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Speech Animation

A Practical Model for Live  
Speech-Driven Lip-Sync
Li Wei and Zhigang Deng ■ University of Houston

The signal-processing and speech-understand-
ing communities have proposed several ap-
proaches to generate speech animation based 

on live acoustic speech input. For example, based 
on a real-time recognized phoneme sequence, re-
searchers use simple linear smoothing functions to 
produce corresponding speech animation.1,2 Other 
approaches train statistical models (such as neural 
networks) to encode the mapping between acous-
tic speech features and facial movements.3,4 These 

approaches have demonstrated 
their real-time runtime ef!ciency 
on an off-the-shelf computer, 
but their performance is highly 
speaker-dependent because of the 
individual-speci!c nature of the 
chosen acoustic speech features. 
Furthermore, the visual realism of 
these approaches is insuf!cient, 
so they’re less suitable for graphics 
and animation applications.

Live speech-driven lip-sync in-
volves several challenges. First, 
additional technical challenges 
are involved compared with pre-

recorded speech, where expensive global optimiza-
tion techniques can help !nd the most plausible 
speech motion corresponding to novel spoken or 
typed input. In contrast, it’s extremely dif!cult, if 
not impossible, to directly apply such global opti-
mization techniques to live speech-driven lip-sync 
applications because the forthcoming (unavailable 
yet) speech content can’t be exploited during the 
synthesis process. Second, live speech-driven lip-
sync algorithms must be highly ef!cient to en-
sure real-time speed on an off-the-shelf computer, 

whereas of"ine speech animation synthesis algo-
rithms don’t need to meet such tight time con-
straints. Compared with forced phoneme align-
ment for prerecorded speech, this last challenge 
comes from the low accuracy of state-of-the-art 
live speech phoneme recognition systems (such as 
the Julius system [http://julius.sourceforge.jp] and 
the HTK toolkit [http://htk.eng.cam.ac.uk]).

To quantify the phoneme recognition accuracy 
between the prerecorded and live speech cases, we 
randomly selected 10 prerecorded sentences and 
extracted their phoneme sequences using the Ju-
lius system, !rst to do forced phoneme-alignment 
on the clips (called of!ine phoneme alignment) and 
then as a real-time phoneme recognition engine. 
By simulating the same prerecorded speech clip as 
live speech, the system generated phoneme output 
sequentially while the speech was being fed into it. 
Then, by taking the of"ine phoneme alignment re-
sults as the ground truth, we were able to compute 
the accuracies of the live speech phoneme recogni-
tion in our experiment. As Figure 1 illustrates, the 
live speech phoneme recognition accuracy of the 
same Julius system varies from 45 to 80 percent. 
Further empirical analysis didn’t show any pat-
terns of incorrectly recognized phonemes (that is, 
the phonemes often recognized incorrectly in live 
speech), implying that to produce satisfactory live 
speech-driven animation results, any phoneme-
based algorithm must take the relatively low pho-
neme recognition accuracy (for live speech) into 
design consideration. Moreover, that algorithm 
should be able to perform certain self-corrections 
at runtime because some phonemes could be in-
correctly recognized and input into the algorithm 
in a less predictable manner.

A simple, ef!cient, yet 
practical phoneme-based 
approach to generating 
realistic speech animation in 
real time based on live speech 
input starts with decomposing 
lower-face movements and 
ends with applying motion 
blending. Experiments and 
comparisons demonstrate the 
realism of this synthesized 
speech animation.
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Inspired by these research challenges, we pro-
pose a practical phoneme-based approach for live 
speech-driven lip-sync. Besides generating realistic 
speech animation in real time, our phoneme-based 
approach can straightforwardly handle speech in-
put from different speakers, which is one of the 
major advantages of phoneme-based approaches 
over acoustic speech feature-driven approaches 
(see the “Related Work in Speech Animation Syn-
thesis” sidebar).3,4 Speci!cally, we introduce an ef-
!cient, simple algorithm to compute each motion 
segment’s priority and select the plausible segment 
based on the phoneme information that’s sequen-
tially recognized at runtime. Compared with exist-
ing lip-sync approaches, the main advantages of 
our method are its ef!ciency, simplicity, and ca-
pability of handling live speech input in real time.

