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Abstract Despite the popularity of polygonization of
implicit surfaces in graphics applications, an efficient solu-
tion to both polygonize and optimize meshes from implicit
surfaces on modern GPUs has not been developed to date.
In this paper, we introduce a practical GPU-based approach
to efficiently polygonize and optimize iso-surface meshes
for implicit surfaces. Specifically, we design new schemes
to maximally exploit the parallel features of the GPU hard-
ware, by optimizing both the geometry (vertex position, ver-
tex distribution, triangle shape, and triangle normal) and
the topology (connectivity) aspects of a mesh. Our exper-
imental results show that, besides significant improvement
on the resultant mesh quality, our GPU-based approach is
approximately an order of magnitude faster than its CPU
counterpart and faster than or comparable to other GPU
iso-surface extraction methods. Furthermore, the achieved
speedup becomes even higher if the resolution of the iso-
surface is increased.
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1 Introduction

Implicit surface, mathematically defined as the zero-level
iso-surface of a scalar-valued function, F : R3 → R, is a
widely used fundamental surface representation in computer
graphics applications. It can be visualized in two different
ways: ray-tracing or polygonization. While ray-tracing algo-
rithms can produce realistic and accurate rendering results,
they are notoriously time-consuming. Therefore, in recent
years polygonization of implicit surfaces has been popular-
ized in numerous graphics applications due to its efficiency
and flexibility.

Over the years, many polygonization algorithms have
been developed to convert implicit surfaces into correspond-
ing 3D meshes. Among them, the marching cubes (MC) algo-
rithm is probably the most used (or de-facto) algorithm for
such a task due to its simplicity and efficiency. To accelerate
the MC algorithm, researchers have designed various strate-
gies including octree data structure [3,4] and GPU-specific
acceleration schemes [7]. However, raw 3D meshes extracted
by the MC algorithm often suffer from artifacts. A vari-
ety of algorithms have been proposed to further optimize
the polygon meshes [1,6,8,12], but these mesh optimization
approaches typically run on the CPU, which is inefficient
especially for large-scale meshes. Furthermore, if we have
extra geometry information about a mesh, which is the case
in polygonized implicit surfaces, the optimization would be
much more accurate. However, the main technical challenges
are, on the one hand, the extracted polygons are unorga-
nized and thus not convenient for further optimization, and
on the other hand, many existing optimization methods are
not suitable for parallelization. Therefore, an important yet
under-explored research question is: can we design an effi-
cient and practical approach to both polygonize and optimize
iso-surface meshes for implicit surfaces directly on GPU?
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Inspired by the above observations, in this paper, we intro-
duce a practical GPU-based approach to efficiently poly-
gonize and optimize iso-surface meshes for implicit sur-
faces. Specifically, at the polygonization stage, compared
with existing GPU-based MC algorithms [7], we design spe-
cial data structures for GPU acceleration and construct con-
nectivity information by computing neighbors and detect-
ing boundaries. At the surface optimization stage, we design
new schemes to maximally exploit the parallel features of
the GPU hardware, by optimizing both the geometry (ver-
tex position, vertex distribution, triangle shape, and triangle
normal) and the topology (connectivity) aspects of a mesh.
Through our comparison experiments, we demonstrate that,
besides significant improvement on the resultant mesh qual-
ity, our approach can achieve approximately an order of mag-
nitude faster speed than CPU-based algorithms for the same
task, and is faster than or comparable to other GPU-based
methods, in particular for large-scale datasets.

The main contribution of our work is a new paral-
lel approach to efficiently construct high-quality polygon
meshes from implicit surface representations. Different from
other polygonization algorithms, which generate a polygon
soup or a group of indexed triangles, our approach adds a
stage of connectivity reconstruction that enables optimiza-
tion of not only vertex positions but also normals, regularity
and even connectivity itself. Our approach can be used in
a broad variety of graphics applications including, but not
limited to, surface reconstruction, implicit surface modeling,
and volume data visualization.

The remainder of the paper is organized as follows.
Section 2 briefly reviews related research efforts. Section
3 describes how to perform iso-surface polygonization on
GPUs. Section 4 describes the parallel mesh optimization
algorithms on GPUs. Finally, experimental performances and
concluding remarks are presented in Sects. 5 and 6, respec-
tively.

