
Marker Optimization for Facial Motion
Acquisition and Deformation

Binh H. Le, Mingyang Zhu, and Zhigang Deng, Senior Member, IEEE

Abstract—A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts.

Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an

approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of

high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example

pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments

and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective

placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh

skinning and multiresolution facial performance capture.

Index Terms—Facial animation, facial deformation, motion capture, marker optimization, thin-shell deformation

Ç

1 INTRODUCTION

MOTION capture has been widely used as the standard
approach to acquire natural and dynamic motions for

computer animation. Among various mocap systems avail-
able on the market (e.g., inertial, mechanical, magnetic, and
optical) [1], [2], optical motion capture is the most widely
used technique due to its flexibility and economy. The
optical motion capture techniques can be divided into two
categories: markerless and marker based. The markerless
performance capture has many advantages such as make-
up free and being able to capture full subject deformation,
but it also has many limitations that affect its wide
deployment: costly, nonrobust with illumination change,
requiring a high data bandwidth, short capture sessions,
slow processing, and so on. Although the marker-based
technique only captures the motion of limited markers on
the subject, it can address all the limitations of the
markerless capture. Furthermore, in hybrid mocap tasks
(e.g., face þ hands, face þ full body capture), arguably, a
marker-based capture system is still a preferred choice over
markerless capture to date. As a result, the marker-based
mocap remains one of the most commercially deployed
systems worldwide, and it will still be a practical choice in
the foreseen future.

Marker placement (i.e., where and how many) is crucial
to the usefulness of acquired motion capture data. There are
two nontrivial tradeoffs in the design of mocap marker
layouts. First, if markers are over-densely placed in a
region, besides the unnecessary redundancy in the recorded
data, an optical motion capture system may fail to

accurately differentiate individual markers and, thus,
impair the data quality. Second, if markers are improperly
placed (e.g., too few markers are placed at a region with
subtle and dynamic movements), certain movement in-
formation may be under-represented in the recorded data.

In full body motion capture, the kinematic structure of
the human skeleton can serve as effective guidelines for
marker placement. However, such standardized marker
layouts for facial motion capture do not exist yet for
various reasons. Arguably, the main reasons is that finding
optimal marker layouts for facial motion capture is
challenging due to the anatomical complexity, large shape
variation, and nonrigid deformability of the human face.
As a result, researchers and industry practitioners often
have to create and use their own empirical (i.e., manually
designed) marker setup for facial motion capture. For
example, about 50 markers were used for facial capture in
the Avatar movie. Fig. 1 also illustrates several empirical
facial marker layouts including the ones used in the recent
work [3], [4] and 68 facial animation parameters (semanti-
cally equivalent to facial markers) used in the MPEG-4
facial animation. As shown in this figure, besides the total
number of markers, their locations in these empirical
layouts vary significantly as well.

Up to date, little, if any, research has been done to
quantitatively model and understand the goodness of those
numerous empirical facial mocap marker layouts, to the
best of our knowledge. In addition, due to the lack of
generality and consistency among those empirical facial
marker layouts, reusing or combining facial mocap data
from different sources (i.e., acquired with different layouts)
becomes a nontrivial problem. Indeed, an important yet
underexplored problem in marker-based facial motion
capture is what are the optimized (i.e., automatically designed
by algorithms) mocap marker layouts for facial motion acquisition
and deformation, although this problem could have a wide
range of potential applications. For example, optimized
characteristic facial marker layouts will help to increase the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013 1859

. B.H. Le and Z. Deng are with the Department of Computer Science,
University of Houston, 4800 Calhoun Road, Houston, TX 77204-3010.
E-mail: {bhle2, zdeng}@cs.uh.edu.

. M. Zhu is with the Nanjing University of Science and Technology, 200
Lingwei St., Nanjing, Jiangsu, China.

Manuscript received 2 Sept. 2012; revised 6 Feb. 2013; accepted 8 May 2013;
published online 16 May 2013.
Recommended for acceptance by W. Matusik.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-09-0177.
Digital Object Identifier no. 10.1109/TVCG.2013.84.

1077-2626/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

quality and usefulness of captured facial motion data; thus,
many facial animation applications including facial motion
acquisition, retargeting, editing, and rigging could poten-
tially benefit from it.

Inspired by the above need and challenge, in this paper,
we propose an approach to compute optimized facial
marker layouts for facial motion acquisition and deforma-
tion. We formulate this problem as optimization of
characteristic control points from a set of high-resolution
facial pose examples. Specifically, we use pre-acquired
high-resolution facial mesh sequences as the ground-truth
training examples and minimize their reconstruction errors
with respect to a set of characteristic control points. The
widely used thin-shell linear deformation model is imposed
onto the example pose reconstruction process via optional
hard constraints including boundary constraint, symmetry
constraint, and multiresolution constraint, to tailor the
results toward different applications. Besides validating
the effectiveness, robustness, and accuracy of our approach,
we also describe its two selected applications: marker-based
facial mesh skinning and multiresolution facial perfor-
mance capture.

2 RELATED WORK

Optical motion capture. As the most widely used motion
capture technique, optical motion capture uses photo
sensors [5]. The optical motion capture can be further
classified to marker-based capture or markerless capture. In
a marker-based capture system, a set of cameras are
calibrated to track the motion of the markers that are
typically either retroreflective (passive markers) or self-
illuminated (active markers). At every time frame, the
marker positions can be triangulated in the images acquired
by more than one camera. Since the set of markers is sparse,
finding marker correspondences in different cameras
becomes a trivial problem. Due to the advantages in marker
segmentation and correspondence finding, the marker-
based optical motion capture systems are typically robust.
For example, the commercial VICON motion capture
system can reconstruct marker positions with a submilli-
meter accuracy at a high frame rate of up to 240 fps.
However, because the number of markers is essentially
limited, marker-based capture techniques can only capture
surfaces at a low resolution. In the case of facial capture,
even when a large number of markers are employed,
wrinkles and skin details cannot be accurately captured.

To overcome the resolution limitation, researchers have
come up with markerless motion capture techniques

(or called performance capture). Unlike the above marker-
based motion capture techniques, markerless capture does
not require any attachment to the surface of the subject;
thus, in theory, continuous surface deformation details can
be captured. Typically, a markerless motion capture system
needs to deal with the following two problems. 1) The first
problem is 3D surface reconstruction, which can be solved
by stereo cameras [6], [7], structured light [8], or photo-
metric stereo [9]. Since all of these surface reconstruction
techniques rely on the reflectance light from the model, the
reconstruction quality is sensitive to the surface material.
2) The second problem is drift correction, which is
necessary to maintain the temporal coherence across time
frames. This problem is typically solved by video tracking
techniques such as optical flow [8], [6], [7].

In addition, due to the large amount of color video data,
markerless capture systems typically can only be operated
at a low frame rate, for example, 30 [6] and 42 fps [7],
compared with 240 fps of marker-based motion capture
(e.g., vicon). Because of the above reasons, researchers
proposed hybrid solutions to combine the complementary
advantages of both marker-based capture and markerless
capture to achieve high-fidelity animation [10], [11].

Facial animation. During the past several decades,
researchers have conducted extensive research efforts on
various aspects of facial animation including face modeling
[12], expression retargeting, editing [3], and data-driven
facial modeling and animation [13]. In this section, we only
briefly review recent efforts in this area. Comprehensively
reviewing these efforts is beyond the scope of this paper;
interested readers are referred to the recent survey [14].