Data Acquisition and Preprocessing
We acquired a training facial motion dataset for 
this work by using an optical motion capture 
system and attaching more than 100 markers to 
the face of a female native English speaker. We 
eliminated 3D rigid head motion by using a sin-
gular value decomposition (SVD) based statistical 
shape analysis method.5 The subject was guided 
to speak a phoneme-balanced corpus consist-
ing of 166 sentences with neutral expression; the 
obtained dataset contains 72,871 motion frames 
(about 10 minutes of recording, with 120 frames 
per second). Phoneme labels and durations were 
automatically extracted from the simultaneously 
recorded speech data. 

As Figure 2a illustrates, we use 39 markers in 
the lower face region in this work, which results 
in a 117-dimensional feature vector for each mo-
tion frame. We apply principal component analy-
sis (PCA) to reduce the dimension of the mo-
tion feature vectors, which allows us to obtain a 
compact representation by only retaining a small 
number of principal components. We keep the !ve 
most signi!cant principal components to cover 
96.6 percent of the motion dataset’s variance. 
All the other processing steps described here are 
performed in parallel in each of the retained !ve 
principal component spaces.

Motion Segmentation
For each recorded sentence, we segment its motion 
sequence based on its phoneme alignment and ex-
tract a motion segment for each phoneme occur-
rence. For the motion blending that occurs later, 
we keep an overlapping region between two neigh-
boring motion segments. We set the length of the 
overlapping region to one frame (see Figure 3).

Motion Segment Normalization
Because a phoneme’s duration is typically short 
(in our dataset, the average phoneme duration is 
109 milliseconds), we could use a small number 
of evenly sampled frames to represent the original 
motion. We downsample a motion segment by 
evenly selecting !ve representative frames (see 
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Figure 1. The Julius system. Its live speech phoneme recognition 
accuracy varied from 45 to 80 percent.

(a) (b)

Figure 2. Facial motion dataset. (a) Among the 102 markers, we used 
the 39 green markers in this work. (b) Illustration of the average face 
markers.

… …
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Figure 3. Motion segmentation. The grids represent motion frames, 
where si denotes the motion segment corresponding to phoneme pi. 
When we segment a motion sequence based on its phoneme timing 
information, we keep one overlapping frame (grids with slashes !lled) 
between two neighboring segments. We evenly sample !ve frames 
(grids with red color) to represent a motion segment.
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Figure 3); we represent each motion segment si as 
a vector vi that concatenates the PCA coef!cients 
of the !ve sampled frames.

Clustering
We apply a K-means clustering algorithm to the 
motion vector dataset {vi: i = 1…n}, where n is the 
total number of motion vectors, and then use Eu-
clidean distance to compute the distance between 
two motion vectors—we call the center of each 
obtained motion cluster an AnimPho. Next, we 
obtain a set of AnimPhos {ai: i = 1…m}, where m 
is the total number of AnimPhos, and ai is the ith 
AnimPho.

After this clustering step, we essentially convert 
the motion dataset to a set of AnimPho sequences. 
Then, we further precompute the following two 
data structures:

 ■ AnimPho transition table, T, is an m × m table, 
where m is the number of AnimPhos. T(ai, aj) = 
1 if the AnimPho transition <ai, aj> exists in the 
motion dataset; otherwise, T(ai, aj) = 0. In this 
article, we say two AnimPhos ai and aj are con-
nected if and only if T(ai, aj) = 1. We also de!ne 
T(ai) = {aj|T(ai, aj) = 1} as the set of AnimPhos 
connected to ai.