2 Related work

2.1 Iso-surface extraction

The marching cubes (MC) algorithm introduced by Lorensen
and Cline [19] is one of the widely used algorithms in sci-
entific visualization and 3D surface reconstruction applica-
tions [9]. In this seminal approach, 3D space is partitioned
into cubes; the cubes are polygonized. Unlike the uniform
space partition scheme in the standard MC algorithm, Bloo-
menthal proposes an adaptive octree space partition scheme
to improve the algorithm efficiency [3,4]. While the octree
structure gives a higher performance of the polygonization
process, constructing the adaptive octree on GPUs is signifi-
cantly less efficient than the uniform space partition scheme.

Lempitsky extracts iso-surfaces from binary volumes by
imposing higher order smoothness [14]. In addition, Hart-
mann uses a continuation method to triangulate implicit sur-
faces [11], but this method is not suitable for parallelization.

Many research efforts have been focused on the devel-
opment of parallel approaches to improve the performance
of implicit surface polygonization. Shirazian et al. [29] take
advantage of multicore processors and SIMD optimization
to render complex implicit models. Dias et al. [7] propose a
parallel marching cubes algorithm to polygonize convolution
molecular surfaces. Tatarchuk et al. [31] use programmable
shaders to extract and render iso-surfaces. Löffler et al. [18]
parallelize the dual marching cubes method [22] to extract
manifold surfaces from terrain data set. Schmitz et al. [28]
implement a modified dual contouring on the GPU. Different
from the original dual contouring algorithm, they replace the
QR factorization with a particle-based approach, which itera-
tively moves the vertices of the quad towards the iso-surface.
There are also several CUDA-based versions of the marching
cubes algorithm. Nvdia CUDA SDK [39] provides a simple
parallel implementation that generates unorganized triangles
which are enough for visualization but difficult to perform
further optimization. The most recent CUDA-based MC is
probably the Griffin et al.’s version [10]. To get indexed trian-
gles, they sort and hash the vertex buffer and index triangles
by binary searching the vertices in a hash buffer. Connectivity
information is implicitly used when performing summation
in an one-ring neighbor. Different from their algorithm, our
connectivity information is explicitly calculated, making it
more efficient for neighbor access.

2.2 Mesh optimization

Mesh optimization is the process of improving the quality of a
mesh. Specifically, mesh quality is often referred to the sam-
pling, grading, regularity, size or shape of its elements [1].
As one of the early efforts, Taubin [32] introduces Laplacian
operations for mesh optimization by iteratively moving each
vertex towards the center of its neighbors. Laplacian mesh
optimization is originally designed to smooth a noisy mesh,
but it can be used to improve triangle shape as well, because
the Laplacian vector contains both normal and tangential
components. Researchers have used mean curvature flows
[6] or bilateral filters [8,12] to smooth the mesh while pre-
serving its features as much as possible. These methods move
the vertices only in normal direction, without taking triangle
shape into account. Ohtake and Belyaev [24] simultaneously
optimize the smoothness and regularity of a mesh by com-
bining the mean curvature flow and the tangential component
of the Laplacian vector. These methods are implemented on
CPU. But since they adopt a local optimization strategy, these
methods are inherently suitable for GPU implementation.
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A frequently used method to make vertices evenly sam-
pled is centroidal Voronoi tessellation (CVT). Liu et al. [15]
prove that the CVT energy is almost C2 smoothness and
therefore can be optimized by a Newton-like method which
is much faster. CVT later is extended to hyperbolic space [25]
and supports acceleration on the GPU [26]. A similar idea is
to perform optimization with particles by adding a repelling
force among them. Meyer et al. [20] use an energy func-
tion which is compact, scale-invariant curvature-dependent,
and efficient for computation to sample implicit surfaces.
Meyer et al. [21] extract high-quality iso-surface meshes
from dynamic particles. They first compute a median axis to
characterize the feature size, and then adaptively sample par-
ticles and generate triangle meshes using a Delaunay trian-
gulation triangulations. Zhong et al. [36] map the anisotropic
space into a higher dimension isotropic one, sample and opti-
mize vertices of the surface and then map them back to the
original space to get anisotropicity. Liu et al. [16] extract and
optimize iso-surfaces simultaneously from a point cloud, tak-
ing advantage of the relation between original data and the
reconstructed mesh, which is similar to our idea. The main
difference between these optimization methods and ours is
that we optimize the mesh directly while they construct a
mesh as the final step.

