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ABSTRACT

To precisely understand human gaze behaviors in three-party
conversations, this work is dedicated to look into whether the
speaker can be reliably identified from the interlocutors in a
three-party conversation on the basis of the interactive behav-
iors of eye contact, where speech signals are not provided.
Derived from a pre-recorded, multimodal, and three-party
conversational behavior dataset, a statistical framework is pro-
posed to determine who is the speaker from the interactive
behaviors of eye contact. Additionally, with the aid of vir-
tual human technologies, a user study is conducted to study
whether subjects are capable of distinguishing the speaker
from the listeners according to the gaze behaviors of the inter-
locutors alone. Our results show that eye contact provides a
reliable cue for the identification of the speaker in three-party
conversations.
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INTRODUCTION

Occurring in the visual channel, nonverbal behaviors con-
tribute to the flow of conversation including gaze, facial ex-
pressions, head rotations, gestures, etc. These behaviors are of
importance in technology-mediated communication, such as
videoconferencing and interactions with embodied conversa-
tional agents (ECASs) in virtual worlds. Indeed, the rendition
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of natural nonverbal behaviors is essential to increase the ap-
preciation and the effectiveness of mediated interactions [7,
39, 11, 6, 14].

To improve the quality of mediated interaction, tremendous
progresses have been made to synthesize nonverbal behaviors
for virtual humans as the speaker or a listener in a conversation.
Often, the synthesized speaker behaviors are assumed to be
independent of listeners [3, 4, 15, 25, 24, 27,9, 8§, 10]. On the
other hand, the behaviors of virtual listeners in some previous
works [26, 30, 29] are typically driven by the detected motions
of the user (i.e., the human speaker), which implicitly rely on
an over-simplified hypothesis that the listener behaviors are
submissive to those of the speaker.

It could be untrue that the behaviors of the speaker and listen-
ers are independent of each other or that one is submissive to
the other one. Indeed, the interactions between two interlocu-
tors exhibit varying degrees and patterns of mutual influence
along several aspects such as talking style/prosody, gestural
behavior, engagement level, emotion, and many other types of
user states [3], which implies that the speaker and listener be-
haviors interact with each other. In the works mentioned, such
interactions have not yet been merged into the synthesized
animations for virtual speakers and listeners. This could prob-
ably result from that it is also unclear whether merging such
interactions can improve the quality of mediated interactions.

Additionally, the above works targeting two-party conversa-
tions on behavior synthesis could not be straightforwardly ex-
tended to multiparty conversations due to the obvious change
of the spatial arrangement between the speaker and the listen-
ers. Such a gap could probably result from that the occurrences
of a specific interaction, namely eye contact in multiparty con-
versations, have been relatively understudied to date.

In light of the above gaps, an intriguing yet widely open re-
search question is, whether the rendition of interactions of
nonverbal behaviors can improve the quality of mediated inter-
action. As the first step, we focus on the specific interaction of
eye contact and conduct a multifaceted study on whether the
speaker can be effectively identified from the interlocutors in



a three-party conversation based on eye contact, which could
provide detailed and precise understanding of human-human
interaction than the direct rendition of eye contact. This would
also provide indisputable evidence that eye contact can offer
informative feature to the synthesis of nonverbal behaviors.

Eye contact occurs when two interlocutors are looking at each
other. It is determined by the gaze directions of the inter-
locutors. The gaze is manifested via the combination of head
orientation and eye orientation [22, 23]. It can be determined
by head orientation only if the eyes keep still at the center of
the orbit. So, it is critical to investigate the difference between
the contributions of head and of eyeball to the identification
of the speaker from the interlocutors, which could facilitate
researchers to work on the better synthesis of gaze, head and
eyeball in various applications.

The seminal work by Rienks et al. [35] has reported that peo-
ple can use knowledge of head motions in the azimuth plane to
distinguish the speaker from the listeners but that head alone
does not provide a sufficient cue for reliable identification
of the speaker in a multiparty conversation. Their investiga-
tion is carried out through subjective judgments where human
observers are invited to watch the video clips of four virtual
humans in a meeting and to identify the speaking virtual hu-
man. The virtual humans are only rotating their heads in the
azimuth plane by displaying pre-recorded human data; neither
other nonverbal behaviors are rendered nor speech signals are
provided. Moreover, in each video clip, only one speaker
is speaking, without turn-taking, overlapping speech, and si-
lence.