 ■ Phoneme-AnimPho mapping table, L, is an h × m 

The essential part of visual speech animation synthesis is 
determining how to model the speech co-articulation 

effect. Conventional viseme-driven approaches need users 
to !rst carefully design a set of visemes (or a set of static 
mouth shapes that represent different phonemes) and 
then employ interpolation functions1 or co-articulation 
rules to compute in-between frames for speech animation 
synthesis.2 However, a !xed phoneme-viseme mapping 
scheme is often insuf!cient to model the co-articulation 
phenomenon in human speech production. As such, the 
resulting speech animations often lack variance and realis-
tic articulation.

Instead of interpolating a set of predesigned visemes, 
one category of data-driven approaches generates speech 
animations by optimally selecting and concatenating motion 
units from a precollected database based on various cost 
functions.3–7 The second category of data-driven speech 
animation approaches learns statistical models from data.8,9 
All these data-driven approaches have demonstrated notice-
able successes for of"ine prerecorded speech animation 
synthesis. Unfortunately, they can’t be straightforwardly 
extended for live speech-driven lip-sync. The main reason 
is that they typically utilize some form of global optimiza-
tion technique to synthesize the most optimal speech-syn-
chronized facial motion. In contrast, in live speech-driven 
lip-sync, forthcoming speech (or phoneme) information is 
unavailable. Thus, directly applying such global optimiza-
tion-based algorithms would be technically infeasible.

Several algorithms have been proposed to generate live 
speech-driven speech animations. Besides predesigned 
phoneme-viseme mapping,10,11 various statistical models 
(such as neural networks,12 nearest-neighbor search,13 and 
others) have been trained to learn audio-visual mapping 
for this purpose. The common disadvantages of these 
approaches is that the acoustics features used for training 
the statistical audio-to-visual mapping models are highly 
speaker-speci!c, as pointed out by Sarah Taylor and her 
colleagues.6
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table, where h is the number of phonemes used 
(we used 43 English phonemes in this work). 
L(pi, aj) = 1 if the phoneme label of aj is pho-
neme pi in the dataset; otherwise, L(pi, aj) = 0. 
Similarly, we de!ne L(pi) ={aj|L(pi, aj) = 1} as the 
set of AnimPhos that have the phoneme label pi.

Live Speech-Driven Lip-Sync
In the work described here, two steps generate 
lip motion based on live speech input: AnimPho 
selection and motion blending.

AnimPho Selection
Assuming phoneme pt arrives at the lip-sync sys-
tem at time t, our algorithm needs to !nd its cor-
responding AnimPho, at, to animate pt. A naive 
solution would be to take the AnimPho set, φ(pt) 
= L(pt) ^ T(at-1), which is the set of AnimPhos that 
have the phoneme label pt and have a natural con-
nection with at-1, and then choose one of them 
as at by minimizing a cost function (for example, 
the smoothness energy de!ned in Equation 1). If 
φ(pt) is empty (called a miss in this article), then 
we reassign all the AnimPhos (regardless of their 
phoneme labels) as φ(pt):

a E a Bt
p

t
t

= ( ) ( )( )
∈ ( )

−arg min ,
η φ

ηdist 1 , (1)

where dist(E(at–1), B(η)) returns the Euclidean 
distance between the ending frame of at–1 and the 
starting frame of η. If L(pt) ̂  T(at–1) isn’t empty, this 
method can ensure the co-articulation by !nding 
the AnimPho at that’s naturally connected to at–1 
in the captured dataset. However, it doesn’t work 
well in practical applications, primarily because the 
missing rate of this method is typically very high 
because of the limited size of the captured dataset. 
As a result, the synthesized animations are often 
incorrectly articulated and oversmoothed (that is, 
only minimizing the smoothness energy de!ned 
in Equation 1).