3 Iso-surface polygonization on GPU

3.1 Approach overview

The standard MC algorithm [19] typically results in a group
of unorganized triangles (polygon soup). However, for many
applications (e.g., mesh editing and deformation), organized
triangles with connectivity information are needed. In this
work, we polygonize iso-surfaces from implicit surfaces on
GPU in the following way: first, we generate mesh vertices
and faces from implicit surfaces or volumetric data. Then, we
construct connectivity information by computing neighbors
and detecting boundaries. The finial output data from our
approach include the following data structures:

• Vertex buffer: the coordinates of each vertex,
• Face buffer: the indices of three vertices of each face,
• Neighbor vertex buffer: the indices of all the vertices in

one-ring neighbor of each vertex,
• Neighbor face buffer: the indices of all the faces in one-

ring neighbor of each vertex,
• Boundary buffer: the true/false mark of each vertex.

3.2 Mesh extraction

The main difference between our MC algorithm and the stan-
dard MC algorithm [19], besides the parallelization aspect,

Fig. 1 Top face extraction in a cube. Here grid edges are marked in
green. Bottom buffers used in the face extraction process. The “Vertex
Index” is prefix summed from the “Vertex Counter”. We have omitted
those grid edges that do not contain a vertex

is that the extracted faces by our MC algorithm are stored
in the form of vertex indices rather than vertex coordinates
in the standard MC algorithm. The essential problem here is
how to automatically generate vertex indices, which is non-
trivial in parallel situation because they are listed in a serial
manner. We use a parallel prefix-summation (scan) method
[27] to determine the index of a vertex, utilizing the CUDA
Data Parallel Primitives (CUDPP) library [38].

Figure 1 shows an example of extracting two faces in a
cube. Given a volumetric data in a regular grid form (raw
data or sampled from an implicit function), first, we process
each grid edge to extract all the vertices. At the same time, a
vertex counter buffer is generated to indicate the number (0
or 1) of vertices on each grid edge. Then, we prefix-sum the
buffer so that each vertex is assigned with an index, which is
actually the number of visited vertices before this vertex is
assigned. The total number of vertices is computed alongside.
Similarly, we compute the total number of faces. Finally,
we deal with each cube to extract faces, and the indices of
their vertices are referred from the summed vertex counter
buffer.

Algorithm 1 describes our parallization of the MC algo-
rithm. Note that we do not address the ambiguity problem of
MC, which can be corrected by algorithms such as [23] and
[2]. Furthermore, this ambiguity problem will not essentially
affect our parallelization of mesh extraction.
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Algorithm 1 Parallel Iso-surface Extraction
1: for each grid edge i parallely do
2: if it intersects with the iso-surface then
3: Set its vertex counter vci = 1
4: Compute vertex position Pi
5: else
6: Set its vertex counter vci = 0
7: end if
8: end for
9: Prefix-sum vc to generate vertex indices
10: for each grid cube i parallely do
11: if it intersects with the iso-surface then
12: Compute the number of triangles k in the cube
13: Set its face counter f ci = k
14: else
15: Set its face counter f ci = 0
16: end if
17: end for
18: Prefix-sum f c to generate face indices
19: for each grid cube i parallely do
20: for each triangle f in the cube do
21: Find the grid edges where f ’s vertices locate
22: Find f ’s vertex indices according to the grid edges
23: end for
24: end for

Algorithm 2 Parallel Construction of Connectivity Informa-
tion
1: for each face f : v1v2v3 parallely do
2: Add v1 to v2’s neighbor
3: Add v2 to v3’s neighbor
4: Add v3 to v1’s neighbor
5: Add f to v1’s face neighbor
6: Add f to v2’s face neighbor
7: Add f to v3’s face neighbor
8: end for

3.3 Connectivity construction

Our algorithm frequently needs to sum across a vertex’s one-
ring neighbors. With indexed vertices, this can be accom-
plished via CUDA atomic functions [10]. Different from [10],
we explicitly store the one-ring neighbor information of a
vertex. We do use atomic functions, only once, to construct
one-ring connectivity. After that, summation across neigh-
bors can be processed inside the GPU kernel. We present our
connectivity construction approach in Algorithm 2. By just
adding a vertex or a face into another’s neighbor, Algorithm 2
seems trivial at first glance. However, our experiments show
that it is actually very time-consuming, because we have to
use atomic functions when parallel writing data into other
threads’ resources. This is also the reason we try to avoid
such function calls as much as possible.

