
50 January/February 2014 Published by the IEEE Computer Society 0272-1716/15/$31.00 © 2015 IEEE

Speech Animation

A Practical Model for Live
Speech-Driven Lip-Sync
Li Wei and Zhigang Deng ■ University of Houston

The signal-processing and speech-understand-
ing communities have proposed several ap-
proaches to generate speech animation based

on live acoustic speech input. For example, based
on a real-time recognized phoneme sequence, re-
searchers use simple linear smoothing functions to
produce corresponding speech animation.1,2 Other
approaches train statistical models (such as neural
networks) to encode the mapping between acous-
tic speech features and facial movements.3,4 These

approaches have demonstrated
their real-time runtime ef!ciency
on an off-the-shelf computer,
but their performance is highly
speaker-dependent because of the
individual-speci!c nature of the
chosen acoustic speech features.
Furthermore, the visual realism of
these approaches is insuf!cient,
so they’re less suitable for graphics
and animation applications.

Live speech-driven lip-sync in-
volves several challenges. First,
additional technical challenges
are involved compared with pre-

recorded speech, where expensive global optimiza-
tion techniques can help !nd the most plausible
speech motion corresponding to novel spoken or
typed input. In contrast, it’s extremely dif!cult, if
not impossible, to directly apply such global opti-
mization techniques to live speech-driven lip-sync
applications because the forthcoming (unavailable
yet) speech content can’t be exploited during the
synthesis process. Second, live speech-driven lip-
sync algorithms must be highly ef!cient to en-
sure real-time speed on an off-the-shelf computer,

whereas of"ine speech animation synthesis algo-
rithms don’t need to meet such tight time con-
straints. Compared with forced phoneme align-
ment for prerecorded speech, this last challenge
comes from the low accuracy of state-of-the-art
live speech phoneme recognition systems (such as
the Julius system [http://julius.sourceforge.jp] and
the HTK toolkit [http://htk.eng.cam.ac.uk]).

To quantify the phoneme recognition accuracy
between the prerecorded and live speech cases, we
randomly selected 10 prerecorded sentences and
extracted their phoneme sequences using the Ju-
lius system, !rst to do forced phoneme-alignment
on the clips (called of!ine phoneme alignment) and
then as a real-time phoneme recognition engine.
By simulating the same prerecorded speech clip as
live speech, the system generated phoneme output
sequentially while the speech was being fed into it.
Then, by taking the of"ine phoneme alignment re-
sults as the ground truth, we were able to compute
the accuracies of the live speech phoneme recogni-
tion in our experiment. As Figure 1 illustrates, the
live speech phoneme recognition accuracy of the
same Julius system varies from 45 to 80 percent.
Further empirical analysis didn’t show any pat-
terns of incorrectly recognized phonemes (that is,
the phonemes often recognized incorrectly in live
speech), implying that to produce satisfactory live
speech-driven animation results, any phoneme-
based algorithm must take the relatively low pho-
neme recognition accuracy (for live speech) into
design consideration. Moreover, that algorithm
should be able to perform certain self-corrections
at runtime because some phonemes could be in-
correctly recognized and input into the algorithm
in a less predictable manner.

A simple, ef!cient, yet
practical phoneme-based
approach to generating
realistic speech animation in
real time based on live speech
input starts with decomposing
lower-face movements and
ends with applying motion
blending. Experiments and
comparisons demonstrate the
realism of this synthesized
speech animation.

 IEEE Computer Graphics and Applications 51

Inspired by these research challenges, we pro-
pose a practical phoneme-based approach for live
speech-driven lip-sync. Besides generating realistic
speech animation in real time, our phoneme-based
approach can straightforwardly handle speech in-
put from different speakers, which is one of the
major advantages of phoneme-based approaches
over acoustic speech feature-driven approaches
(see the “Related Work in Speech Animation Syn-
thesis” sidebar).3,4 Speci!cally, we introduce an ef-
!cient, simple algorithm to compute each motion
segment’s priority and select the plausible segment
based on the phoneme information that’s sequen-
tially recognized at runtime. Compared with exist-
ing lip-sync approaches, the main advantages of
our method are its ef!ciency, simplicity, and ca-
pability of handling live speech input in real time.

