8
57.7

213.5
43.9

3.1
35.2
86.4
53.8

Texture fetching
   Time (s)
   Percentage total time
   Power (mW)
   Percentage total power

5.7
23.2
74.8
14.2

2.1
22.8
59.8
29.8

11.7
26.3

113.0
18.7

5.1
28.8
88.7
41.0

2.4
10.8
72.3
14.9

1.8
20.5
52.1
32.4

Fragment shading
   Time (s)
   Percentage total time
   Power (mW)
   Percentage total power

5.9
23.9

129.2
24.5

2.0
21.7
13.6

6.8

5.7
12.8

131.9
21.9

2.6
14.7
23.7
11.0

2.1
9.5

85.5
17.6

1.0
11.4
9.4
5.8

Pixel processing
   Time (s)
   Percentage total time
   Power (mW)
   Percentage total power

1.6
6.5

86.6
16.4

1.3
14.3

9.3
4.6

2.1
4.7

90.9
15.0

1.6
9.0

11.1
5.1

4.9
22.1

115.2
23.7

2.9
33.0
12.8

8.0

System (power only,  
all stages disabled)

466.6 mW 419.9 mW 420.4 mW
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ture units on the PowerVR and GeForce GPUs. Consequently, 
the Adreno GPU’s theoretical texture fill rate of 133 to 250 mil-
lion texels per second is significantly slower than the PowerVR 
GPU’s theoretical rate of 250 to 300 million texels per second. 

On the HTC EVO, the texturing stage consumes signifi-
cantly more power and computing time for XRace than for 
Quake	3, so this stage is a major performance and power 
consumption bottleneck on that platform. Also, relative to 
the Adreno GPU, PowerVR’s hardware implementation of 
hidden surface removal significantly increases its fragment-
shading and pixel-processing capability; on the other hand, 
removing the pixels avoids additional energy consumption 
in the fragment-shading stage. 

Game logic and power consumption
In contrast to the characterization results of commod-

ity desktop graphics, game logic for the three smartphone 
platforms consumes a significant percentage of total power. 
As Figure 3 indicates, Quake	3’s game logic (mainly the CPU 
workload) consumes about 30 percent of total power for the 
three mobile platforms. On a commodity desktop such as 
the Althon II dual-core 2.8-GHz CPU plus AMD HD Radeon 

buffer for every drawing frame, while the PowerVR and Adreno 
GPUs process pixels in one tile of the entire frame buffer. 

Application versus graphics
Compared to game logic computation in the application 

stage, the Snapdragon graphics consume more power than 
the OMAP graphics, but the OMAP graphics outperform the 
Snapdragon’s. The Adreno GPU on Snapdragon offers a pro-
grammable function pipeline similar to the PowerVR GPU 
on OMAP. However, because the PowerVR GPU’s memory 
controller is a 32-bit LPDDR1 interface, it can run at up to 
200 MHz, which offers approximately a 56 percent increase 
in memory bandwidth relative to the Adreno GPU (128 MHz). 

From the integrated circuit design perspective, moving 
data within the memory system consumes measurable 
power. Hence, the PowerVR memory controller leads to im-
proved energy efficiency in the texturing and pixel-shading 
stages, which involve frequent access to texture memory 
and other pixel buffers. 

Moreover, although the Adreno GPU’s streaming texture 
units can combine video and images with 3D graphics, the 
GPU has only two such texture units, relative to the four tex-

Figure 3. Analysis of tested code configurations. (a) Performance breakdown and bottlenecks and (b) power consumption break-
down and bottlenecks. “System” represents the baseline power consumption (all graphics pipeline stages disabled).
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4200 GPU, the same game logic consumes only 15.12 per-
cent of total power. 

The CPU might still be the bound for mobile graph-
ics computing. For example, the OMAP CPU and ARM  
Cortex-A8 that we studied can hit 1-GHz clock frequency; 
however, compared with multicore desktop CPUs, the rela-
tive amount of on-die resources dedicated to the CPU is 
still limited for computation-intensive game logic such as 
optimal path search. 

The main findings in our preliminary study to 
characterize the performance and power consumption 
of 3D mobile games are that the geometry stage is 

the leading bottleneck and the game logic (application) 
consumes a significant portion of power. However, the 
power dissipated in a pipeline stage might be a function of 
the scene complexity: given a game with lower primitive 
complexity, the energy breakdown might be significantly 
different.

One limitation of our current work is that we did not 
remove the impact of disabling stages on the GPU inter-
connections and bus. For example, when we disable the 
fragment-shading stage, the fragment color could be dif-
ferent from the normal case because we use stub shaders. 
Bit toggling on the bus would be affected, so the resultant 
running time and power of the fragment shading would not 
be perfectly accurate. 

Finally, two 3D game benchmarks might not be enough 
to expose all the game characterizations of mobile GPU 
architectures.

To address these limitations, future work could apply the 
same methodology to focus on 3D games with high primi-
tive complexity and low primitive processing requirements 
and to conduct studies that further break down the geom-
etry stage to better understand performance and power 
bottlenecks. 

In addition to studying more games, we plan to use 
microbenchmarks such as GLBenchmark to expose the 
performance and energy characteristics of specific units 
in the graphics pipeline. In addition, we did not study flash 
videogames that can be played using a Web browser. It 
would be useful to study the performance and energy char-
acterization of these games as well. 
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