3.4 Detection of boundary vertices

Detecting boundary vertices is an important part in our
approach, because they behave differently from interior

Algorithm 3 Parallel Detection of Boundary Vertices
1: for each vertex i parallely do
2: for each v j in vi ’s neighbor do
3: if cannot find vi in v j ’s neighbor then
4: Mark v j as a boundary vertex
5: Add vi to v j ’s neighbor
6: end if
7: end for
8: end for

vertices in the follow-up optimization process. Besides,
Algorithm 2 is incomplete on boundaries. An interior edge
is shared and thus processed by two faces, so the end points
mutually include each other into their neighbors. A boundary
edge, however, is only processed once, making one end point
lose its counterpart as a neighbor. To this end, we introduce
Algorithm 3 to detect boundary vertices and recapture the
lost information. In brief, for any vertex, the algorithm tra-
verses its neighbors to find whether all of them consider this
vertex as their neighbor. If not, this vertex will be detected
as a boundary vertex.

4 Mesh optimization on GPU

4.1 Approach overview

To parallelly optimize a polygonized iso-surface on GPU, we
adapt the surface flow method [24]. This method moves mesh
vertices on a surface without changing its topological con-
nectivity. We modify the three flows in [24] to make it more
efficient. These flows optimize vertex positions, normals,
and triangle shape (regularity), respectively. Unlike CVT or
particle-based methods [15,20], connectivity of the mesh is
fixed during our optimization stage with surface flows. This
might not be optimal, but keeping connectivity unchanged
and explicitly stored is more efficient to access neighbors
of a vertex, which is required in the normal adjustment and
regularity adjustment. We employ an parallel edge flipping
operation to optimize the connectivity and further improve
the quality of the mesh. Figure 2 illustrates the pipeline of
our optimization stage.

4.2 Vertex position adjustment

The vertices of the initial mesh are not exactly on the iso-
surface because the extraction process is approximative. We
project the vertices onto the zero-level set as close as possible.
Since the vertices are already close to the implicit surface,
the Newton method can be used to adjust their positions. For
an implicit surface f (x, y, z) = 0 and a nearby vertex P, we
move it along its gradient direction ∇ f (P) to find a position
P′ on the surface. This is equivalent to find t which satisfies
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Fig. 2 Overview of our optimization scheme

Fig. 3 Vertex position adjustment. The used tooth surface is: x4 + y4 +
z4 − x2 − y2 − z2 = 0. An initial mesh with 41,728 triangles, extracted
by MC (left). The updated result using ten iterations of Eq. (4), which
took 0.570 ms on GPU (right)

the following function:

f (P′) = f (t∇ f (P) + P) = 0. (1)

If P is close to the solution, i.e., t∇ f (v) is small, we use a
first-order Taylor expansion for approximation as follows:

f (P + t∇ f (P)) ≈ f (P) + (t∇ f (P))∇ f (P) = 0. (2)

Thus, we get

t = − f (P)

||∇ f (P)||2 , (3)

and consequently

P′ = P + t∇ f (P) = P − f (P)∇ f (P)

||∇ f (P)||2 . (4)

The difference between our vertex position adjustment
method and the “Z-flow” method used in [24] is that our
approach does not need to compute the step size for gradi-
ent decent. Theoretically, iteratively using Eq. (4) can attract
vertices to an iso-surface arbitrarily close. In practice, the
achieved precision is limited to GPUs. Figure 3 shows the
result of optimizing a tooth surface using the vertex position
adjustment.

4.3 Regularity adjustment

The above procedure smoothes regions with low curvatures.
However, as demonstrated in the top row of Fig. 4, there are

Fig. 4 Regularity adjustment: corner of the tooth surface

still artifacts in high curvature regions. The naive MC algo-
rithm may produce elongated triangles because the initial
mesh could be unevenly sampled. In low curvature regions,
the sample rate does not obviously affect the geometry and
visualization. On the contrary, it is more non-linear in high
curvature regions, which leads to uneven sampling. Since
the sampling rate depends only on the 3D regular grid, the
unevenly sampled regions will appear to be under-sampled
and thus the mesh will not be smooth in such regions. The
vertex updating procedure, although giving a better geometri-
cal approximation, does not improve the distribution of mesh
vertices, because it operates only on the normal direction. As
a result, it is the tangential-direction adjustment that we need
for further optimization.