Data Acquisition and Preprocessing
We acquired a training facial motion dataset for
this work by using an optical motion capture
system and attaching more than 100 markers to
the face of a female native English speaker. We
eliminated 3D rigid head motion by using a sin-
gular value decomposition (SVD) based statistical
shape analysis method.5 The subject was guided
to speak a phoneme-balanced corpus consist-
ing of 166 sentences with neutral expression; the
obtained dataset contains 72,871 motion frames
(about 10 minutes of recording, with 120 frames
per second). Phoneme labels and durations were
automatically extracted from the simultaneously
recorded speech data.

As Figure 2a illustrates, we use 39 markers in
the lower face region in this work, which results
in a 117-dimensional feature vector for each mo-
tion frame. We apply principal component analy-
sis (PCA) to reduce the dimension of the mo-
tion feature vectors, which allows us to obtain a
compact representation by only retaining a small
number of principal components. We keep the !ve
most signi!cant principal components to cover
96.6 percent of the motion dataset’s variance.
All the other processing steps described here are
performed in parallel in each of the retained !ve
principal component spaces.

Motion Segmentation
For each recorded sentence, we segment its motion
sequence based on its phoneme alignment and ex-
tract a motion segment for each phoneme occur-
rence. For the motion blending that occurs later,
we keep an overlapping region between two neigh-
boring motion segments. We set the length of the
overlapping region to one frame (see Figure 3).

Motion Segment Normalization
Because a phoneme’s duration is typically short
(in our dataset, the average phoneme duration is
109 milliseconds), we could use a small number
of evenly sampled frames to represent the original
motion. We downsample a motion segment by
evenly selecting !ve representative frames (see

Sentence no.

Li
ve

 p
ho

ne
m

e
re

co
gn

iti
on

 a
cc

ur
ac

y

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1.0

Figure 1. The Julius system. Its live speech phoneme recognition
accuracy varied from 45 to 80 percent.

(a) (b)

Figure 2. Facial motion dataset. (a) Among the 102 markers, we used
the 39 green markers in this work. (b) Illustration of the average face
markers.

… …

si –1 si+1

si

Figure 3. Motion segmentation. The grids represent motion frames,
where si denotes the motion segment corresponding to phoneme pi.
When we segment a motion sequence based on its phoneme timing
information, we keep one overlapping frame (grids with slashes !lled)
between two neighboring segments. We evenly sample !ve frames
(grids with red color) to represent a motion segment.

52 January/February 2015

Speech Animation

Figure 3); we represent each motion segment si as
a vector vi that concatenates the PCA coef!cients
of the !ve sampled frames.

Clustering
We apply a K-means clustering algorithm to the
motion vector dataset {vi: i = 1…n}, where n is the
total number of motion vectors, and then use Eu-
clidean distance to compute the distance between
two motion vectors—we call the center of each
obtained motion cluster an AnimPho. Next, we
obtain a set of AnimPhos {ai: i = 1…m}, where m
is the total number of AnimPhos, and ai is the ith
AnimPho.

After this clustering step, we essentially convert
the motion dataset to a set of AnimPho sequences.
Then, we further precompute the following two
data structures:

 ■ AnimPho transition table, T, is an m × m table,
where m is the number of AnimPhos. T(ai, aj) =
1 if the AnimPho transition <ai, aj> exists in the
motion dataset; otherwise, T(ai, aj) = 0. In this
article, we say two AnimPhos ai and aj are con-
nected if and only if T(ai, aj) = 1. We also de!ne
T(ai) = {aj|T(ai, aj) = 1} as the set of AnimPhos
connected to ai.

 ■ Phoneme-AnimPho mapping table, L, is an h × m

The essential part of visual speech animation synthesis is
determining how to model the speech co-articulation

effect. Conventional viseme-driven approaches need users
to !rst carefully design a set of visemes (or a set of static
mouth shapes that represent different phonemes) and
then employ interpolation functions1 or co-articulation
rules to compute in-between frames for speech animation
synthesis.2 However, a !xed phoneme-viseme mapping
scheme is often insuf!cient to model the co-articulation
phenomenon in human speech production. As such, the
resulting speech animations often lack variance and realis-
tic articulation.