Figure 4 illustrates a simple example of this na-
ive AnimPho selection strategy. Let’s assume we 
initially select the third AnimPho for phoneme p1. 
When p2 comes, we !nd that none of the Anim-
Phos in L(p2) can connect to the third AnimPho in 
the dataset, so we select the one with a minimum 
smoothness energy (assuming it’s the sixth Anim-
Pho). When p3 comes, again we !nd that none of 
the AnimPhos in L(p3) can connect to the sixth 
AnimPho, so we select an AnimPho (assuming it’s 
the seventh one) based on the smoothness energy. 
The missing rate of this simple example would be 

100 percent, and the natural AnimPho connection 
information (dotted directional lines in Figure 4) 
wouldn’t be exploited.

To solve both the oversmoothness and the inaccu-
rate articulation issues, we need to properly utilize 
the AnimPho connection information, especially 
when the missing rate is high. In our approach, 
we compute the priority value, vi, for each Anim-
Pho ai ∈ L(pt) based on the precomputed transition 
information. Speci!cally, the priority value of an 
AnimPho ai is de!ned as the length of the longest 
connected AnimPho sequence corresponding to the 
observed phoneme sequence (up to pt). The priority 
value vi of ai is calculated as follows:

v
v a L p a T a

i
j j t i jmax ,+( ) ∃ ∈ ( ) ∈ ( )






−1

1
1

Otherwise
. (2)

Then, we select AnimPho at by taking both the 
priority value and the smoothness term into con-
sideration. In our approach, we prefer to select the 
AnimPho with the highest priority value; if multi-
ple AnimPhos have the same high-priority values, 
we select the smoothest one when it’s connected 
with at-1.

We use the same illustrative example in Figure 
5 to explain our algorithm. We start by selecting 
the third AnimPho for p1. When p2 comes, we !rst 
compute the priority value for each AnimPho in 
L(p2) by using the AnimPho transition informa-
tion. The priority value of the fourth AnimPho, 
v4, is 2, because the AnimPho sequence <1, 4> 
corresponds to the observed phoneme sequence 
<p1, p2>. Similarly, we can compute the priority 
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Figure 4. Naive AnimPho selection strategy. The 
circles on the top are the phonemes that come to the 
system sequentially. The square below each phoneme 
pi is L(pi), and the number in the squares denotes the 
index of AnimPho. Dotted directional lines denote 
existing AnimPho transitions in the dataset. The 
green AnimPhos are selected based on the naive 
AnimPho selection strategy.
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value of the !fth AnimPho as 2. After we com-
pute priority values, we select one AnimPho for p2. 
Although we !nd that none of the AnimPhos in 
L(p2) is connected to the third AnimPho, instead 
of selecting the sixth AnimPho that minimizes 
the smoothness term, we choose the fourth or the 
!fth AnimPho (both have the same higher priority 
value). Assuming the !fth AnimPho has a smaller 
smoothness energy than the fourth AnimPho, we 
select the !fth for p2. When phoneme p3 comes, 
the eighth AnimPho has the highest priority value, 
so we simply select it for p3. 

As Figure 6 shows, compared with the naive 
AnimPho selection strategy, our approach can sig-
ni!cantly reduce the missing rate. Still, the miss-
ing rate in our approach is substantial (around 50 
percent), for two reasons:

 ■ The unpredictability of the next phoneme. At the 
AnimPho selection step in live speech-driven 
lip-sync, the next (forthcoming) phoneme in-
formation is unavailable, so we can’t predict 
which AnimPho would provide the optimal 
transition to the next phoneme.

 ■ The limited size of the motion dataset. In most 
practical applications, the acquired facial mo-
tion dataset typically has a limited size due to 
data acquisition costs and other reasons. For 
example, the average number of outgoing tran-
sitions from an AnimPho in our dataset is 3.45. 
Therefore, once we pick an AnimPho for pt–1, the 
forward AnimPho transitions for pt are limited 
(that is, on average 3.45). 

In theory, to dramatically reduce the missing rate 
(get close to zero), these two issues must be well 
taken care of. In this work, rather than capturing 
a much larger facial motion dataset to reduce the 
missing rate, we focus on how to utilize a limited 
motion dataset to produce acceptable live speech-
driven lip-sync results. The motion-blending step 
can handle the discontinuity incurred by the miss-
ing event.