The simplest way is to use the tangential Laplacian oper-
ator [5] as follows:

P′ = P + L − (L·n)n, (5)

where L is the discrete Laplacian operator, and n is the nor-
mal. The uniform Laplacian L = 1

n

∑
j∈N (i)(v j − vi ) is

used here because it is simple and the cotangent Laplacian is
parallel to the normal [6].

Ohtake et al. [24] use a similar “R-flow” equation: P′ =
P + C(L − (L·n)n) with a step-size coefficient C = 0.1.
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(a) (b)

Fig. 5 a If the angle between the mesh normal mk and the target nor-
mal nk is large, the triangle (red dotted line) will shrink severely. b
If the two normals form an obtuse angle, the triangle will result in an
opposite normal. In this figure, the black line segment and the black

arrow represent a triangle and its normal, respectively. The red arrow
is the target normal, and the blue arrows are the updating vectors that
move the vertices to the new positions as the red dotted line stands for

A small step size ensures small displacements in the normal
direction. On the contrary, we use a large step size (equivalent
to C = 1) to accelerate the convergence. Enlarged position
errors can be reduced by the vertex updating procedure men-
tioned above. Compared to the method in [24] which needs
20 iterations, an average of 3∼5 iterations are enough in
our approach. Another difference between our approach and
the work of [24] is that they use the mesh normal while we
use the real normal in Eq. (5). Since calculating a discrete
normal requires one-ring information, which leads to con-
siderable amount of data transfer, it is preferred to postpone
the estimation of discrete normals to the rendering stage. The
bottom row of Fig. 4 is the result after one iteration of regu-
larity adjustment with vertex adjustment.

4.4 Normal adjustment

Taubin [33] smoothes a mesh by first smoothing its normal
field and then repositioning the mesh vertices according to
the new normals. By exploiting the orthogonality between
the normal and the three edges of a face, his method uses
the gradient descent algorithm to update vertex positions as
follows:

x′
i = xi + λ

∑

k∈FV (i)

∑

j∈∂ fk

nk(nk(x j − xi )). (6)

Sun et al. [30] proved that if λ ≤ 1/3|FV (i)|max (FV (i) is the
set of faces that share a common vertex Vi ), then the vertex
updating Eq. (6) is convergent.

Our approach uses a simplified version suggested in the
work of [30], as described below:

x′
i = xi + 1

6

∑

k∈FV (i)

nk(nk(ck − xi )), (7)

where ck is the centroid of triangle k.
We found, however, such iterative normal updating process

may generate artifacts if the source normal (the mesh normal)

Fig. 6 Updating a tooth surface using a sphere normal field. The input
tooth surface (left); some triangles with negative normals lie on the
front surface (right), i.e., they are incorrectly flipped

and the target normal diverge greatly. Figure 5 is a 2D illustra-
tion of the situation mentioned above. From the figure, we can
find that when the angle between the two normals are large,
the triangle has a visually noticeable shrinkage. It is even
worse when the angle is obtuse as shown in Fig. 5b. Since
(−n f )((−n f )(c f − xi )) is equivalent to n f (n f (c f − xi )),
the resultant normal (the green arrow) will be opposite to the
target normal, which may lead to folded triangles. Figure 6
is the result of updating a tooth surface by a sphere normal
field, using Eq. (7). Although the shape is still globally cor-
rect, some triangles on the sphere have inward normals and
thus are displayed in the front-culling mode.

It is noteworthy that applying the regularity adjustment
before the normal adjustment can nicely solve the above
issue. In other words, this not only evens mesh edges but
also expands folded triangles. Figure 7 shows the result of
optimizing iso-surfaces extracted from implicit functions.