Instead of interpolating a set of predesigned visemes,
one category of data-driven approaches generates speech
animations by optimally selecting and concatenating motion
units from a precollected database based on various cost
functions.3–7 The second category of data-driven speech
animation approaches learns statistical models from data.8,9
All these data-driven approaches have demonstrated notice-
able successes for of"ine prerecorded speech animation
synthesis. Unfortunately, they can’t be straightforwardly
extended for live speech-driven lip-sync. The main reason
is that they typically utilize some form of global optimiza-
tion technique to synthesize the most optimal speech-syn-
chronized facial motion. In contrast, in live speech-driven
lip-sync, forthcoming speech (or phoneme) information is
unavailable. Thus, directly applying such global optimiza-
tion-based algorithms would be technically infeasible.

Several algorithms have been proposed to generate live
speech-driven speech animations. Besides predesigned
phoneme-viseme mapping,10,11 various statistical models
(such as neural networks,12 nearest-neighbor search,13 and
others) have been trained to learn audio-visual mapping
for this purpose. The common disadvantages of these
approaches is that the acoustics features used for training
the statistical audio-to-visual mapping models are highly
speaker-speci!c, as pointed out by Sarah Taylor and her
colleagues.6

References
 1. M.M. Cohen and D.W. Massaro, “Modeling Coarticulation in

Synthetic Visual Speech,” Models and Techniques in Computer
Animation, Springer, 1993, pp. 139–156.

 2. A. Wang, M. Emmi, and P. Faloutsos, “Assembling an Expressive
Facial Animation System,” Proc. SIGGRAPH Symp. Video Games,
2007, pp. 21–26.

 3. C. Bregler, M. Covell, and M. Slaney, “Video Rewrite: Driving
Visual Speech with Audio,” Proc. SIGGRAPH 97, 1997, pp.
353–360.

 4. Y. Cao et al., “Expressive Speech-Driven Facial Animation,”
ACM Trans. Graphics, vol. 24, no. 4, 2005, pp. 1283–1302.

 5. Z. Deng and U. Neumann, “eFASE: Expressive Facial Animation
Synthesis and Editing with Phoneme-Level Controls,” Proc.
ACM SIGGGRAPH/Eurographics Symp. Computer Animation,
2006, pp. 251–259.

 6. S.L. Taylor, “Dynamic Units of Visual Speech,” Proc. 11th ACM
SIGGRAPH/Eurographics Conf. Computer Animation, 2012, pp.
275–284.

 7. X. Ma and Z. Deng, “A Statistical Quality Model for Data-
Driven Speech Animation,” IEEE Trans. Visualization and
Computer Graphics, vol. 18, no. 11, 2012, pp. 1915–1927.

 8. M. Brand, “Voice Puppetry,” Proc. 26th Annual Conf. Computer
Graphics and Interactive Techniques, 1999, pp. 21–28.

 9. T. Ezzat, G. Geiger, and T. Poggio, “Trainable Video-Realistic
Speech Animation,” ACM Trans. Graphics, vol. 21, no. 3, 2002,
pp. 388–398.

 10. B. Li et al., “Real-Time Speech Driven Talking Avatar,” J.
Tinghua Univ. Science and Technology, vol. 51, no. 9, 2011, pp.
1180–1186.

 11. Y. Xu et al., “A Practical and Con!gurable Lip Sync Method
for Games,” Proc. Motion in Games (MIG), 2013. pp. 109–118.

 12. P. Hong, Z. Wen, and T.S. Huang, “Real-Time Speech-Driven
Face Animation with Expressions Using Neural Networks,”
IEEE Trans. Neural Networks, vol. 13, no. 4, 2002, pp. 916–927.

 13. R. Gutierrez-Osuna et al., “Speech-Driven Facial Animation
with Realistic Dynamics,” IEEE Trans. Multimedia, vol. 7, no. 1,
2005, pp. 33–42.

Related Work in Speech Animation Synthesis

 IEEE Computer Graphics and Applications 53

table, where h is the number of phonemes used
(we used 43 English phonemes in this work).
L(pi, aj) = 1 if the phoneme label of aj is pho-
neme pi in the dataset; otherwise, L(pi, aj) = 0.
Similarly, we de!ne L(pi) ={aj|L(pi, aj) = 1} as the
set of AnimPhos that have the phoneme label pi.