Researchers developed a variety of techniques to auto-
matically or semiautomatically transfer facial expressions
from one face model to another [15], [16], [17], [18], [19] or
to blendshape faces [20], [21]. Also, various interfaces and
approaches have been developed to efficiently edit existing
facial animation sequences by learning statistical models
from acquired face data sets [22], [23], [24], [4]. With the
increase of acquired high-fidelity facial motion data sets,
many data-driven facial animation approaches have been
developed for blendshape face rigging [25], [26] or to
generate realistic speech animations for novel typed or
spoken input, based on pre-collected facial motion data sets
[27], [28], [29], [30], [31].

Mesh compression. The problem formulation in this work
shares certain similarities with existing mesh compression
techniques [32], [33]. Both of the mesh compression
methods [32], [33] compress mesh geometry by extracting
a set of control points from the mesh vertices and then using
the positions of the control points to resolve the positions of
all mesh vertices in a least squares sense. While the least-
squares meshes technique [32] finds the optimal control
points from a single static mesh, the motion-sensitive
anchor identification of least-square meshes [33] can utilize
a mesh sequence to detect the optimal control points. In this
work, the role of control points is quite similar to that of the
markers because both of them can be used to encode the 3D
mesh geometry. However, there is a major difference: the
markers are constrained to be on the facial mesh surface,
while the control points are not necessary to be on the

1860 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013

Fig. 1. Several empirical facial mocap marker layouts used in previous
work (from left to right: 68 markers in MPEG-4 facial animation standard,
88 markers in [3], 176 markers in [4]). Note that facial markers are
illustrated on the same 3D face model by manually transcribing the
original marker layouts in those work as accurately as possible.

surface. For this reason, the set of control points cannot
always accurately recover facial animations, as demon-
strated in Section 6.3.

3 FACIAL MOTION DATA SETS

In this work, we use five high-resolution 3D face mesh
sequences acquired by the cutting-edge performance
capture systems [8], [6]. For the sake of convenience, a
unique name (i.e., “model #”) is assigned to each data set
in this writing (refer to Table 1). Among these data sets,
model #1 was acquired by Zhang et al. [8], and models #2 to
#5 were acquired by Bradley et al. [6]. The face meshes in
every sequence share the same topology, and the five mesh
sequences are regarded as the ground-truth facial deforma-
tion data. We also denote the combination of all the five
data sets as #All. Note that since the original meshes of
models #2 to #5 are overdense, compared with model
#1, we reduced the number of triangles in each model to
50,000 using the quadric error metric based simplification
algorithm [34], and we only simplified the first frame and
then calculated other frames to ensure topology consistency
across frames. This decimation introduced an error of
0.3 mm on average. Since this amount of error cannot be
captured by linear deformation models, this decimation
would not affect final results.

4 METHODOLOGY

4.1 Assumption and Problem Analysis

Since the ultimate goal of motion capture is to record the
performance information of a subject as much as possible,
we can use this criterion to quantify the goodness of a facial
marker layout. Fortunately, recent facial performance
capture advances allow us to faithfully record minute facial
movements. The output of these facial performance capture
systems is high-resolution 3D facial mesh sequences with
strict spatial-temporal coherence (i.e., vertex-to-vertex cor-
respondence across frames).

Although marker-based facial mocap can only accurately
record marker displacements, facial marker displacements
and marker-driven linear deformation models have demon-
strated their competence to model large-scale facial motion
[3], [11]. Therefore, we can identify the optimized facial
marker layouts by minimizing the deformation error if the
marker-driven linear facial deformation model is used to

reconstruct the ground-truth facial motions, acquired by the
recent cutting-edge facial performance capture systems [8],
[6], [7].

Constraints. To constrain the marker-driven linear defor-
mation model in our particular problem, we also need to
introduce three optional constraints, namely, symmetry
constraint, multiresolution constraint, and boundary constraint.
Through flexible combinations of the three constraints, our
approach can optimize and tailor the resultant facial marker
layouts toward different applications.

Definitions of the three optional constraints are described
below. 1) Symmetry constraint. The shapes of human faces
are approximately left-right symmetric in general; thus, the
optimized marker layouts are expected to be symmetric.
2) Multiresolution constraint. Depending on different appli-
cations, we may want to optimize layouts with different
numbers of markers. In particular, the optimized layout
with a lower resolution is a subset of the optimized layout
with a higher resolution (i.e., the expected number of
markers is larger). This multiresolution constraint would
enable users to incrementally add markers to the face in
marker-based facial mocap applications, while ensuring the
backward compatibility of the previously acquired motion
data. 3) Boundary constraint. Facial movements typically
only happen in the front and certain side regions. Thus,
there exists a boundary on the face to separate the
deformation area and the nondeformation area. To avoid
the optimized markers being distributed on the unneces-
sary nondeformation area of the face, we need to put a
number of “virtual fixed markers” on the boundary, called
the boundary constraint in our approach.

In follow-up Sections 4.2, 4.3, 4.4, and 4.5, we will first
formulate and solve the optimized marker layout problem
without considering the above three constraints. Then, we
will describe how to incorporate the constraints to our
approach in Section 4.6. Finally, in Section 4.7, we will
provide a solution for combining the input data from
multiple subjects.

4.2 Problem Formulation

Let F be the number of frames in a facial mesh animation
sequence (e.g., one of the five ground-truth facial mesh data
sets described in Section 3), and N be the number of vertices
in each mesh. Assuming pi 2 IR3 is the 3D coordinate of
vertex i in the rest pose, and v

ðtÞ
i 2 IR3 is the coordinate of

the ith vertex at the tth frame. The facial mesh sequence can
be represented as a displacement matrix, X 2 IR3F�N ,
where three consecutive rows represent the displacements
of the N vertices in one time frame and each column
represents the displacements of one vertex over F time
frames. The matrix X has the following form:

X ¼

v
ð1Þ
1 � p1 v

ð1Þ
2 � p2 � � � v

ð1Þ
N � pN

v
ð2Þ
1 � p1 v

ð2Þ
2 � p2 � � � v

ð2Þ
N � pN

..

. ..
. . .

. ..
.

v
ðF Þ
1 � p1 v

ðF Þ
2 � p2 � � � v

ðF Þ
N � pN

2
66664

3
77775:

Let M be the number of markers in the optimized
marker layout that we aim to find. Since the markers can
only be located at the vertices of the facial mesh; thus, the

LE ET AL.: MARKER OPTIMIZATION FOR FACIAL MOTION ACQUISITION AND DEFORMATION 1861

TABLE 1
Statistics Information of the Five Used High-Resolution

3D Face Mesh Sequence Data Sets

“Org” denotes the original models, and “Sim” denotes the simplified
models.

M-markers layout can be represented as a set of M indices
H ¼ fh1; h2; . . . ; hMg, where H � f1; 2; . . . ; Ng. Suppose this
marker layout is put on to the input facial mesh, the
displacements of the markers over all the frames in X can
be represented as a matrix H 2 IR3F�M , which is similar to
the form of X. In the H matrix, each column represents the
displacements of one marker over F time frames. At any
time frame, the displacement of marker j equals to that of
vertex hj, described as follows:

Hi;j ¼ Xi;hj ; 8i; j: ð1Þ

Now assuming the marker displacement matrix H is
available, we can reconstruct the displacements of the facial
mesh animation sequence X. Let X0 2 IR3F�N be the
reconstructed displacement matrix. If we employ a linear
deformation method for reconstruction, the displacement
matrix can be described as

X0 ¼ HWT; ð2Þ

where W 2 IRN�M is the weight matrix, and Wi;j denotes
the weight (or the influence) of marker j to vertex i. The
weight matrix W is calculated from the marker layout H
by employing a linear deformation algorithm. In this
work, we choose the thin-shell deformation model [10], [3],
[35] to demonstrate our facial marker layout optimization
framework.