4.5 Discrete data

In some cases, we do not have an analytic function, or com-
puting function values and/or gradients is computationally
expensive. This requires us to use discrete data in the form of,
for example, a uniform grid. The above optimization process
needs to calculate the function value for an arbitrary position,
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(a) (b)

Fig. 7 Iso-surface optimization. Note that fine details are recovered by
our approach

Fig. 8 Artifacts on discrete data. Left the initial mesh; right the opti-
mized result using a trilinear interpolation instead of the implicit func-
tion

which can be achieved by a linear interpolation in discrete sit-
uations. However, a linear interpolation approach may result
in rough surfaces as shown in Fig. 8. Although a higher order
data smoothing approach can be employed, it is costly for
some practical applications. Note that optimization for dis-
crete data does not necessarily mean to move a vertex to its
corresponding exact position. Therefore, we can optimize the
mesh using the regularity adjustment and the normal adjust-
ment only. Figure 9 is the result of extracting and optimizing
iso-surface from volumetric data.

4.6 Edge flipping

An initial mesh can be significantly optimized using above-
mentioned three surface flows. One advantage of our algorithm

is that we construct mesh connectivity after extraction,
enabling us to perform the normal optimization and regularity
optimization which need one-ring neighbor information. The
connectivity information, however, can be more widely used.
In this section, we introduce a parallel algorithm that will
modify the connectivity. Such a stage is not mandatory, but it
further optimizes triangles’ shape and distribution of vertices.

A vertex of a triangle mesh is called regular if the number
of its neighboring vertices is 6 for interior vertices or 4 for
boundary vertices, referred to as the target valence in this
writing. According to Euler’s formula, fully regular meshes
can be generated only for a very limited number of input
models, namely those that topologically are (part of) a torus
[5]. Our algorithm uses edge flipping, which is more efficient
on the GPU than changing the number of vertices and faces.

Computing flipping neighbors We use Eq. (8) to compute the
profit value of flipping an edge. If its profit value is larger than
a threshold th, this edge needs to be flipped. But this does
not mean it will be flipped since we need to ensure that every
vertex flips only one linking edge each time. This constraint
is exactly enforced to guarantee the consistency among their
neighbors for parallelization.

Profit(ei j ) = δ(valence( j) > targetValence( j))

+ δ(valence(h) < targetValence(h))

+ δ(valence(k) < targetValence(k)), (8)

where δ(x) is a Boolean function. Note that we do not count in
δ(valence(i) > targetValence(i)) because we perform profit
test only for those vertices whose valences are larger than
their target valences. Next, for an edge that passes the profit
test, if all of its relevant four vertices are available (i.e., they
have no linking edge waiting to be flipped), as illustrated in
Fig. 10, then it will be flipped at the next stage. We store
vertex j as vertex i’s flipping neighbor and vice versa.

Flipping edges For a vertex that has an edge to be flipped,
we adjust its neighbor information as well as its right-side

Fig. 9 Iso-surface optimization of volumetric data. a A neghip data in a 643 volume; b a skull data in a 1283 volume
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Fig. 10 Illustration of the edge flipping process

vertex’s neighbor information, and change its right-side face.
The left side is processed by its flipping neighbor (i.e., the
other vertex on the flipped edge). Figure 10 illustrates the
edge flipping process.

Multi-threshold converging The only parameter in the above
algorithm is the threshold th. A simple strategy is to set th as a
constant. For example, th=0 means that we perform edge flip-
ping if and only if at least two vertices benefit from it. There is
a trade-off when choosing a proper th value. Specifically, if th
is too large, the resulting mesh may contain many non-regular
vertices; and if it is too small, the algorithm converges slowly
and may lead to uneven sampling. In our approach, we use a
multi-threshold strategy, which progressively reduces the th
value from 2 to 0 (see Fig. 11). Our experimental results show
that our strategy requires fewer iterations and can robustly
eliminate most non-regular vertices.

5 Results and analysis

We implemented our approach on an off-the-shelf computer
with Intel Q9400 2.66GHz CPU. An NVIDIA GeForce GTX
260 GPU with CUDA 3.2 architecture was used for paral-
lelization.