Live Speech-Driven Lip-Sync
In the work described here, two steps generate
lip motion based on live speech input: AnimPho
selection and motion blending.

AnimPho Selection
Assuming phoneme pt arrives at the lip-sync sys-
tem at time t, our algorithm needs to !nd its cor-
responding AnimPho, at, to animate pt. A naive
solution would be to take the AnimPho set, φ(pt)
= L(pt) ^ T(at-1), which is the set of AnimPhos that
have the phoneme label pt and have a natural con-
nection with at-1, and then choose one of them
as at by minimizing a cost function (for example,
the smoothness energy de!ned in Equation 1). If
φ(pt) is empty (called a miss in this article), then
we reassign all the AnimPhos (regardless of their
phoneme labels) as φ(pt):

a E a Bt
p

t
t

= () ()()
∈ ()

−arg min ,
η φ

ηdist 1 , (1)

where dist(E(at–1), B(η)) returns the Euclidean
distance between the ending frame of at–1 and the
starting frame of η. If L(pt) ̂ T(at–1) isn’t empty, this
method can ensure the co-articulation by !nding
the AnimPho at that’s naturally connected to at–1
in the captured dataset. However, it doesn’t work
well in practical applications, primarily because the
missing rate of this method is typically very high
because of the limited size of the captured dataset.
As a result, the synthesized animations are often
incorrectly articulated and oversmoothed (that is,
only minimizing the smoothness energy de!ned
in Equation 1).

Figure 4 illustrates a simple example of this na-
ive AnimPho selection strategy. Let’s assume we
initially select the third AnimPho for phoneme p1.
When p2 comes, we !nd that none of the Anim-
Phos in L(p2) can connect to the third AnimPho in
the dataset, so we select the one with a minimum
smoothness energy (assuming it’s the sixth Anim-
Pho). When p3 comes, again we !nd that none of
the AnimPhos in L(p3) can connect to the sixth
AnimPho, so we select an AnimPho (assuming it’s
the seventh one) based on the smoothness energy.
The missing rate of this simple example would be

100 percent, and the natural AnimPho connection
information (dotted directional lines in Figure 4)
wouldn’t be exploited.

To solve both the oversmoothness and the inaccu-
rate articulation issues, we need to properly utilize
the AnimPho connection information, especially
when the missing rate is high. In our approach,
we compute the priority value, vi, for each Anim-
Pho ai ∈ L(pt) based on the precomputed transition
information. Speci!cally, the priority value of an
AnimPho ai is de!ned as the length of the longest
connected AnimPho sequence corresponding to the
observed phoneme sequence (up to pt). The priority
value vi of ai is calculated as follows:

v
v a L p a T a

i
j j t i jmax ,+() ∃ ∈ () ∈ ()

−1

1
1

Otherwise
. (2)

Then, we select AnimPho at by taking both the
priority value and the smoothness term into con-
sideration. In our approach, we prefer to select the
AnimPho with the highest priority value; if multi-
ple AnimPhos have the same high-priority values,
we select the smoothest one when it’s connected
with at-1.

We use the same illustrative example in Figure
5 to explain our algorithm. We start by selecting
the third AnimPho for p1. When p2 comes, we !rst
compute the priority value for each AnimPho in
L(p2) by using the AnimPho transition informa-
tion. The priority value of the fourth AnimPho,
v4, is 2, because the AnimPho sequence <1, 4>
corresponds to the observed phoneme sequence
<p1, p2>. Similarly, we can compute the priority

1

2

3

Miss Miss

p1 p2 p3

4

5

6

7

8

9

Figure 4. Naive AnimPho selection strategy. The
circles on the top are the phonemes that come to the
system sequentially. The square below each phoneme
pi is L(pi), and the number in the squares denotes the
index of AnimPho. Dotted directional lines denote
existing AnimPho transitions in the dataset. The
green AnimPhos are selected based on the naive
AnimPho selection strategy.