Motion Blending
In this section, we describe how to generate the 
!nal facial animation by using a motion-blending 
technique based on the selected AnimPho at and 
the duration of phoneme pt (which is output from 
a live speech phoneme-recognition system such 
as Julius). Speci!cally, this technique consists of 
three steps: selecting an AnimPho bt that both 
connects to at–1 and has the most similar motion 
trajectory with at; generating an intermediate mo-
tion segment mt based on at–1, at, and bt; and doing 
motion interpolation on mt to produce the desired 
number of animation frames for pt, based on the 
inputted duration of pt.

Selection of bt. As mentioned earlier, at runtime, our 
live speech-driven lip-sync approach still has a non-
trivial missing rate (on average, about 50 percent) 
at the AnimPho selection step. To solve the possible 
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Figure 5. Priority-incorporated AnimPho selection 
strategy. Numbers in red boxes are the AnimPho 
priority values.
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motion discontinuity issue between at–1 and at, we 
need to identify and utilize an existing AnimPho 
transition <at–1, bt> in the dataset such that bt has 
the most similar motion trajectory with at. Our ra-
tionale is that the starting frame of bt can ensure a 
smooth connection with the ending frame of at–1, 
and bt can have a similar motion trajectory with 
at in most places. We identify the AnimPho bt by 
minimizing the following cost function:

b at
T a

t
t

= ( )
∈ ( )−

arg min ,
η

η
1

dist , (3) 

where dist(η, at) returns the Euclidean distance 
between at and η. Note that if at ∈ T(at–1), which 
means a natural AnimPho transition exists from 
at–1 to at in the dataset, Equation 3 is guaranteed 
to return bt = at.

Generation of an intermediate motion segment, mt. 
After bt is identi!ed, we need to modify it to en-
sure the motion continuity between the previous 
animation segment at–1 and the animation for pt 
that we’re going to synthesize. Here, we use ′bt  to 
denote the modi!ed version of bt. We generate an 
intermediate motion segment mt by linearly blend-
ing ′bt  and at.

All the AnimPhos (including bt, at–1, and at) 
store the center of the corresponding motion seg-
ment clusters, as described earlier; they don’t re-
tain the original motion trajectory in the dataset. 
As a result, the starting frame of bt and the ending 
frame of at–1 may be slightly mismatched, although 
the AnimPho transition <at–1, bt> indeed exists in 
the captured motion dataset (Figure 7a). To make 
the starting frame of bt perfectly match with the 
ending frame of at-1, we need to adjust (via a trans-
lation transformation) bt by setting the starting 
frame of bt equivalent to the ending frame of at–1 

(Figure 7b).
Then, we linearly blend two motion segments, 
′bt  and at, to obtain an intermediate motion seg-

ment mt, as Figure 7c illustrates. As described ear-
lier, we use give evenly sampled frames to represent 
a motion segment. Therefore, this linear blending 
can be described as follows.

m i i b i i a i it t t[ ] = − −
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4

1
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where mt[i] is the ith frame of motion segment mt.

Motion interpolation. By taking the downsampled 
motion segment mt as input, we use an interpola-
tion method to compute the !nal animation frames 

for phoneme pt based on its duration. We calculate 
the required number of frames N in !nal anima-
tion as N = duration(pt) × FPS, where duration(pt) 
denotes the duration of phoneme pt and FPS is the 
resulting animation’s frames per second.