The performance statistics of our algorithm is listed in
Table 1. For the extraction stage, the computational com-
plexity of our algorithm is O(n3), where n is the dimen-

Fig. 11 Optimization of mesh regularity. Top a neghip data where non-
regular vertices are highlighted in red. Left the initial mesh; right the
optimized mesh. Bottom a RBF bunny data. Left the initial mesh; mid-
dle: after regularity adjustment; right after edge flipping

sion of the regular grid. For the connectivity reconstruction
stage and the optimization stage, the complexity is O(nF ),
where nF is the number of mesh faces. Note that the time
spent on the connectivity construction increases dramatically
with the mesh size. As mentioned in Sect. 3, this can be
explained by atomic operations at this stage, which we do
not want to postpone to the next stage. The surface flow time
largely depends on the complexity of the implicit function.
For example, the diamond surface is a trigonometric sur-
face, while the dingdong surface is a polynomial surface.
As a result, their vertex adjustment time is far away from
being proportional to their vertex numbers at the optimization
stage.

Table 2 reports the achieved CPU/GPU speedup of our
approach. Here, we use the diamond surface with different

Table 1 Performance statistics of our approach

Model # of vertices # of faces Extraction Connectivity
construction

Position
adjust

Normal
adjust

Regularity
adjust

Edge
flipping

Total

Heart 2,004 4,004 0.893 0.427 0.074 0.085 0.059 1.676 2.41

Tooth 5,232 10,460 0.552 0.819 0.095 0.117 0.082 1.663 2.841

Bucky 7,817 15,088 0.587 1.32 N/A 0.195 0.104 2.47 3.402

Dingdong 10,676 21,078 2.453 2.009 0.145 0.334 0.131 2.414 7.512

Neghip 24,747 49,176 3.339 4.481 N/A 1.114 0.578 3.621 16.28

Engine 76,864 153,812 9.294 12.96 N/A 1.768 0.994 22.51 36.06

Skull 219,280 430,286 12.08 41.54 N/A 4.163 2.316 59.69 86.02

Diamond 545,274 1,078,862 16.81 65.44 2.56 10.48 7.015 73.56 182.5

Position, normal and regularity adjustment are timed for one iteration. For the total time, we use five iterations of the three surface flow, and the
time of edge flipping is not included. All timings are given in milliseconds
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Table 2 The achieved CPU/GPU speedup for the diamond surfaces with different resolutions

Model # of vertices Polygonization Optimization Total

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

Diamond_16 8,580 6.36 2.3 2.77 296.62 6.571 45.1 302.98 8.871 34.2

Diamond_32 34,068 44.5 8.47 5.25 938.21 16.565 56.6 982.71 25.035 39.3

Diamond_64 136,236 262.8 30.95 8.49 4644.1 79.65 58.3 4906.9 110.6 44.4

Diamond_128 545,274 1627 111.5 14.5 17859 257.6 69.3 19486 369.1 52.8

All timings are given in milliseconds

Table 3 Running time of our MC and other GPU MC methods

Model # of faces Ours HPDC_10 TVCG_12

Chmutov_64 64 k 3.27 2.13 7.97

Chmutov_128 190 k 9.29 5.46 22.6

Diamond_128 107 k 16.8 8.60 71.7

Diamond_172 1,623 k 29.8 16.7 137.1

All timings are given in milliseconds

Fig. 12 Extraction and optimization with Chmutov surface (top row)
and diamond surface (bottom row). HPDC_10 (left); TVCG_12 (mid-
dle); ours (right)

resolutions. Our results show that the speedup (i.e., accelera-
tion ratio) achieved by our approach is higher if the resolution
of iso-surface is increased.

We compared our algorithm with several existing GPU-
based MC algorithms in Fig. 12 and Table 3. HPDC_10 [7]
is faster than our implementation because their method only
generates a triangle soup and requires fewer GPU kernels. A
triangle soup is good enough for visualizing molecular sur-
faces but too simple for further optimization. Similar to our
method, TVCG_12 [10] generates indexed triangles with ver-
tex hashing and binary search. Their method requires fewer
memory but is about 2–4 times slower than ours.

For an implicit surface f (x) = T , we introduce three
quantitative error metrics to analyze the optimization process:

Fig. 13 Average and maximum errors decrease with the iterations.
X-axis is the number of iterations and Y -axis is the error metric. Left
Chmutov surface; right column dingdong surface

• Position error: Ev = | f (v) − T |2;
• Normal error: En = |∇ f (v) − n(v)|2, where n(v) is the

normal of vertex v;
• Regularity: Er = |t |∞

2
√

3r
, where |t |∞ and r denote the

greatest edge length and the inradius of t .