54 January/February 2015

Speech Animation

value of the !fth AnimPho as 2. After we com-
pute priority values, we select one AnimPho for p2.
Although we !nd that none of the AnimPhos in
L(p2) is connected to the third AnimPho, instead
of selecting the sixth AnimPho that minimizes
the smoothness term, we choose the fourth or the
!fth AnimPho (both have the same higher priority
value). Assuming the !fth AnimPho has a smaller
smoothness energy than the fourth AnimPho, we
select the !fth for p2. When phoneme p3 comes,
the eighth AnimPho has the highest priority value,
so we simply select it for p3.

As Figure 6 shows, compared with the naive
AnimPho selection strategy, our approach can sig-
ni!cantly reduce the missing rate. Still, the miss-
ing rate in our approach is substantial (around 50
percent), for two reasons:

 ■ The unpredictability of the next phoneme. At the
AnimPho selection step in live speech-driven
lip-sync, the next (forthcoming) phoneme in-
formation is unavailable, so we can’t predict
which AnimPho would provide the optimal
transition to the next phoneme.

 ■ The limited size of the motion dataset. In most
practical applications, the acquired facial mo-
tion dataset typically has a limited size due to
data acquisition costs and other reasons. For
example, the average number of outgoing tran-
sitions from an AnimPho in our dataset is 3.45.
Therefore, once we pick an AnimPho for pt–1, the
forward AnimPho transitions for pt are limited
(that is, on average 3.45).

In theory, to dramatically reduce the missing rate
(get close to zero), these two issues must be well
taken care of. In this work, rather than capturing
a much larger facial motion dataset to reduce the
missing rate, we focus on how to utilize a limited
motion dataset to produce acceptable live speech-
driven lip-sync results. The motion-blending step
can handle the discontinuity incurred by the miss-
ing event.

Motion Blending
In this section, we describe how to generate the
!nal facial animation by using a motion-blending
technique based on the selected AnimPho at and
the duration of phoneme pt (which is output from
a live speech phoneme-recognition system such
as Julius). Speci!cally, this technique consists of
three steps: selecting an AnimPho bt that both
connects to at–1 and has the most similar motion
trajectory with at; generating an intermediate mo-
tion segment mt based on at–1, at, and bt; and doing
motion interpolation on mt to produce the desired
number of animation frames for pt, based on the
inputted duration of pt.

Selection of bt. As mentioned earlier, at runtime, our
live speech-driven lip-sync approach still has a non-
trivial missing rate (on average, about 50 percent)
at the AnimPho selection step. To solve the possible

1

2

3

Miss

p1 p2 p3

4

6

7

9

5 8

11

1

1

1

3

1

2

2

Figure 5. Priority-incorporated AnimPho selection
strategy. Numbers in red boxes are the AnimPho
priority values.

Sentence no.

0.1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

M
is

s
ra

te

Our method
Naive method

1 2 3 4 5 6 7 8

Figure 6. The naive AnimPho selection strategy versus our approach. The naive approach has a higher missing
rate when tested on the same eight phrases.

 IEEE Computer Graphics and Applications 55

motion discontinuity issue between at–1 and at, we
need to identify and utilize an existing AnimPho
transition <at–1, bt> in the dataset such that bt has
the most similar motion trajectory with at. Our ra-
tionale is that the starting frame of bt can ensure a
smooth connection with the ending frame of at–1,
and bt can have a similar motion trajectory with
at in most places. We identify the AnimPho bt by
minimizing the following cost function:

b at
T a

t
t

= ()
∈ ()−

arg min ,
η

η
1

dist , (3)

where dist(η, at) returns the Euclidean distance
between at and η. Note that if at ∈ T(at–1), which
means a natural AnimPho transition exists from
at–1 to at in the dataset, Equation 3 is guaranteed
to return bt = at.

Generation of an intermediate motion segment, mt.
After bt is identi!ed, we need to modify it to en-
sure the motion continuity between the previous
animation segment at–1 and the animation for pt
that we’re going to synthesize. Here, we use ′bt to
denote the modi!ed version of bt. We generate an
intermediate motion segment mt by linearly blend-
ing ′bt and at.