Our study relies on a collected three-party conversational be-
havior dataset. The simultaneously collected data include the
azimuth angles of head and eyeball and speech signals. Such
data enables us to get insights into eye contact occurrences in
a conversation. The objective and subjective studies are both
carried out to identify the speaker from the interlocutors in
three-party conversations. In the objective study, a Markov
process is trained to encode the differences of eye contact
patterns according to the interlocutors’ statuses (speaking or
listening), and then it is used to distinguish the speaker from
the listener(s) using eye contact information as the input. In
the subjective study, participants are invited to judge who is
speaking and who is/are listening by observing the gaze behav-
iors of virtual humans in a conversation without speech signals,
where the virtual humans are animated by pre-recorded human
movement data. Moreover, our work takes insight into the
trend of the identification accuracy along with the increasing
length of speaker turn in both objective and subjective studies.

To the best of our knowledge, the only previous work that
is directly relevant to our work is the aforementioned work
[35]. There are several major differences between our work
and [35]:

1. Our study is exactly based on eye contact behavior, while
technically speaking their work is not. Specifically, our
study considers both the head orientation and eyeball behav-
ior to estimate eye contact, but their work considered head
orientation alone. Indeed, their work fundamentally relies

on a key assumption that the participants’ focus of attention
can be well approximated by head orientation. However,
our study proves this key assumption in a multiparty setting
may not always be valid, and found the gaze behaviors esti-
mated from the joint head orientation and eyeball movement
data clearly outperform head orientations alone, in terms of
speaker identification in a three-party setting.

2. The work [35] did not provide experimental evidence to

support the trend of the identification accuracy along with
the increasing length of speaker turn. By contrast, our
objective analysis method concretely shows that the speaker
identification accuracy of using eye contact as the cue is
more than 70% when the length of speaker turn is longer
than 2 seconds (see Figure 7). Also, our subjective study
results (see Figure 11) show that the identification accuracy
is more than 80% when the speaker turn is longer than 3
seconds; the accuracy can be lower only if the length of turn
speaker is less than 1 second. This is a new finding that has
never been reported previously.

3. The work [35] mainly used subjective studies for speaker

identification. Statistical objective analysis on the recorded
human motion data was not conducted. By contrast, our
work performs both statistical objective analysis and sub-
jective studies to look into this problem from a multifaceted
perspective, which gives new insights on this research prob-
lem of speaker identification.

BACKGROUND

Speaker diarization is an emerging research topic for auto-
matic conversation/meeting analysis. It aims at determining
“who spoke when?" in audio or video recording, where turn-
taking often occurs and multiple speakers could simultane-
ously speak (overlapping speech). To achieve the goal, besides
speech features, visual features are often also used to improve
the recognition accuracy [12, 16, 20, 32]. These visual fea-
tures characterize only individual behaviors, while interactive
functions of behaviors are neglected, e.g., eye contact.

None of the previous works on speaker diarization explicitly
employs eye contact as a cue to improve the recognition ac-
curacy. It probably attributes to the lacking of awareness of
eye contact occurrence between the speaker and the listener(s).
Comprehensively reviewing all the prior efforts on speaker di-
arization is beyond the scope of this paper. Readers of interest
are referred to recent survey articles [1, 38].

Our work differs from speaker diarization. Our aim is to obtain
insights on the precise understanding of human-human inter-
action by eye contact, according to the interlocutors’ statuses
(speaking or listening). Our work could offer researchers a
new insight into the relation between interlocutor statuses and
eye contact as well as provide a new useful clue to improve
the state of the art in speaker diarization.

Predictions of turn-taking/keeping, the next speaker, and the
lasting time between two speaker-turns can be carried out
according to interactive gaze patterns, such as convergence,
divergence, and eye contact (dyad-link), which was reported
in some previous works [17, 18, 19, 21, 34]. Their positive



results indicate that interactive gaze patterns are closely related
to the occurrences of turn-taking and turn-keeping. Moreover,
their works suggest that humans are very skilled at encoding
and decoding interactive gaze patterns for smoothing the flow
of conversation.

Although gaze patterns used in these works occur in the phase
of turn-taking/keeping, i.e., the last 1000 ms of an utterance
and the follow-up pause (200 ms), rather than during the whole
utterance, the successful use of interactive gaze patterns for
identifying turn-taking and turn-keeping inspires us how to
design our analysis.