In this work, we use the Hermit interpolation to 
compute in-between frames in two sample frames. 
The derivatives of the !ve sample frames are com-
puted as follows:
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Figure 7. The motion-blending and interpolation process. (a) After the 
AnimPho selection step, we can see that either at or bt has a smooth 
transition from the previous animation segment (denoted as the black 
solid line). (b) We set the starting frame of bt equivalent to the ending 
frame of the previous animation segment (for phoneme pt–1). (c) We 
linearly blend at and ′bt  to obtain a new motion segment mt and further 
compute the derivatives of mt. Finally, we apply the Hermit interpolation 
to obtain in-between frames.
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where dt–1 is the derivatives of the previous downs-
ampled motion segment. As illustrated in Figure 7c, 
the Hermit interpolation can guarantee the result-
ing animation’s C2 smoothness. Finally, we use mt 
and dt to interpolate in-between animation frames. 
The motion interpolation algorithm can be described 
using Algorithm 1 (see Figure 8). Speci!cally, func-
tion p=HermitInterpolation(upper, lower, 
α) takes the upper and lower sample frames as 
input and computes the in-between frame corre-
sponding to α ∈ [0, 1].

Results and Evaluations
We implemented our approach using C++ without 
GPU acceleration (see Figure 9). The off-the-shelf 
test computer we used in all our experiments is 
an Intel core I7 2.80-GHz CPU with 3 Gbytes 
of memory. The real-time phoneme recognition 
system is Julius, which we trained with the open 
source VoxForge acoustic model. In our system, 
the 3D face model consists of 30,000 triangles, 
and a thin-shell deformation algorithm is used to 
deform the face model based on synthesized facial 
marker displacements. To improve the realism of 
synthesized facial animation, we also synthesized 
corresponding head and eye movements simul-
taneously by implementing a live speech-driven 
head-and-eye motion generator.6

Quantitative Evaluation
To quantitatively evaluate the quality of our ap-
proach, we randomly selected three speech clips 
with associated motion from the captured data-
set and computed the root mean squared error 
(RMSE) between the synthesized motion and the 
captured motion (only taking markers in the lower 
face into account, as illustrated in Figure 2). 

To better understand the accuracy of our ap-
proach in different situations, we synthesized mo-
tion in three cases, as shown in Table 1. Here, live 
speech phoneme recognition means that the pho-
neme sequence is sequentially outputted from Julius 
by simulating the prerecorded speech as live speech 
input. Real-time facial motion synthesis means the 
facial motion is synthesized phoneme by phoneme, 
as described earlier. Our approach was used as the 
synthesis algorithm in cases 1 and 2. 

We also compared our approach with a baseline 
method1 that adopts the classical Cohen-Massaro 
co-articulation model7 to generate speech anima-
tion frames via interpolation. This method also 
needs users to manually specify (or design) visemes, 
which are a set of static mouth shapes that repre-
sent different phonemes. To ensure a fair compari-
son between our approach and the chosen baseline, 
the visemes used in the baseline’s implementation1 
were automatically extracted as the center (mean) 
of the cluster that encloses all the representative 
values of the corresponding phonemes. 

Table 2 shows the comparison results. Case 2 has 
the largest RMSE errors in the three test cases due 
to the inaccuracy of live speech phoneme recogni-
tion. The RMSE error of case 1 is smaller than that 
of the baseline approach in all three test cases, but 
the animation results in case 1 are clearly better 
than those in the baseline approach in terms of 
motion smoothness and visual articulation.

Runtime Performance Analysis
To analyze our approach’s runtime ef!ciency, we 
used three prerecorded speech clips, each of which 
is about two minutes in duration. We sequentially 
fed the speech clips into our system by simulating 
them as live speech input. During the live speech-
driven lip-sync process, our approach’s runtime 
performance was recorded simultaneously. Table 
3 shows the breakdown of its per-phoneme 
computing time. From the table, we can make two 
observations.

First, the real-time phoneme recognition step 
consumes about 60 percent of our approach’s to-
tal computing time on average. Its average motion 
synthesis time is about 40 percent (around 40.85 
ms) of the total computing time, which indicates 
that our lip-sync algorithm itself is highly ef!cient.