It is noteworthy that the thin-shell deformation model
can be conceptually regarded as a special case of linear
blend skinning (LBS), where the bone rotations are not
considered, and the skinning weights are calculated by
minimizing the surface energy. In general, other LBS
models without bone rotations and a known skinning
weights calculation method, for example, radial basis
functions, can also be used within our framework. This
class of LBS can model facial deformation quite well in the
case that the global head rotation is removed. In this work,
we do not consider the blendshape model, because this will
require more complicated analysis on the selection of
blendshape bases.

4.2.1 Thin-Shell Deformation Model

In this work, we use the thin-shell deformation model [10]
to deform the rest facial pose via marker displacements.
More details of this model can be found in [10], [35]. For the
sake of clarity and completeness, we briefly describe it in
this section.

Basically, in this model, the elastic energy of a surface is
minimized while a subset of the surface is constrained.
Here, the surface of the deformable object is limited to a
two-manifold surface, or the thin shell. The energy of the
surface consisting of two terms, namely, the stretching
energy and the bending energy, is used to quantify the
surface deformation from the rest pose. Minimizing this
surface energy yields the following Euler-Lagrange PDE:

� ks�dþ kb�2d ¼ 0; ð3Þ

where d denotes the displacement on the surface from the
rest pose, � is the Laplace-Beltrami operator, and ks and kb
are the stretching coefficient and bending coefficient,
respectively. If a subset of the surface is constrained (i.e., its

displacement is given), the whole surface displacement in

(3) can be solved.
In the case that the surface of the deformable object is

represented as a triangle mesh, the above Euler-Lagrange

PDE (3) can be discretized by the cotangent weights [36],

which yields the following linear system of equations:

�
�ksL þ kbL2

�
d ¼ 0; ð4Þ

where d; ks, and kd have the same meanings as above, and L
is the Laplacian of the mesh. L can be calculated via a

normalization weight matrixM and an edge weight matrix

Ls (refer to (5)), as described in the work of [35]. Note that in

(5), M is a diagonal matrix and Ls is a symmetric,

seminegative definite matrix:

L ¼M�1Ls: ð5Þ

We can premultiply (4) byM, which yields the following

symmetric system:

ð�ksLs þ kbLsM�1LsÞ|ffl{zffl}
A

d ¼ 0: ð6Þ

Then, the constraints on vertices are imposed as hard

constraints by moving each column corresponding to a

constrained vertex to the right-hand side and removing the

corresponding row from the linear system [35]. Since this

solution changes the structure of the A matrix, it is only

suitable if the constrained vertices are kept unchanged.

Unfortunately, our formulated optimization problem re-

quires probing different marker layouts (that is, different

constrained vertices), which makes this solution inefficient.

By contrast, we propose a modification in the A matrix:

instead of removing rows and columns, only the values of

those rows and columns are changed.
Recalling our problem, in the set of N mesh vertices,

M markers H ¼ fh1; h2; . . . ; hMg play the role as the

constrained vertices, where hj is the index of the vertex at

which the jth marker is located. Constraining (6) to the

marker set H yields the following system:

Âd ¼ B̂dH; ð7Þ

where: di is the displacement of vertex i,

dHj is the displacement of marker j;

Âi;j ¼
1 if i ¼ j and i; j 2 H;
0 if i 6¼ j and i 2 H or j 2 H;
Ai;j otherwise;

8><
>:

ð8Þ

B̂i;j ¼
1 if i ¼ hj;
0 if i 2 H and i 6¼ hj;
�Ai;hj otherwise:

8<
: ð9Þ

This linear system can be achieved from a similar linear

system in [35] by adding M equations of the form

dðhjÞ ¼ ðdHÞj. Thus, the deformation results solved from

the two systems are identical. Let

W ¼ Â�1B̂: ð10Þ

1862 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013

Then, the solution of the above linear system (7) is
d ¼ Â�1B̂dH ¼WdH. Note that here the matrix W is the
same weight matrix in (2).

Putting everything altogether, we can find the opti-
mized marker layout by minimizing the error of the
reconstructed displacements in (2), subject to the con-
straints in (4) and (10). In particular, we formulate our
facial marker layout optimization problem as the following
constrained least squares:

min
H¼fh1;...;hMg

E ¼ min
H
kX �HWTk2

2; ð11aÞ

s:t:: Hi;j ¼ Xi;hj ; 8i; j; ð11bÞ

W ¼ Â�1B̂; Â and B̂ calculated by ð8Þ and ð9Þ: ð11cÞ

4.3 Algorithm Overview

Our core idea of optimizing the above objective function,
(11), is based on the block coordinate descent algorithm
[37]. Basically, it first divides the set of variables into several
blocks. Then, in an iterative manner, the objective function
is alternatively optimized with respect to one block while
other blocks are kept unchanged. In our algorithm, we
consider each marker as a block.

Within this framework, our problem then becomes how
to refine the position of the jth marker in a given layout to
get a smaller reconstruction error. We do this in an
expectation-correction fashion. At the expectation step, we
first relax the constraint, (11b), to find the expected
trajectory of the marker j, without requiring it to follow
displacements of any mesh vertices. Then, at the correction
step, we find a vertex i which has the best-matched
displacement with the expected marker trajectory to correct
the constraint (11b). Finally, we relocate the marker j to the
location of vertex i and update the weight matrix
corresponding to the new layout.

The overview of our optimization algorithm is described
in Algorithm 1. The algorithm starts by initializing a
randomly generated marker layout (line 1) and solves the
weight matrix corresponding to this layout (line 2). The
weight matrix W is solved through the thin-shell deforma-
tion model (detailed in Section 4.5). Then, in each iteration
of the main loop, we refine the markers one by one.

Algorithm 1. Facial Marker Layout Optimization.

Input: X;A;M

Output: H ¼ fh1; h2; . . . ; hMg s.t. (11)

1: Initialize a marker set H

2: Solve the weight matrix W according to H
3: repeat

4: for each marker j 2 f1; 2; . . . ;Mg do

5: Step 1: Calculate the expected trajectory Hj

6: Step 2: hj i ¼ arg minikXi �Hjk2

7: Step 3: Update the weight matrix W for hj change

8: end for

9: until Convergence OR a maximum of iterations

are reached

10: return H
For each marker j, our marker refinement process

includes the following three steps (line 5 to line 7), as
illustrated in Fig. 2. 1) We first calculate its expected
trajectory Hj to reduce the reconstruction error E (line 5). Hj

is calculated by solving a linear least squares problem, as
detailed in Section 4.4. 2) We update the layout by assigning
marker j to the vertex i with the trajectory closest to the
expected trajectory Hj (line 6). Here, we simply use the
euclidean distance to measure the closeness of two
trajectories. The index of the vertex with the closest
trajectory is determined as i ¼ arg minikXi �Hjk2. If an-
other marker has already been located at vertex i, we put
marker j at a random vertex i 62 H. 3) After the marker j is
relocated, we update the weight matrix W according to the
change of hj (line 7). Since there is only one change of hj in
the marker set, we can improve the performance by reusing
the old layout to update W . This weight matrix updating is
detailed in Section 4.5.