Identifications of interactive gaze patterns (mentioned above)
and of conversation regime (such as monologue and discus-
sion) can be conducted according to head orientations and
who is speaking, which is reported in previous works [33, 13].
Their validated results suggest that gaze patterns are correlated
with the interlocutors’ statuses (speaking or listening).

CONTRIBUTIONS

Our work contributes to the understanding of eye contact
patterns and of head and eyeball movements in three-party
conversations. It provides an important clue to extend the
existing works on head and eyeball animation generation to
multi-party conversations, and to bridge the gap between lis-
tener and speaker animations. In addition, this work provides
anew clue to an emerging research topic of speaker diarization
and to automatic conversation/meeting analysis (video editing,
navigation, retrieval, or higher-level inference).

DATA ACQUISITION AND PROCESSING

In this work, we collected a multimodal conversational behav-
ior dataset for three-party conversations, using the acquisition
setup described below. In total, 2 three-party conversation
datasets were captured, which involved 6 different partici-
pants. Each three-party conversation dataset consists of 6
sessions, each of which lasted about ten minutes. The partici-
pants took a break of several minutes between two successive
sessions. The participants of one three-party conversation
dataset are 3 males and those of the other are 3 females. The
participants (ages are from 19 to 25) did not know each other
before the experiment. No instructions were made into their
conversations; they freely talked with each other on the top-
ics of self-introduction, life, hobbies, favorite restaurants and
movies, traveling plan, career plan, etc.

Acquisition setup. The datasets of three-party conversation
were recorded from three interlocutors standing at the three
vertices of an equilateral triangle with a distance of about 1
meter to other interlocutors, which is designed to eliminate any
potential bias from the sitting position and group formation.
The interlocutors were instructed to stick to their original loca-
tions as much as possible, but they were allowed to naturally
move their torsos and heads, and change facial expressions
during the conversation. A snapshot and the layout of the
three-party conversation capture are shown in Figure 1.

The collected conversational behavior data contain body move-
ment, eyeball movement, eyelid movement, and acoustic
speech, all of which were acquired simultaneously at 30 frames
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Figure 1. The layout of the recorded three-party conversations. (a) A
snapshot of the data acquisition process. (b) Illustration of the eye track-
ing data acquisition process.

Figure 2. Detection of eyeballs movement. The detected eye and pupils
are rendered respectively by the green dashed lines and the solid red
circles. As can be seen, the solid red circles almost cover the human

pupils. The images from left to right display a detected gaze aversion
from left to right.

per second. The body movement includes hand gesture, torso
movement, and head movement. The body movement was
recorded by a ten-cameras VICON optical motion capture sys-
tem, where each interlocutor wore a mocap suit attached with
optical markers. We downsampled the mocap data from the
originally captured 120 frames/second to 30 frames/second.
The torso and head movements were recorded as the sequences
of 3-dimensional skeleton rotation angles. Moreover, acoustic
speech was recorded by a wireless microphone positioned in
the center of the interlocutors (see Figure 1). The speech tran-
scription and its time information were obtained manually by
a language expert.

To acquire the accurate 3D movements of the eyeballs and
the eyelids of all the interlocutors, we employed the proven,
hybrid mocap and HD video capture scheme proposed by Binh
et al. [24]: specifically, the movement of the front face of each
interlocutor was recorded by a Cannon HD camera (Figure 1-
(b)). Then, with the aid of accurate 3D head movement at each
frame that can be accurately estimated from several mocap
markers on the head, a specially-designed tracking algorithm
was used to offline process the video to track the movements
of the eyeballs and the eyelids frame by frame [24]. When the
eyelids were detected as being closed, the eyeballs movement
could not be detected and it was inferred by smoothing the
movement trajectory with linear interpolation. Figure 2 shows
a few images of the acquired eyeball movements.

Gaze is approximated by adding the azimuth angles of the
eyeballs, the head, and the torso. In our work, the rotational
angle of the torso is always merged into that of the head;
it is viewed as a part of the head rotational angle. So the
head rotational angle in the remaining writing represents the
combination of the azimuth angles of the head and the torso.