Second, when we calculated the average phoneme 
number per second in the test data and the average 
FPS, we computed the average FPS as follows:

Average FPS

Number of Frames
Total Compute T=

( )pi

iime( )p
N

ii

N

=∑ 1
, (6)

Input: Sample frames, mt; the derivatives of sample frames, dt; the target  
 number of frames, N.
Output: The interpolated sequence, St.
   1:  for i = 1 → N do
   2:       Find the upper and lower sample frame [lower, upper]= Bound(i)
   3:       α = (i - lower)/(upper - lower)
   4:       St[i] = HermitInterpolation(upper, lower, α)
   5:  end for

Figure 8. Algorithm 1. For motion interpolation, we take the upper and 
lower sample frames as input and then compute the in-between frame 
corresponding to α ∈ [0, 1].

Table 1. Three cases/con!gurations for our lip-sync experiments.

Aproach Live speech phoneme recognition Real-time facial motion synthesis

Case 1 Not used Yes

Case 2 Yes Yes

Baseline Not used Yes
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where N is the total number of phonemes in the test 
data; Number of Frames(pi) denotes the number 
of animation frames needed to visually represent 
pi, which can be simply calculated as its duration 
(in seconds) multiplied by 30 frames (per second) 
in our experiment; and Total Computing Time(pi) 
denotes the total computing time used by our 
approach for phoneme pi including the real-time 
phoneme recognition time and motion synthesis 
time. As Table 3 shows, the calculated average FPS 
of our approach is around 27, which indicates that 
our approach is able to approximately achieve real-
time speed on an off-the-shelf computer, without 
GPU acceleration.

On the one hand, our approach is simple and 
ef!cient and can be straightforwardly imple-

mented. On the other, it works surprisingly well 
for most practical applications, achieving a good 
balance between animation realism and runtime 
ef!ciency, as demonstrated by our results. Because 
our approach is phoneme-based, it can naturally 

Table 2. RMSE of the three test speech clips.

Aproach Audio 1 Audio 2 Audio 3

Case 1 18.81 19.80 25.77

Case 2 24.16 25.79 27.81

Baseline 22.34 22.40 26.17

Figure 9. Experimental scenario. Several selected frames synthesized by our approach.

Table 3. Breakdown of our approach’s per-phoneme computing time.

Test audio 
clip

Phoneme recognition 
time (ms)

Motion synthesis 
(ms)

Motion blending 
(ms)

Average total time 
(ms)

Average phonemes 
per second

Average frames per 
second (FPS)

1 76.73 38.56 0.16 128.28 8.84 25.62

2 90.13 39.10 0.14 144.40 7.29 30.03

3 93.80 44.89 0.15 142.23 7.43 26.77
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handle speech input from different speakers, 
assuming the employed state-of-the-art speech 
recognition engine can reasonably handle the 
speaker-independence issue.

Despite its effectiveness and ef!ciency, however, 
our current approach has two limitations. One, 
the quality of visual speech animation synthesized 
by our approach substantially depends on the 
ef!ciency and accuracy of the used real-time speech 
(or phoneme) recognition engine. If the speech 
recognition engine can’t recognize phonemes in 
real time or does it with a low accuracy, then 
such a delay or inaccuracy will be unavoidably 
propagated to or even be exaggerated in the 
employed AnimPho selection strategy. Fortunately, 
with the continuous improvement of state-of-
the-art real-time speech recognition techniques, 
we anticipate that our approach will eventually 
generate more realistic live speech-driven lip-sync 
without modi!cations. Two, our current approach 
doesn’t consider affective state enclosed in live 
speech and thus can’t automatically synthesize 
corresponding facial expressions. One plausible 
solution to this problem would be to utilize state-
of-the-art techniques to recognize the change of a 
subject’s affective state in real time based on his 
or her live speech alone; such information could 
then be continuously fed into an advanced version 
of our current approach that can dynamically 
incorporate the emotion factor into the expressive 
facial motion synthesis process.

As future work, in addition to extending the 
current approach to various mobile platforms, we 
also plan to conduct comprehensive user studies 
to evaluate its effectiveness and usability. We also 
want to investigate better methods to increase 
phoneme recognition accuracy from live speech 
and to !ducially retarget 3D facial motion capture 
data to any static 3D face models. 
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