Our marker refinement process relies on the calculation
of the expected marker trajectory, but it cannot guarantee a
strict descent of the reconstruction error E. Thus, we cannot
use the value of E to check the convergence of the
algorithm. Instead, we stop the algorithm if there is no
change on hj for all j ¼ 1; . . . ;M after certain iterations.
Although the convergence of our algorithm is difficult to be
mathematically proved, the reconstruction error E is
generally decreased in our experiments. Fig. 3 shows the
change of the root mean square error (RMSE),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðN:F Þ

p
,

during the optimization process. Specifically, we ran our
algorithm on the model #1 five times with different initial
layouts when the number of markers was set to 40. The
error curves illustrate the RMSE change at every marker
refinement step (note that each iteration includes 40 steps of

LE ET AL.: MARKER OPTIMIZATION FOR FACIAL MOTION ACQUISITION AND DEFORMATION 1863

Fig. 2. Schematic illustration of our marker refinement process. Step 1
finds the expected trajectory of the marker without requiring it to follow
the displacements of any mesh vertices. Step 2 relocates the marker to
the vertex, which has the best-matched displacement with the expected
marker trajectory in step 1. Step 3 updates the weight matrix
corresponding to the new layout.

Fig. 3. RMSE error plotting of our algorithm running on model #1 five
times with different initial layouts when the number of markers is set to
40. Although our algorithm cannot guarantee a strict error descent, the
RMSE error is generally decreased quickly in our experiments such as
3-5 iterations. The marker layouts in five iterations of one trial (red) are
showed at the upper right corner. The red markers illustrate the layout
after the current iteration and the green markers illustrate the layout after
the previous iteration.

marker refinement in this experiment). From this figure, we
can also observe that our algorithm typically converges
quickly, such as within three to five iterations.

4.4 Calculating the Expected Marker Trajectory

Suppose M � 1 markers in the layout (i.e., only excluding
the jth marker) are unchanged, we want to calculate the
expected trajectory Hj for the jth marker so that the
reconstruction error is decreased. Let Aj denotes the jth
column of matrix A. We calculate Hj by minimizing the
objective function E in (11) with respect to Hj while
relaxing the constraint Hj ¼ Xhj :

Hj ¼ arg min
Hj

E ¼ argmin
Hj

X �HWT
�� ��2

2
:

We can expand the objective function as follows:

E ¼ X �HWT
�� ��2

2

¼ X �
XM

k¼1;k 6¼j
HkðWkÞT �HjðWjÞT

�����
�����

2

2

:

Let R ¼ X �
PM

k¼1;k 6¼j HkðWkÞT, the above equation yields

E ¼
��R�HjðWjÞT

��2

2
:

Since E is a quadratic function with respect to Hj, we can
minimize E by solving the equation of the gradient vector:

rE ¼ 0, ðWjÞTWjHj � ðWjÞTR ¼ 0:

By solving the above equation, we can have the expected
trajectory as follows:

Hj ¼
ðWjÞTR
ðWjÞTWj

: ð12Þ

4.5 Updating Weight Matrix

We can directly calculate the weight matrix W in (10) by
solving the following linear system:

ÂW ¼ B̂: ð13Þ

Here, Â and B̂ can be calculated from the matrix A and
the current marker layout H by (8) and (9). Since the matrix
A is sparse, symmetric, and positive definite, Â also holds
the same properties. Thus, the linear system, (13), can be
directly solved by the Cholesky Decomposition [35]. This
direct solution involves two steps: the first step is to
perform Cholesky decomposition on matrix Â, and the
second step is to solve multiple right-hand side systems,
where each right-hand side corresponds to a column of B̂.
In the above Algorithm 1, we apply this direct solution to
the initialization step (line 2).

At the weight matrix updating step (line 7 in Algorithm 1),
since only one marker is changed, some calculations can be
saved. Suppose before the layout updating step (line 6 in
Algorithm 1), the jth marker is located at vertex hj, and after
this update the new location of the jth marker is vertex h0j, we
need to modify the matrix Â and B̂ to fulfill (8) and (9). The
modifications of the matrix B̂ involve changing rows hj and
h0j, which can be done straightforwardly. For the matrix Â, its

modifications involve changing both rows and columns hj
and h0j, followed by the Cholesky decomposition of the new
matrix. The Cholesky decomposition of a sparse matrix can
be effectively updated (e.g., modifying a column/row) with
the time proportional to the number of changed nonzero
elements [38]. In our implementation, we only perform the
numerical modification while the symbolic decomposition is
kept unchanged to avoid unnecessary overhead.

After the modifications of B̂ and the Cholesky decom-
position of Â, we do the second step of solving multiple right-
hand side systems in parallel. Although the multiple right-
hand solver can be performed individually in multiple
threads, the Cholesky decomposition on the sparse matrix
cannot be performed in the same way [38]. Thus, employing
our proposed modifications on the decomposition matrix
will significantly improve the bottleneck performance. As
shown in Table 2, our modifications run several times faster
than the direct solver, and the performance of our approach
scales well when the number of processing units is increased.
In our implementation, we used the CHOLMOD open source
library for sparse Cholesky factorization and update [38].

4.6 Handling Constraints

Symmetry constraint. We impose the symmetry constraint
onto the marker layout by pairing the markers in H, for
example, always keeping marker 2j� 1 and 2j as a
symmetric pair for j ¼ 1; . . . ;M=2, assuming M is even.
Then, we only need to do the following modifications in the
optimization Algorithm 1 to impose the symmetry constraint
through marker pairing. 1) The first modification is to mirror
the input data to ensure its symmetry, because the original
captured subject’s facial motions may not be perfectly
symmetric. We perform the facial mesh mirroring by
manually specifying a mirror plane P in the rest pose and
then adding a symmetric displacement copy for each
example pose. Let iP be the mesh vertex index in the rest
pose, which is the closest to theP-mirrored location of the ith
vertex. For each row t (representing one mesh frame in the
sequence) in the displacement matrixX, we add a new row t0,
where Xt0;iP ¼ SðXt;i;PÞ; 8i ¼ 1; . . . ; N . Here, Sð:;PÞ denotes
the mirror transformation through the plane P. Since the
resolution of the facial mesh is high, we can safely assume
the mirrored data can approximate symmetric actions.
2) The second modification is to only update markers with
odd indices in the layout (i.e., markers with indices in the
form of 2j� 1). For instance, if after a marker refinement step,
the new location of marker 2j� 1 is h2j�1 ¼ i, then we

1864 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013

TABLE 2
Performance Comparison between the Direct Solver by

Cholesky Decomposition (Abbreviated as Origin) and Our
Modification on the Decomposition Matrix (Abbreviated as Ours)

The used test data set is the model #1 (N ¼ 23;725 vetices).M denotes
the number of markers. The running time is reported as the average
value of 10 runs on the 2.4-GHz 16-core Xeon processor.

accordingly set the new location of its paired marker h2j ¼ iP .
Also, at the initialization step in Algorithm 1, we will ensure
the symmetry of the initial layout.

Boundary and multiresolution constraints. We impose both
the boundary and the multiresolution constraints onto our
algorithm by introducing a set of predefined markers, S.
The predefined set of markers are kept unaltered during the
optimization process. In the Algorithm 1, we can keep S by
simply not updating those markers. Then, the boundary
constraint can be imposed by adding vertices on the face
boundary to S. To improve the performance, we can
uniformly sample the boundary vertices instead of adding
all of them to S. The multiresolution constraint can be
imposed by adding markers in the lower resolution layout
to S when the higher resolution marker layout is being
solved by Algorithm 1.