Considering the locations of the interlocutors at the three ver-
tices of an equilateral triangle, we assume that an interlocutor
looks at none of the other interlocutors if his/her eye gaze ori-
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Figure 3. Illustrations of discrete gaze labels, of eye contact and of no eye
contact. The left image shows that the gaze at each time frame, estimated
from head and eyeball data or from only head data, is labeled by three
discrete gaze labels: left, none and right. The gaze between 15° to the
left and 15° to the right is labeled by none; the gaze beyond 15° to the
left/right is labeled by left / right. In the right six images, the images with
No.1 and No.2 show two cases of eye contact. The other images show four
cases of none eye contact.

ents in the range between -15° (left) and +15° (right)!. Also
we assume that he/she looks at another interlocutor to his/her
left or right if his/her eye gaze orients beyond 15° to left/right.
Based on these assumptions, the eye gaze of each interlocutor
at each frame can be mapped to one of the three discrete labels:
looking at none of the other interlocutors (none), looking at the
right interlocutor (right), and looking at the left interlocutor
(left), which is illustrated in the left panel of Figure 3.

Eye contact is detected at each time frame by judging whether
any two of three interlocutors are looking at each other, which
is determined from their gaze labels (none, right and left).
The right panel of Figure 3 shows two cases with eye con-
tact and four cased without eye contact. To describe the oc-
currence of eye contact between them at each time frame, a
3-dimensional feature vector, s, is defined and it has four
possible values as follows.

1. s'=10,0,0]: eye contact does not occur.

2. 5= [1,1,0]: eye contact occurs between the Ist and the 2nd
interlocutors.

3. s3=1[0,1,1]: eye contact occurs between the 2nd and the
3rd interlocutors.

4. s*=11,0,1]: eye contact occurs between the Ist and the 3rd
interlocutors.

s consists of three elements, which respectively represent
whether the three interlocutors involve eye contact or not. The
element can be 0 or 1. 0 stands for no involvement of eye con-
tact; 1 stands for the involvement of eye contact. Furthermore,
S* = [s1,...,t,...,57], a sequence of s', is used to describe
the occurrences of eye contact along with time frame. k in
S stands for the index of motion episode with one specific
speaker speaking, which is clipped from the whole recorded
motion stream, according to speech information. The set of S
is noted by {S*}, k = 1,2,...,K, where K is the total number
of motion episodes. In our dataset, 2486 motion episodes are
collected (K=2486) with the duration ranging from 0.5 second
to 20.3 seconds (averaged duration is 2.27 seconds and SD =

'A common strategy employed in graphics literature is to define a
cutoff displacement of 10°-15° above which targets are acquired by
a gaze shift [36][28][31]. In our work, 15° is used to distinguish the
gaze target.

2.40). Note that those motion episodes with length less than
0.5 second are screened out as done in Rienks et al. [35].

Note that although the peripheral vision of an interlocutor
may also include other interlocutor(s) besides the primary eye-
contact target, at a particular time instance an interlocutor can
at most gaze at one other interlocutor as the focus of his/her
attention. Therefore, despite certain loss of information, our
study treats eye contact as a binary variable. Ignoring the
peripheral vision could still retain the most prominent infor-
mation of the interlocutors’ focus of attention for our study.

EXPERIMENT: IDENTIFYING THE SPEAKER

In our work, both subjective judgement and objective analysis
are conducted. In the objective analysis, eye contact (a spe-
cific interactive behavior) rather than individual gaze (or head
orientation) is taken into account as input features. It is based
on the assumption that eye contact could provide more useful
cues than individual gazes as it displays interactive behaviors
between interlocutors. Moreover, in the subjective judgment,
the gaze azimuth angles are used to animate virtual humans in
a conversation, where whether eye contact occurs or not is not
explicitly indicated.

Our first set of hypotheses are:

e H1-o0bj: objective eye contact data can be used to effectively
identify the speaker from the interlocutors in three-party
conversations (objective analysis).

e H1-sub: humans are capable of using knowledge of gaze
patterns to distinguish the speaker from the listeners in
three-party conversations (subjective judgment).

The investigation of H1-obj and H1-sub could offer new in-
sight into the understanding of interactive gaze patterns among
interlocutors in three-party conversations.