All the AnimPhos (including bt, at–1, and at)
store the center of the corresponding motion seg-
ment clusters, as described earlier; they don’t re-
tain the original motion trajectory in the dataset.
As a result, the starting frame of bt and the ending
frame of at–1 may be slightly mismatched, although
the AnimPho transition <at–1, bt> indeed exists in
the captured motion dataset (Figure 7a). To make
the starting frame of bt perfectly match with the
ending frame of at-1, we need to adjust (via a trans-
lation transformation) bt by setting the starting
frame of bt equivalent to the ending frame of at–1

(Figure 7b).
Then, we linearly blend two motion segments,
′bt and at, to obtain an intermediate motion seg-

ment mt, as Figure 7c illustrates. As described ear-
lier, we use give evenly sampled frames to represent
a motion segment. Therefore, this linear blending
can be described as follows.

m i i b i i a i it t t[] = − −

× ′ []+

− × [] ≤ ≤1 1
4

1
4

1 5,((), (4)

where mt[i] is the ith frame of motion segment mt.

Motion interpolation. By taking the downsampled
motion segment mt as input, we use an interpola-
tion method to compute the !nal animation frames

for phoneme pt based on its duration. We calculate
the required number of frames N in !nal anima-
tion as N = duration(pt) × FPS, where duration(pt)
denotes the duration of phoneme pt and FPS is the
resulting animation’s frames per second.

In this work, we use the Hermit interpolation to
compute in-between frames in two sample frames.
The derivatives of the !ve sample frames are com-
puted as follows:

d i

d i

m i m i i

m

t

t

t t[] =
=

+[]− −[]() < <

−1 5 1

1 1 2 1 5

[]

/

if

if

tt ti m i i[]− −[] =

1 5if

, (5)

(a)

(b)

(c)

pt–1 pt Time

pt–1 pt Time

pt–1 pt

at ,

,

bt

at
bt

,
at
bt

mt

dt

Time

M
ot

io
n

M
ot

io
n

M
ot

io
n

Figure 7. The motion-blending and interpolation process. (a) After the
AnimPho selection step, we can see that either at or bt has a smooth
transition from the previous animation segment (denoted as the black
solid line). (b) We set the starting frame of bt equivalent to the ending
frame of the previous animation segment (for phoneme pt–1). (c) We
linearly blend at and ′bt to obtain a new motion segment mt and further
compute the derivatives of mt. Finally, we apply the Hermit interpolation
to obtain in-between frames.

56 January/February 2015

Speech Animation

where dt–1 is the derivatives of the previous downs-
ampled motion segment. As illustrated in Figure 7c,
the Hermit interpolation can guarantee the result-
ing animation’s C2 smoothness. Finally, we use mt
and dt to interpolate in-between animation frames.
The motion interpolation algorithm can be described
using Algorithm 1 (see Figure 8). Speci!cally, func-
tion p=HermitInterpolation(upper, lower,
α) takes the upper and lower sample frames as
input and computes the in-between frame corre-
sponding to α ∈ [0, 1].

Results and Evaluations
We implemented our approach using C++ without
GPU acceleration (see Figure 9). The off-the-shelf
test computer we used in all our experiments is
an Intel core I7 2.80-GHz CPU with 3 Gbytes
of memory. The real-time phoneme recognition
system is Julius, which we trained with the open
source VoxForge acoustic model. In our system,
the 3D face model consists of 30,000 triangles,
and a thin-shell deformation algorithm is used to
deform the face model based on synthesized facial
marker displacements. To improve the realism of
synthesized facial animation, we also synthesized
corresponding head and eye movements simul-
taneously by implementing a live speech-driven
head-and-eye motion generator.6

Quantitative Evaluation
To quantitatively evaluate the quality of our ap-
proach, we randomly selected three speech clips
with associated motion from the captured data-
set and computed the root mean squared error
(RMSE) between the synthesized motion and the
captured motion (only taking markers in the lower
face into account, as illustrated in Figure 2).

To better understand the accuracy of our ap-
proach in different situations, we synthesized mo-
tion in three cases, as shown in Table 1. Here, live
speech phoneme recognition means that the pho-
neme sequence is sequentially outputted from Julius
by simulating the prerecorded speech as live speech
input. Real-time facial motion synthesis means the
facial motion is synthesized phoneme by phoneme,
as described earlier. Our approach was used as the
synthesis algorithm in cases 1 and 2.