4.7 Combining Input from Multiple Subjects

We can reduce the data dependence of our method by
combining input from multiple captured sessions and from
multiple subjects. While using the data sets from multiple
captured sessions can be handled easily with proper setup,
using data sets captured from multiple subjects requires
accurate correspondences between different data sets. We
employ the nonrigid facial registration framework pro-
posed by Mao et al. [39] to build these dense correspon-
dences. Let D be the number of data sets, we first register
the rest pose of the data sets #2 . . . #D to the data set #1, the
registration maps each vertex in the data sets #2 . . . #D to
one vertex in the data set #1. With this mapping, we update
the marker layout (Step 2 in Algorithm 1) with respect to the
vertex positions on the data set #1 while the expected
trajectories (Step 1) and the weight matrices (Step 3) are
calculated per subject.

5 RESULTS

We conducted various experiments to test our approach on
the five facial mesh sequence data sets (described in
Section 3). The key parameters of the thin-shell deformation
model [3] were empirically chosen as follows: kS ¼ 1 and
kB ¼ 10. The marker layouts are generated by running our
algorithm 10 times with different initializations and taking
the best result. In each trial, the maximum number of
iterations is set to be 10. The RMSE error is used as our
quantitative metric in our experiments. Demo video (mpeg4
video) can also be accessed at the following link: http://
www.youtube.com/watch?v=7Gfo2teAlqc.

Fig. 4 shows a comparison with/without the boundary
constraint. Fig. 5 shows comparison results with/without the

symmetry constraint. As shown in Fig. 5, besides the RMSE

error, the optimized layouts with the symmetry constraint

are sufficiently close to those without the symmetry

constraint, with respect to the markers’ locations. We use

the boundary constraint and the symmetry constraint in our

remaining experiments unless explicitly mentioned.
Fig. 6 shows the visualized vertex deformation errors

driven by different numbers of optimized markers. We

calculate the error of each vertex as the euclidean distance

between its ground-truth position (available in the original

data sets) and its deformed position.
Fig. 7 shows comparison results with/without the multi-

resolution constraint. When the resolution is increased,
additional new (blue) markers are added. Meanwhile, the
RMSE error is decreased accordingly. Also, compared with

the cases without the multiresolution constraint, we can
observe that the multiresolution results have slightly
larger RMSE errors, because the multiresolution layouts
are optimized with additional constraints, that is, the

LE ET AL.: MARKER OPTIMIZATION FOR FACIAL MOTION ACQUISITION AND DEFORMATION 1865

Fig. 4. A boundary constraint comparison (80 markers, model #1):
without the boundary constraint (left) and with the boundary constraint
(right). The boundary vertices are blue colored.

Fig. 5. Result comparison of the model #2 with/without imposing the
symmetry constraint to our approach. The resultant optimized marker
layouts are also visualized.

Fig. 6. Visualized vertex deformation errors of all the five face data sets
when the number of optimized markers is increased (from 40, 60, 80, to
100). The used error unit is mm.

markers (red) inherited from the left-neighbor lower
resolution layout.

Fig. 8 shows the marker layouts obtained by combining
all the five data sets (#All). These layouts could be used as
the practical guidelines for the placement of facial markers.

We implemented our algorithm on an off-the-shelf
computer, where the GPU is only used to perform large
matrix operations and RMSE calculations. Table 3 shows
the obtained computational time when our algorithm is
applied to the five data sets. Note that, essentially, our
approach is a discrete, multivariable optimization algo-
rithm, where each marker is a variable. Therefore, in theory
it is difficult to guarantee our approach can reach the global
optimum. To the end, running more iterations in our
algorithm is necessary to optimize the layout when the
number of markers is increased.

6 VALIDATIONS

6.1 Validation via Simulation Data

We validated our marker optimization Algorithm 1 via
simulation. To generate the simulation data, we first
randomly distribute M markers on the rest pose of the
model #1 and also apply uniform random displacements of
the M markers in the range of [�10, 10 mm]. Based on the
rest pose and the generated marker displacements, we use
the thin-shell deformation model to generate the displace-
ments of all the vertices. At the validation step, we use our
Algorithm 1 to inversely solve the optimized marker layout
based on the simulation data (as the input). Ideally, if
the exact marker layout can be found by our algorithm, the
RMSE error metric (11) will be zero. On the other hand, since
our algorithm cannot always guarantee its convergence at

the global optimum in theory; thus, we only expect the
RMSE error is close to zero, and the marker layout solved by
our algorithm is sufficiently close to the one originally used
for generating the simulation data.

Fig. 9 shows the simulation-based validation results with
three different numbers of markers (M ¼ 40; 60; and 80). In
this experiment, we ran our algorithm 20 times, each time
with a maximum of 10 iterations, and the best results are
illustrated. From this figure, we can see the RMSE errors are
measurably small (0.167 to 0.228), and the marker layouts
solved by our optimization algorithm are very similar to
the original ones. The fewer the markers, the more accurate
the simulation result is (i.e., a smaller RMSE error and a
more similar layout). The main reason is if the number of
markers is increased, then the optimization problem will be
more complex (i.e., more variables). Therefore, the chance of
finding the global optimum (i.e., the original layout) by our
algorithm will be smaller, and the RMSE error will be larger.

6.2 Cross-Model Validations

We also performed cross-model validation experiments in a
leave-one-out fashion. Basically, in each experiment, we use
four data sets (out of the total five available data sets, refer
to Section 3) to find the optimized marker layout; this layout
is tested on the remaining data set. The dense correspon-
dences between different data sets are calculated by using
the work of [39], as described in Section 4.7. The deformed
RMSE errors with different test models and different
numbers of markers are presented in Fig. 10. The results
demonstrate that the marker layouts optimized by our
algorithm can be effectively used to guide the manual
marker placement on another subject in marker-based facial
mocap applications.

6.3 Comparisons with Baseline Approaches

We also compared our approach with the baseline ap-
proaches that includes least-squares meshes approach [32]

1866 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013

Fig. 7. Optimized marker layout comparison: with the multiresolution
constraint (top row) and without the multiresolution constraint (bottom
row) on model #2. The red markers are inherited from the left-neighbor
lower resolution layout and the blue ones are the new added markers.

Fig. 8. Some facial marker layouts obtained by our approach through
combining all the five face data sets.

TABLE 3
The Obtained Computational Time, Measured in Minutes, of

Our Approach when It Was Applied to the Six Face Data Sets

The hardware configuration of the used computer is: Intel Xeon 2.4-GHz
16-core CPUs, and a NVIDIA Tesla C1060 240-core GPU.

Fig. 9. The simulation-based validation results on model #1. Red dots
illustrate the original randomly distributed M markers, and green dots
illustrate the markers solved by our optimization algorithm based on the
simulation data.

(abbreviated as LS-meshes in this writing), motion-sensitive
anchor identification of least-square meshes approach [33]
(abbreviated as MSLS-meshes in this writing), and three
selected empirical facial marker layouts used in the MPEG-4
facial animation and the work of [3], [4] (refer to Fig. 1). The
LS-meshes approach is chosen since it can also be used to
extract a user-specified number of characteristic control
points from a single mesh. Specifically, in the comparison,
the LS meshes approach is applied to the first frame of the
mesh sequence and its ! parameter is set to 20. The MSLS-
meshes approach uses LS-meshes approach to reconstruct
the mesh and calculate the anchor points based on clustered
teleconnection analysis on the motion sequence. In our
experiment, the cluster number is set to 6, � and � are set to
0.1 and 0.5, respectively, as reported in the original paper
[33]. For each mesh data set, the same boundary constraint is
used for all the methods for the sake of a fair comparison. It
is noteworthy that different from the LS-meshes approach
that only utilizes the first frame, the MSLS-meshes approach
[33] utilizes all the facial mesh frames in the data set.