Furthermore, eye contact and gaze are estimated by combining
the eyeball and head rotation angles. Such a combination
could provide more precise information about the attention of
interlocutors than head rotation angles alone. Our second set
of hypotheses are:

e H2-0bj: objective analysis can identify the speaker with a
higher accuracy from the joint head and eyeball movement
data than the head movement data alone.

e H2-sub: subjective judgment can identify the speaker with
a higher accuracy from the joint head and eyeball movement
data than the head movement data alone.

The investigation of H2-obj and H2-sub allows us to under-
stand the contribution of eyeballs to face-to-face communica-
tion in three-party conversations.

The objective analysis and subjective judgment aim at deter-
mining who is speaking according to the head and eyeball
azimuth angles in a speaker turn, which could last between 0.5
second and 20.3 seconds in our dataset. Considering that long
speaker turns could provide more information for the speaker
identification than short ones, we formulate our third set of
hypotheses as follows:



e H3-obj: objective analysis can obtain a higher speaker iden-
tification accuracy from long speaker turns than from those
short ones.

e H3-sub: subjective judgment can obtain a higher speaker
identification accuracy from long speaker turns than from
those short ones.

In the following writing, we will describe the conducted objec-
tive analysis and subjective judgment including methodology,
results, and discussion.

Objective Analysis

To objectively identify the speaker, a Markov process can be
built based on {S}. In each experiment, the used set of S* is
splitted into a training set and a test set. Two pre-processing
steps are performed to the training set before a Markov process
is trained. Note that such pre-processing steps are not applied
to the test set.

Building Markov Process

Assuming S* is one of the motion episodes in the training
set, the first pre-processing is to make the first element of
i, t=1,...,T, in SF always correspond to the known speaker
by switching the 1st interlocutor and the known index of the
speaker in s;. For example, if the 1st, the 2nd and the 3rd
elements in s; respectively correspond to one listener, the
other listener, and the speaker, the 3rd and the 1st elements
are switched. If the 1st element originally corresponds to the
speaker, the order of the elements are kept without switch-
ing. After this manipulation, while the 1st element of s; corre-
sponds to the speaker, the 2nd and the 3rd elements correspond
to the listeners.

Afterwards, the second pre-processing is to create a new set
by switching the 2nd and the 3rd elements of all the {s,} in
the original training set, which corresponds to two listeners
(see the first pre-processing above). Then, we combine the
new created set with the original training set to obtain the
new training set that is used to build the Markov process. In
our recorded data, two listeners stand symmetrically around
the speaker. Therefore, this new training set is designed to
eliminate any potential bias from the right or the left listener.

The built Markov process, A, consists of four states, each of
which corresponds to one feature vector, s', wherei=1,2,3 or
4. The transition probabilities are calculated from the training
set, by counting and normalizing the number of transitions
between the feature vectors.

The built Markov process is expected to capture the transition
probabilities of four eye contact patterns (s', s%, s>, and s%),
viewing the speaker as the first interlocutor. How to use the
Markov process to identify the speaker is described below.

Using Markov Process

The aim of speaker identification is to infer the speaker index
from S¥ in the test set, using A. At the identification step, the
speaker index is unknown in the test set; it can be the 1st,
the 2nd, or the 3rd. Given S, a probability can be inferred
from the transition probabilities at all the time steps, and it

quantifies the probability of S* from the Markov process. The
probability calculation is detailed below.

Since the Markov process is trained on the set of {S¥} with
the speaker being the first interlocutor, we expect that a test
speaker turn, K1 = [slf1 , ...,s%‘d |, results in a higher probability
when the first interlocutor is the speaker than when he/she is a
listener. Based on this hypothesis, we alter the interlocutors’
indexes twice. The first is to switch the 1st and the 2nd ele-
ments of {sf }tT ¥, and the altered speaker turn is denoted by

s =[sp
elements of {s, }, 1, and the altered speaker turn is denoted by
Sk3 = [s]f“7 ,sl}zl ]. We then applied A to $*1 as well as S¥2 and

S*3 respectively to obtain their probabilities. To this end, S*
with the maximum probability is selected, and the i is selected
as the speaker index.

sTk |; the second is to switch the 1st and the 3rd

The probability of S¥ is calculated as follows.