We also compared our approach with a baseline
method1 that adopts the classical Cohen-Massaro
co-articulation model7 to generate speech anima-
tion frames via interpolation. This method also
needs users to manually specify (or design) visemes,
which are a set of static mouth shapes that repre-
sent different phonemes. To ensure a fair compari-
son between our approach and the chosen baseline,
the visemes used in the baseline’s implementation1
were automatically extracted as the center (mean)
of the cluster that encloses all the representative
values of the corresponding phonemes.

Table 2 shows the comparison results. Case 2 has
the largest RMSE errors in the three test cases due
to the inaccuracy of live speech phoneme recogni-
tion. The RMSE error of case 1 is smaller than that
of the baseline approach in all three test cases, but
the animation results in case 1 are clearly better
than those in the baseline approach in terms of
motion smoothness and visual articulation.

Runtime Performance Analysis
To analyze our approach’s runtime ef!ciency, we
used three prerecorded speech clips, each of which
is about two minutes in duration. We sequentially
fed the speech clips into our system by simulating
them as live speech input. During the live speech-
driven lip-sync process, our approach’s runtime
performance was recorded simultaneously. Table
3 shows the breakdown of its per-phoneme
computing time. From the table, we can make two
observations.

First, the real-time phoneme recognition step
consumes about 60 percent of our approach’s to-
tal computing time on average. Its average motion
synthesis time is about 40 percent (around 40.85
ms) of the total computing time, which indicates
that our lip-sync algorithm itself is highly ef!cient.

Second, when we calculated the average phoneme
number per second in the test data and the average
FPS, we computed the average FPS as follows:

Average FPS

Number of Frames
Total Compute T=

()pi

iime()p
N

ii

N

=∑ 1
, (6)

Input: Sample frames, mt; the derivatives of sample frames, dt; the target
 number of frames, N.
Output: The interpolated sequence, St.
 1: for i = 1 → N do
 2: Find the upper and lower sample frame [lower, upper]= Bound(i)
 3: α = (i - lower)/(upper - lower)
 4: St[i] = HermitInterpolation(upper, lower, α)
 5: end for

Figure 8. Algorithm 1. For motion interpolation, we take the upper and
lower sample frames as input and then compute the in-between frame
corresponding to α ∈ [0, 1].

Table 1. Three cases/con!gurations for our lip-sync experiments.

Aproach Live speech phoneme recognition Real-time facial motion synthesis

Case 1 Not used Yes

Case 2 Yes Yes

Baseline Not used Yes

 IEEE Computer Graphics and Applications 57

where N is the total number of phonemes in the test
data; Number of Frames(pi) denotes the number
of animation frames needed to visually represent
pi, which can be simply calculated as its duration
(in seconds) multiplied by 30 frames (per second)
in our experiment; and Total Computing Time(pi)
denotes the total computing time used by our
approach for phoneme pi including the real-time
phoneme recognition time and motion synthesis
time. As Table 3 shows, the calculated average FPS
of our approach is around 27, which indicates that
our approach is able to approximately achieve real-
time speed on an off-the-shelf computer, without
GPU acceleration.

On the one hand, our approach is simple and
ef!cient and can be straightforwardly imple-

mented. On the other, it works surprisingly well
for most practical applications, achieving a good
balance between animation realism and runtime
ef!ciency, as demonstrated by our results. Because
our approach is phoneme-based, it can naturally

Table 2. RMSE of the three test speech clips.

Aproach Audio 1 Audio 2 Audio 3

Case 1 18.81 19.80 25.77

Case 2 24.16 25.79 27.81

Baseline 22.34 22.40 26.17

Figure 9. Experimental scenario. Several selected frames synthesized by our approach.

Table 3. Breakdown of our approach’s per-phoneme computing time.