Fig. 11 shows the comparison of the vertex deformation
errors among our approach, the LS-meshes approach and

the MSLS-meshes on all the five data sets. As shown in this
figure, our approach can consistently outperform those two
approaches in terms of the vertex deformation error. Fig. 12
also plots the RMSE curves of our approach and all the
baseline approaches on the five data sets. The errors for
randomly distributed layouts and three empirical layouts
are also plotted for comparison. As clearly shown in this
figure, our approach can substantially outperform the
baseline approaches for all the data sets, regardless the
number of markers.

6.4 Cross Validations via Ground-Truth Data

We performed fivefold cross validations on all the five data
sets. Basically, each data set (i.e., model #1 to #5) is first
evenly partitioned into five subsequences (20 percent each).
Then, for every data set, each of its five subsequences is
retained as the test (validation) data while the other four
subsequences are used as the training data. At the end,
we average all the RMS errors to obtain the final RMS
error for each model. Fig. 13 shows the obtained five fold
cross-validation results of all the five data sets when varied
numbers of markers are optimized. Again, the RMS errors
of our method are clearly smaller than the others. We can
also observe that the standard deviations of models #2 to #5
are clearly larger than that of model #1. The main reason is

LE ET AL.: MARKER OPTIMIZATION FOR FACIAL MOTION ACQUISITION AND DEFORMATION 1867

Fig. 10. Leave-one-out cross-model validation results of applying the
optimized marker layouts from four subjects to the remaining subject’s
ground-truth facial mesh sequence data set.

Fig. 11. Comparisons among our approach, the LS-meshes approach
[32] and the MSLS-meshes approach [33] (80 optimized markers on all
the data sets). The vertex deformation errors (unit: mm) are color coded.

Fig. 12. RMS error curves of our approach, randomly distributed layouts,
the two chosen baseline approaches (the LS-meshes approach [32] and
the MSLS-meshes approach [33]), and the three different empirical
facial marker layouts ([3], [4] and MPEG-4 facial animation). Numbers
on the X-axes denote the numbers of markers. Numbers on the Y -axes
denote the errors (unit: mm).

Fig. 13. Five fold cross-validation results on different data sets with
varied numbers of optimized markers (X-axes). Numbers on the Y -axes
denote the errors (unit: mm).

that facial expressions and movements are distributed, in a
more balanced manner, in model #1 (from [8]) than the
other four data sets (from [6]).

7 SELECTED APPLICATIONS

One primary application of our approach is to guide minimal
yet effective mocap marker placement for marker-based facial
motion acquisition. As shown in the cross-model validation
results (Fig. 10), even if the optimized marker layouts are
based on facial mesh sequence data of certain subjects, the
layouts can still be soundly used for capturing the facial
motions of another different subject. Furthermore, the
computed facial mocap layouts shown in Fig. 8 can be
used as practical facial marker placement guidelines in
marker-based facial motion capture practices. As described
in Section 6.3, the marker layouts optimized by our
approach can consistently outperform selected empirical
marker layouts and the marker layouts computed by the LS-
meshes [32] and MSLS-meshes approaches [33] in terms of
the average RMSE error.

Also, due to its mapping capability (i.e., transforming a
deformed face mesh to the displacements of a set of
characteristic control points), our approach can be poten-
tially used for various applications including, but not
limited to, facial animation editing, deformation, and
compression. For the sake of a clear demonstration, in this
section, we only detail two selected applications: marker-
based facial mesh skinning (Section 7.1) and multiresolution
facial performance capture (Section 7.2).

7.1 Marker-Based Facial Mesh Skinning

The facial marker layouts optimized by our approach can be
directly used as a linear blend skinning method for
animating facial mesh sequences, where the markers can
be conceptually regarded as proxy bones [40]. The bone
transformations influence every vertex on the facial mesh,
subject to the weight matrix W (or called the bone-vertex
influencing map). Compared with the general linear blend
skinning, our marker-based facial skinning approach has
the following three distinctive features. 1) The transforma-
tions of the proxy bones (i.e., the optimized markers) only
contain the translation component but not rotation, scaling,
or shearing components. 2) The weight matrix W can be
computed solely from the rest pose given the determined
(optimized) markers; thus, explicitly storing W at each
frame is not needed. 3) Certain geometry properties (e.g.,
smoothness and fairness) of the skinned facial meshes can
be soundly managed.

In the particular task of facial animation, the above first
and second features support a more compact representation
of the skinning model. Thus, it shall provide a better
performance in certain applications such as compression or
hardware accelerated rendering. Meanwhile, the above
third feature provides an intuitive control over facial
animation editing, where the markers can be used as
draggable control points. By imposing desired geometry
constraints (similar to how constraints can be imposed onto
the thin-shell deformation model in this work), it would
allow physically plausible editing on facial mesh sequences.

The purpose of our marker-based facial skinning shares
certain similarities with the Key Point Subspace Accelera-
tion (KPSA) technique [23]. However, while our marker-
based facial mesh skinning essentially relies on the linear
blend skinning method, KPSA uses the linear subspace
deformation model. For this reason, KPSA requires an
additional step of building a subspace from a set of facial
pose examples. In addition, the animation control on
example poses is limited to this subspace, avoiding crafting
any facial expression that is not a linear combination of
poses in the subspace. In term of compactness, KPSA also
requires more data to represent the set of example poses
(i.e., a full set of basis vectors), compared with a small
amount of data requirement in our approach (i.e., the rest
pose and the optimized marker layout).

In Table 4, we compare the RMSE reconstruction error
between our marker-based facial skinning approach and the
KPSA approach. For a fair comparison, we do not impose
the symmetry and boundary constraints in our approach.
Also, the number of markers (in our approach) and the
number of control points (in the KPSA approach) are
enforced to be equal. Note that the number of control points
in KPSA is two times the number of basis vectors. From the
comparison results, we can see that the RMSE errors of our
method (column 4) are higher than those of KPSA
(column 6). Clearly, there is a tradeoff between compactness
and the RMSE error in our marker-based facial skinning
method. However, we can control this tradeoff by applying
skinning correction methods such as the EigenSkin correc-
tion (EC) [41]. In Table 4, the rank of the EigenSkin
correction is set to be the same as the number of basic

1868 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013

TABLE 4
Facial Skinning Comparison between Our Marker-Based

Skinning, Our Marker-Based Skinning with Eigenskin
Correction [41], and Key Point Subspace Acceleration [23]

The root mean squared reconstruction error is reported for all the
methods with the same parameters, i.e., the same number of control
points (markers) and the same rank (the number of basic vectors). The
corresponding compression ratio is also reported in the parentheses.

vectors in KPSA for the sake of a fair comparison, i.e., a half
of the number of markers. Since our method does not
require to store the weight matrix, W , the amount of data in
the compact form for both the methods, 1) KPSA and 2)
marker-based facial skinning þ EigenSkin correction, will
be approximately the same, i.e., equal to the rank of
the EigenSkin correction (or the number of basic vectors
in KPSA) multiplied by the number of mesh vertices.
Our marker-based facial skinning þ EigenSkin correction
(column 5) can significantly outperform the KPSA method
(column 6), as shown in Table 4.