T, i |gki )
pistia) = T —TerbtA) (1)
=1 Yi<j<3P(s t+l|st )

where p(Ski|A) stands for the probability of S%, given the

built Markov process; P(s f+1 |sf', ) is the transition probabil-

ity of feature vectors from s, to s, which also applies to

t+l’
P(s, iy \s, ,A). To avoid the problem of numeric overflow, the
operation of summation is to normalize the probabilities so
that the probabilities of three variations are summed to be 1 at
each time step, as follows.

ki | ki
P(S1+1 ‘St 71)

k&
1<i<3 Z1gjg3p(szj+1|sz],/1)

=1 2)

The above objective analysis is applied to validate the hypothe-
ses H1-obj, H2-obj, and H3-obj. According to the hypotheses,
more details as well as the results will be described below.

Objective Analysis Results

Test of the hypotheses H1-obj and H2-obj. Two types of
Markov processes are built based on {S¥}. The first one,
denoted by {Sk}hg, is built from the eye contact data that is
estimated from the joint azimuth angles of the head and the
eyeballs; the second one, denoted by {S¥}, is done from the
eye contact data that is estimated from the azimuth angles
of the head alone. In each experiment, {s*};, and {s*}, are
respectively randomly splitted into a training set (80%) and
a test set (20%). The training sets from {s},, and {s*}, are
used to respectively build two Markov processes, noted by
Ane and ;. Then, the test sets from {s*};, and {s*}, are
respectively applied to A4, and A;,. We ran the above repeated
random sub-sampling validation experiments 20 times for
{55}, and {s*};, respectively. To this end, by comparing
the recognition result with the ground-truth, we can obtain a
recognition accuracy rate in each experiment. The averaged
experiment results are reported in Figure 4 and Figure 7.

To test the hypothesis H1-obj, we compared our experiment
results with the baseline (33.3%) that is obtained by random
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Figure 5. The number of speaker turns in each Interval. The intervals
are defined by a 2-seconds moving window and a step size of 1 second.
As the exceptions, the 1st and 12th intervals contain the speaker turns
whose lengths are in the range of [0.5,2] and [11,20.3], respectively. Each
speaker turn consists of many frames. The total frame number of all the
speaker turns in each interval can be found in Figure 6.

selection (one out of three interlocutors). We conducted One-
Sided t-Test on the results of 20 validation experiments. For
{5}, the recognition accuracy (M=0.376, SD=0.009) is sig-
nificantly greater than the baseline: t(19)=20.7967, p<0.0001.
For {s*}}.. the recognition accuracy (M=0.4664, SD=0.0165)
is also significantly greater than the baseline: t(19)=35.2144,
p<0.0001. Therefore, the hypothesis H1-obj is accepted (as-
suming the significance level = 0.05).

To test the hypothesis H2-obj, we conducted a Paired-
Sample t-Test to compare the 20 validation experiment re-
sults between A, and A;,. The comparison results indicate
that the joint head and eyeball movement data (M=0.4664,
SD=0.0165) result in a significantly greater recognition
accuracy than the head movement data alone (M=0.376,
SD=0.009): t(19)=22.8802,p<0.0001. The hypothesis H2-obj
is accepted.

Test of the hypothesis H3-0obj. To take into account the
length of speaker turn, the length range is splitted into overlap-
ping intervals with a 2-seconds moving window and a step size
of 1 second. Each speaker turn is classified into two successive
intervals. For example, one speaker turn with the length of
2.3 seconds is grouped into two successive intervals in the
ranges of [1,3] and [2,4]. The number of speaker turns in each
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Figure 6. The frame number of all the speaker turns in each Interval.
The intervals are defined by a 2-seconds moving window and a step size
of 1 second. As the exceptions, the 1st and 12th intervals contain the
speaker turns whose lengths are in the range of [0.5,2] and [11,20.3],
respectively. The number of speaker turns in each interval can be found
in Figure 5.

interval is illustrated in Figure 5. In fact, the 1st interval in the
range of (0,2] only contains those speaker turns whose lengths
are in the range of [0.5,2], since we discarded those speaker
turns with the length less than 0.5 second in our dataset (refer
to the aforementioned data acquisition and processing section).
As can be seen from Figure 5, the number of speaker turns
decreases with the increase of the length of speaker turn. As
such, the 12¢h interval in the figure contains all the speaker
turns with the length more than 11 seconds (i.e., in the range of
[11,20.3]). Each speaker turn is characterized by a sequence
of frames. The frame number of all the speaker turns in each
time interval is shown in Figure 6.