Test audio
clip

Phoneme recognition
time (ms)

Motion synthesis
(ms)

Motion blending
(ms)

Average total time
(ms)

Average phonemes
per second

Average frames per
second (FPS)

1 76.73 38.56 0.16 128.28 8.84 25.62

2 90.13 39.10 0.14 144.40 7.29 30.03

3 93.80 44.89 0.15 142.23 7.43 26.77

58 January/February 2015

Speech Animation

handle speech input from different speakers,
assuming the employed state-of-the-art speech
recognition engine can reasonably handle the
speaker-independence issue.

Despite its effectiveness and ef!ciency, however,
our current approach has two limitations. One,
the quality of visual speech animation synthesized
by our approach substantially depends on the
ef!ciency and accuracy of the used real-time speech
(or phoneme) recognition engine. If the speech
recognition engine can’t recognize phonemes in
real time or does it with a low accuracy, then
such a delay or inaccuracy will be unavoidably
propagated to or even be exaggerated in the
employed AnimPho selection strategy. Fortunately,
with the continuous improvement of state-of-
the-art real-time speech recognition techniques,
we anticipate that our approach will eventually
generate more realistic live speech-driven lip-sync
without modi!cations. Two, our current approach
doesn’t consider affective state enclosed in live
speech and thus can’t automatically synthesize
corresponding facial expressions. One plausible
solution to this problem would be to utilize state-
of-the-art techniques to recognize the change of a
subject’s affective state in real time based on his
or her live speech alone; such information could
then be continuously fed into an advanced version
of our current approach that can dynamically
incorporate the emotion factor into the expressive
facial motion synthesis process.

As future work, in addition to extending the
current approach to various mobile platforms, we
also plan to conduct comprehensive user studies
to evaluate its effectiveness and usability. We also
want to investigate better methods to increase
phoneme recognition accuracy from live speech
and to !ducially retarget 3D facial motion capture
data to any static 3D face models.

Acknowledgments
This work was supported in part by NSF IIS-0914965,
NIH 1R21HD075048-01A1, and NSFC Overseas
and Hong Kong/Macau Young Scholars Collabora-
tive Research Award (project 61328204). We thank
Bingfeng Li and Lei Xie for helping with the Julius
system and for numerous insightful technical discus-
sions. Any opinions, "ndings, and conclusions or rec-
ommendations expressed in this material are those of
the authors and do not necessarily re!ect the views of
the agencies.

References
 1. B. Li et al., “Real-Time Speech Driven Talking

Avatar,” J. Tinghua Univ. Science and Technology, vol.
51, no. 9, 2011, pp. 1180–1186.

 2. Y. Xu et al., “A Practical and Con!gurable Lip Sync
Method for Games,” Proc. Motion in Games (MIG),
2013. pp. 109–118.

 3. P. Hong, Z. Wen, and T.S. Huang, “Real-Time Speech-
Driven Face Animation with Expressions Using
Neural Networks,” IEEE Trans. Neural Networks, vol.
13, no. 4, 2002, pp. 916–927.

 4. R. Gutierrez-Osuna et al., “Speech-Driven Facial
Animation with Realistic Dynamics,” IEEE Trans.
Multimedia, vol. 7, no. 1, 2005, pp. 33–42, 2005.

 5. Z. Deng and U. Neumann, “eFASE: Expressive Facial
Animation Synthesis and Editing with Phoneme-Level
Controls,” Proc. ACM SIGGGRAPH/Eurographics
Symp. Computer Animation, 2006, pp. 251–259.

 6. B. Le, X. Ma, and Z. Deng, “Live Speech Driven
Head-and-Eye Motion Generators,” IEEE Trans.
Visualization and Computer Graphics, vol. 18, no. 11,
2012, pp. 1902–1914.

 7. M.M. Cohen and D.W. Massaro, “Modeling
Coarticulation in Synthetic Visual Speech,” Models
and Techniques in Computer Animation, Springer, 1993,
pp. 139–156.

Li Wei is a PhD student in the Department of Computer
Science at the University of Houston. His research interests
include computer graphics and animation. Wei received a
BS in automation and an MS in automation from Xiamen
University, China. Contact him at xmuweili@gmail.com.

Zhigang Deng is an associate professor of computer science
at the University of Houston. His research interests include
computer graphics, computer animation, and human-computer
interaction. Deng received a PhD in computer science from the
University of Southern California. Contact him at zdeng4@
uh.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