7.2 Multiresolution Facial Performance Capture

As mentioned in Section 2, in optical motion capture
systems there is a tradeoff between robustness and
capture resolution. Marker-based capture techniques, in
general, offer more robust tracking at a higher frame rate,
while markerless performance capture techniques can
capture minute surface details in a higher resolution but
at a lower frame rate. Researchers have proposed various
hybrid (or called multiresolution) capture solutions [10],
[11] to have the complementary advantages of the two
methods. We believe such multiresolution performance
capture techniques will benefit from our proposed marker
optimization work. For example, the result by multi-
resolution capture techniques would be more accurate if
the large scale motion (i.e., motion of the markers) can be
recorded via the optimized marker layouts suggested by
our approach. Note that even our method requires a
certain amount of facial performance capture data as the
training input, it is not a chicken-and-egg problem for
multiresolution performance capture techniques, because
we can always first analyze a short sequence of facial
performance capture data to optimize the marker layout
and then use it for next captures.

8 DISCUSSION AND CONCLUSIONS

In this paper, we propose a quantitative approach to
optimize marker layouts for marker-based facial mocap
and deformation. Specifically, by using several acquired
high-resolution facial mesh sequences as the ground-truth
data sets, we formulate this problem as a linear constrained
optimization, where the reconstruction errors of a set of
facial example poses are minimized with respect to a set of
markers. The thin-shell linear deformation model is chosen
to optionally impose hard constraints (including boundary
constraint, symmetry constraint, and multiresolution con-
straint) onto the mesh reconstruction process to tailor the
results toward different applications. Through various
validations and comparisons, we demonstrate the accuracy,
robustness, and usefulness of our approach.

Our method can be directly used for facial motion
acquisition and deformation such as guiding the design of a
minimal yet effective facial mocap marker set—a long-
standing problem remaining to be resolved in marker-based
facial motion capture. In addition, we also describe and
demonstrate the effectiveness of using our approach for
marker-based facial mesh skinning and multiresolution
facial performance capture applications. Also, due to its
intrinsic transformation capability (i.e., transforming a
deformed face mesh to the displacements of a set of

characteristic control points), our approach can be poten-
tially used for many other applications such as facial
animation compression, deformation, and editing.

However, there are several limitations in the current
approach, as described below:

. First, like numerous other data driven approaches,
the marker layouts optimized by our approach
depend on the nature of the training facial mesh
sequence data. If the training facial mesh sequence
data lack a variety of facial expressions and move-
ments, the optimized marker layouts by our
approach may not be perfectly balanced and
distributed throughout the face.

. Second, the employed linear deformation model
cannot faithfully capture the subtle deformation of
the human face. By employing a nonlinear skin
correction method (e.g., EigenSkin [41]), we are
able to bring down the reconstruction error.
However, this cannot be seamlessly integrated to
our current framework.

. Third, because our formulated problem is a discrete,
multivariable optimization, finding the global opti-
mum is challenging. Although our marker refine-
ment algorithm can decrease the error in our
experiments, a monotonic descending solution with
mathematical proof is still beyond the reach.

. Finally, our optimized deformation error in the least-
squares sense may not always guarantee the best
visual result. From the perceptual perspective,
distortion in certain facial regions (e.g., the mouth
and the eye/eyebrow regions) could be more
perceptually salient than the other regions; thus,
these salient regions should be treated with higher
importances during the marker optimization pro-
cess. This perceptual saliency can be incorporated
into our framework by employing the weighted
linear least squares to solve the expected marker
trajectory (Section 4.4).

In the future, we plan to take a deep look into several
aspects of the problem to overcome the above limitations.
For example, we can enhance the training data by designing
balanced training data sets. Gender, age, and ethnicity
could be additional factors to be taken into consideration.
The limitation of the linear deformation model can be
impinged by combining subspace deformation models that
have been widely used for facial animation. Also, by
properly absorbing perceptual insights from various psy-
chological and psychophysical facial experiments (e.g.,
perceptual saliency can be incorporated as an additional
weight per mesh vertex), we could further improve the
soundness and accuracy of automated extraction of char-
acteristic facial control points.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation (NSF) IIS-0914965 and generous research gifts
from Google and Nokia. The authors would like to thank
Li Zhang, Derek Bradley and Thabo Beeler for providing
their 3D face data sets. They would also like to deeply thank
Hao (Richard) Zhang at the Simon Fraser University for his
numerous helps and insightful discussion on this work. Any

LE ET AL.: MARKER OPTIMIZATION FOR FACIAL MOTION ACQUISITION AND DEFORMATION 1869

opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the agencies. This work was
done while Mingyang Zhu conducted his visiting research at
the University of Houston from 09/2010 to 08/2012.

REFERENCES

[1] G. Welch and E. Foxlin, “Motion Tracking: No Silver Bullet, but a
Respectable Arsenal,” IEEE Computer Graphics and Applications,
vol. 22, no. 6, pp. 24-38, Nov./Dec. 2002.

[2] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross,
W. Matusik, and J. Popovi�c, “Practical Motion Capture in
Everyday Surroundings,” ACM Trans. Graphics, vol. 26, article
35, July 2007.

[3] B. Bickel, M. Lang, M. Botsch, M.A. Otaduy, and M. Gross, “Pose-
Space Animation and Transfer of Facial Details,” Proc. ACM/
SIGGRAPH Eurographics Symp. Computer Animation (SCA ’08),
pp. 57-66, 2008.

[4] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen,
P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec, “Facial
Performance Synthesis Using Deformation-Driven Polynomial
Displacement Maps,” ACM Trans. Graphics, vol. 27, pp. 121:1-
121:10, Dec. 2008.

[5] H. Woltring, “New Possibilities for Human Motion Studies by
Real-Time Light Spot Position Measurement,” Biotelemetry, vol. 1,
pp. 132-146, 1974.

[6] D. Bradley, W. Heidrich, T. Popa, and A. Sheffer, “High
Resolution Passive Facial Performance Capture,” ACM Trans.
Graphics, vol. 29, pp. 41:1-41:10, July 2010.

[7] T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman,
R.W. Sumner, and M. Gross, “High-Quality Passive Facial
Performance Capture Using Anchor Frames,” ACM Trans.
Graphics, vol. 30, pp. 75:1-75:10, Aug. 2011.

[8] L. Zhang, N. Snavely, B. Curless, and S.M. Seitz, “Spacetime Faces:
High Resolution Capture for Modeling and Animation,” Proc.
ACM SIGGRAPH ’04 Papers, pp. 548-558, 2004.

[9] E. de Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel, “Marker-Less
Deformable Mesh Tracking for Human Shape and Motion
Capture,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR ’07), June 2007.

[10] B. Bickel, M. Botsch, R. Angst, W. Matusik, M. Otaduy, H.
Pfister, and M. Gross, “Multi-Scale Capture of Facial Geometry
and Motion,” ACM Trans. Graphics, vol. 26, no. 3, article 33,
July 2007.

[11] H. Huang, J. Chai, X. Tong, and H.-T. Wu, “Leveraging Motion
Capture and 3D Scanning for High-Fidelity Facial Performance
Acquisition,” Proc. ACM SIGGRAPH ’11 Papers, pp. 74:1-74:10,
2011.

[12] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D.H. Salesin,
“Synthesizing Realistic Facial Expressions from Photographs,”
Proc. ACM SIGGRAPH ’98, pp. 75-84, 1998.

[13] T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu,
J. McAndless, J. Lee, A. Ngan, H.W. Jensen, and M. Gross,
“Analysis of Human Faces Using a Measurement-Based Skin
Reflectance Model,” ACM Trans. Graphics, vol. 25, no. 3,
pp. 1013-1024, July 2006.

[14] Z. Deng and J.Y. Noh, “Computer Facial Animation: A Survey,”
Data-Driven 3D Facial Animation, pp. 1-28, Springer, Nov. 2007.