Figure 13 and Table 4 show the effectiveness of our optimiza-
tion process. The error metrics mentioned above are greatly
reduced after optimization. As shown in Fig. 13, errors con-
verge quickly as the iteration goes. Our experiments show
that 3∼5 iterations are typically sufficient to get a high-
quality mesh for most cases.

Dual Contouring (DC) [13] is one of the most widely used
polygonization methods, which optimizes vertex positions to
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Table 4 Maximum and average errors of position, normal and regularity of polygonized implicit surfaces before and after optimization

Position error Normal error Regularity error

Average Max Average Max Average Max

Dindgong_64 8.89e−07/1.40e−14 5.92e−6/2.87e−13 2.08e−04/3.98e−06 3.14e−03/1.38e−04 3.28/0.12 212/3.71

Chmutov_64 2.37e−03/1.94e−12 0.014/1.53e−10 3.53e−03/2.85e−04 0.056/0.018 2.54/0.09 107/0.59

Table 5 Quality comparison with GPU-based dual contouring

Position error Normal error Regularity

Dual contouring Our method Dual contouring Our method Dual contouring Our method

Chmutov 1.72−12 (7.06−11) 2.06−12 (7.87−11) 9.32−4 (1.86−2) 2.98−4 (1.58−2) 1.78 (8.91) 1.23 (1.67)

Dingdong 1.31−14 (1.74−13) 1.27−13 (1.33−11) 3.46−4 (6.08−3) 2.43−12 (4.33−4) 1.82 (28) 1.25 (3.26)

Average errors are listed, with maximum errors given in parentheses

Table 6 Time comparison (in millisecond) with a GPU-based Dual Contouring

Model # of vertices Extraction Connectivity
construction

Optimization Total GPU dual
contouring

Chmutov 23134 3.09 3.12 5.99 12.2 6.80

Dingdong 10559 2.75 1.68 3.05 7.48 6.05

Here we use five iterations in optimization

get a high-quality iso-surface. We compared our optimiza-
tion with the GPU Dual Contouring algorithm (DC) [28].
Table 5 shows that the position errors are similar for the two
algorithms. However, our approach produces smaller normal
and regularity errors. Table 6 shows the time comparison of
the two algorithms. The main difference between our algo-
rithm and DC is that ours has a connectivity reconstruction
stage while DC cannot deal with one-ring information. Our
algorithm is relatively slower than the GPU-based DC due
to the connectivity reconstruction. However, this stage is the
reason that we can optimize not only the vertex positions but
also normals, triangle aspect ratio and other potential surface
flows that require neighbor information.

6 Conclusion and future work

In this paper, we present an efficient and practical GPU-
based approach to polygonize and optimize iso-surfaces for
implicit surfaces. Our experimental results show that our
approach can robustly generate high-quality triangle meshes
efficiently, and our GPU-based approach is approximately
an order of magnitude faster than its CPU counterpart. Fur-
thermore, the achieved speedup becomes even higher if the
resolution of the iso-surface is increased. Our method can be
used for implicit function and volume data, and is possible
to be extended to other data models such as offset surface
[34,35]. Our approach can also be applied in sketch-based

modeling using implicit surfaces to get high-quality tessel-
lated meshes [37].

Although our algorithm is effective and efficient, it has
some limitations. First, if we perform a connectivity surgery,
such as the edge flipping algorithm in Sect. 4.6, although the
regularity of a mesh can be further improved, the increased
time is not negligible. Second, due to our explicit storage of
neighbor information, memory consumption will be a prob-
lem for large meshes.

Our approach can be further improved in several direc-
tions. First, to efficiently handle some cases where high-
resolution initial meshes are input or we need to deal
with very large volume datasets, incorporating a divide-and-
conquer strategy and GPU memory management becomes
necessary, which is absent in our current approach. A pos-
sible way to deal with large data can be found in [17]. Sec-
ond, how to reduce the GPU bandwidth of data transmission
when iteratively optimizing the mesh remains to be further
explored, and we would like to leave it for future work. Third,
at the mesh regularity adjustment step, our current data struc-
ture can be further improved so that no atomic operation is
needed. In the future, we will explore the possibility of mesh
optimization by locally fitting an implicit surface and evolv-
ing the noisy mesh towards it.
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