[15] J.-y. Noh and U. Neumann, “Expression Cloning,” Proc. ACM
SIGGRAPH ’01, pp. 277-288, 2001.

[16] R.W. Sumner and J. Popovi�c, “Deformation Transfer for
Triangle Meshes,” ACM Trans. Graphics, vol. 23, no. 3,
pp. 399-405, Aug. 2004.

[17] E. Sifakis, I. Neverov, and R. Fedkiw, “Automatic Determination
of Facial Muscle Activations from Sparse Motion Capture Marker
Data,” Proc. ACM SIGGRAPH ’05 Papers, pp. 417-425, 2005.

[18] T. Weise, H. Li, L. van Gool, and M. Pauly, “Face/Off: Live Facial
Puppetry,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation (SCA ’09), pp. 7-16, 2009.

[19] T. Weise, S. Bouaziz, H. Li, and M. Pauly, “Realtime Performance-
Based Facial Animation,” ACM Trans. Graphics, vol. 30, no. 4,
pp. 77:1-77:10, Aug. 2011.

[20] Z. Deng, P.-Y. Chiang, P. Fox, and U. Neumann, “Animating
Blendshape Faces by Cross-Mapping Motion Capture Data,” Proc.
Symp. Interactive 3D Graphics and Games (I3D ’06), pp. 43-48, 2006.

[21] Y. Seol, J.P. Lewis, J. Seo, B. choi, K. Anjyo, and J. Noh, “Spacetime
Expression Cloning for Blendshapes,” ACM Trans. Graphics,
vol. 30, no. 6, pp. 14:1-14:12, 2011.

[22] P. Joshi, W.C. Tien, M. Desbrun, and F. Pighin, “Learning Controls
for Blend Shape Based Realistic Facial Animation,” Proc. ACM
SIGGRAPH/Eurographics Symp. Computer Animation (SCA ’03),
pp. 187-192, 2003.

[23] M. Meyer and J. Anderson, “Key Point Subspace Acceleration and
Soft Caching,” ACM Trans. Graphics, vol. 26, article 74, July 2007.

[24] W.-W. Feng, B.-U. Kim, and Y. Yu, “Real-Time Data Driven
Deformation Using Kernel Canonical Correlation Analysis,” ACM
Trans. Graphics, vol. 27, pp. 91:1-91:9, Aug. 2008.

[25] H. Li, T. Weise, and M. Pauly, “Example-Based Facial Rigging,”
ACM Trans. Graphics, vol. 29, no. 4, pp. 32:1-32:6, July 2010.

[26] J.R. Tena, F. De la Torre, and I. Matthews, “Interactive Region-
Based Linear 3D Face Models,” Proc. ACM SIGGRAPH ’11 Papers,
pp. 76:1-76:10, 2011.

[27] C. Bregler, M. Covell, and M. Slaney, “Video Rewrite: Driving
Visual Speech with Audio,” Proc. ACM SIGGRAPH ’97, pp. 353-
360, 1997.

[28] M. Brand, “Voice Puppetry,” Proc. ACM SIGGRAPH ’99, pp. 21-28,
1999.

[29] T. Ezzat, G. Geiger, and T. Poggio, “Trainable Videorealistic
Speech Animation,” ACM Trans. Graphics, vol. 21, no. 3, pp. 388-
398, July 2002.

[30] Z. Deng and U. Neumann, “eFASE: Expressive Facial Animation
Synthesis and Editing with Phoneme-Isomap Controls,” Proc.
ACM SIGGRAPH/Eurographics Symp. Computer Animation
(SCA ’06), pp. 251-260, 2006.

[31] K. Wampler, D. Sasaki, L. Zhang, and Z. Popovi�c, “Dynamic,
Expressive Speech Animation from a Single Mesh,” Proc. ACM
SIGGRAPH/Eurographics Symp. Computer Animation (SCA ’07),
pp. 53-62, 2007.

[32] O. Sorkine and D. Cohen-Or, “Least-Squares Meshes,” Proc. Shape
Modeling Int’l (SMI ’04), pp. 191-199, 2004.

[33] R. Southern and J.J. Zhang, “Motion-Sensitive Anchor Identifica-
tion of Least-Squares Meshes from Examples,” IEEE Trans.
Visualization and Computer Graphics, vol. 17, no. 6, pp. 850-856,
June 2011.

[34] M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. ACM SIGGRAPH ’97, pp. 209-216,
1997.

[35] M. Botsch and O. Sorkine, “On Linear Variational Surface
Deformation Methods,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 1, pp. 213-230, Jan. 2008.

[36] M. Meyer, M. Desbrun, P. Schrder, and A. Barr, “Discrete
Differential Geometry Operators for Triangulated 2-Manifolds,”
Proc. Int’l Workshop Visualization and Math., citeseer.ist.psu.edu/
meyer02discrete.html. 2002.

[37] D.P. Bertsekas, Nonlinear Programming, second ed. Athena
Scientific, Sept. 1999.

[38] T.A. Davis and W.W. Hager, “Dynamic Supernodes in Sparse
Cholesky Update/Downdate and Triangular Solves,” ACM Trans.
Math. Software, vol. 35, no. 4, pp. 27:1-27:23, Feb. 2009.

[39] Z. Mao, X. Ju, J.P. Siebert, W.P. Cockshott, and A. Ayoub,
“Constructing Dense Correspondences for the Analysis of 3D
Facial Morphology,” Pattern Recognition Letters, vol. 27, no. 6,
pp. 597-608, Apr. 2006.

[40] J. Gain and D. Bechmann, “A Survey of Spatial Deformation from
a User-Centered Perspective,” ACM Trans. Graphics, vol. 27,
pp. 107:1-107:21, no. 4, Nov. 2008.

[41] P.G. Kry, D.L. James, and D.K. Pai, “EigenSkin: Real Time Large
Deformation Character Skinning in Hardware,” Proc. ACM
SIGGRAPH/Eurographics Symp. Computer Animation (SCA ’02),
pp. 153-159, 2002.

Binh H. Le received the BS degree in computer
science from the Vietnam National University,
Vietnam, in 2008, and is currently working
toward the PhD degree at the Department of
Computer Science, University of Houston (UH)
under the supervision of Prof. Zhigang Deng. His
research interests include computer graphics,
computer animation, and virtual human model-
ing and animation. He held a Vietnam Educa-
tional Foundation Fellowship from 2008 to 2010.

1870 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 11, NOVEMBER 2013

Mingyang Zhu received both the BS and MS
degrees in computer science from the Nanjing
University of Science and Technology in 2003
and 2007, respectively, where he is currently
working toward the PhD degree at the Depart-
ment of Computer Science. His research inter-
ests include computer graphics and character
animation. From September 2010 to August
2012, he was a visiting PhD student at the
Computer Graphics and Interactive Media Lab at

the University of Houston under the supervision of Prof. Zhigang Deng.

Zhigang Deng received the BS degree in
mathematics from Xiamen University, China,
the MS degree in computer science from Peking
University, China, and the PhD degree in
computer science from the Department
of Computer Science, University of Southern
California in 2006. He is currently an associate
professor of computer science at the University
of Houston (UH) and the founding director of the
UH Computer Graphics and Interactive Media

(CGIM) Lab. His research interests include computer graphics,
computer animation, virtual human modeling and animation, and human
computer interaction. He is a senior member of the IEEE, a member of
the ACM, and a Board member of the International Chinese Association
of Human Computer Interaction.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LE ET AL.: MARKER OPTIMIZATION FOR FACIAL MOTION ACQUISITION AND DEFORMATION 1871

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