The speaker turns from a specific interval are used to calcu-
late the identification accuracy for this interval. That is, each
interval is associated with an identification accuracy. To cal-
culate the recognition accuracy for each interval, the used set
of S* only involves the speaker turns in a specific interval. In
each experiment, 80% of the speaker turns are used as the
training samples and 20% as the test samples. To this end,
two estimates of {S¥}, {s*};, from the joint head and eye-
ball movement data and {s*};, from the head movement data
alone are investigated. Figure 7 depicts the result of each time
interval.

The red points in Figure 7 represent the recognition results
from the joint head and eyeball movement data. As illustrated
in this figure, it rapidly increases between the 1st and the 4th
intervals; it stays steady between the 4¢h and the 7tk intervals;
and it increases with obvious fluctuations between the 7th
and the 12¢h intervals. These observations suggest its overall
increasing trend despite its fluctuations at some places. How-
ever, it does not monotonically increase. More investigations
are needed to look into those fluctuations as the future work.
Similar observations can also be seen from the blue curve rep-
resenting the recognition results based on the head movement
data alone, although the increasing trend of the blue curve is
less obvious than that of the red one.

In addition, the red points in Figure 7 are consistently higher
than the blue points. The joint head and eyeball movement
data results in a higher recognition accuracy in every interval
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Figure 7. The objective speaker identification accuracy as a function of
the length of speaker turn. The red dashed curve shows the results from
the joint head and eyeball movement data while the blue solid curve
shows the results from the head movement data alone. The plotted re-
sults are obtained by averaging the outcomes of 20 repeated random sub-
sampling validation experiments. The standard deviations are plotted as

vertical bars.
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Figure 8. Several snapshots of rendered virtual character animation
clips in our study. The colored lines represent the gaze orientations of
the virtual characters. The 1st panel shows the occurrence of eye con-
tact; the other two panels show two cases of no eye contact.

than the head movement data alone, which is in line with
the validated hypothesis H2-obj. Moreover, we observe that,
the speaker identification accuracy from the joint head and
eyeball movement data or from the head movement data alone
is clearly higher than the baseline (33.3%) in every interval,
which is also in line with the validated hypothesis H1-obj.

In Figure 7, the accuracy from the joint head and eyeball
data is about 40% in the 1st time interval, and the accuracies
in other time intervals (i.e., since the 3rd interval) are more
than 70%. However, as shown in Figure 5, the number of the
speaker turns in the 1s¢ time interval is much higher than those
in the other time intervals. That is why the averaged accuracy
(counting all the intervals) from the joint head and eyeball data
in Figure 4 is about 46%.

Subjective Judgment

Subjective judgments are obtained through a user study, where
participants are invited to watch episode animation clips dis-
playing three rendered virtual characters (interlocutors) in a
conversation. Each animation clip contains a single speaker
turn where only a virtual character is speaking and the other
two are listening without turn-taking and overlapping speech.
The animations are rendered from the top view of the virtual
characters (refer to Figure 8). The virtual characters are ani-
mated only by the gaze azimuth data and speech signals are
not provided. Gaze orientation is represented by a solid line,
which allows participants to clearly observe the gazes of the

virtual characters at each time instant. In the animations, tor-
sos and gaze lines of the three virtual characters are colored by
red, green, and yellow, respectively. The occurrences of eye
contact are not explicitly indicated in the animation clips. The
animation clips are played at a speed of 30 frames per second,
as the originally recorded human movement data.

To test the hypothesis H1-sub, gazes are estimated by the joint
head and eyeball movement data. The hypothesis H1-sub is
accepted if the subjective identification accuracy is statistically
higher than the baseline (33.3%). To test the hypothesis H2-
sub, gazes are estimated not only by the joint head and eyeball
movement data but also by the head movement data alone. The
hypothesis H2-sub is accepted if the subjective identification
accuracy on the animations driven by the joint head and eyeball
movement data is statistically higher than that by the head
movement data alone. To test the hypothesis H3-sub, the
duration of speaker turn need to be taken into account. The
hypothesis H3-sub is accepted if the subjective recognition
accuracy increases along with the length of speaker turn.

Protocol: Participants are asked to provide demographic in-
formation, including age, gender, education level, occupation,
etc., before the experiment; then, they are invited to view
animation clips of three virtual characters in a conversation.
Their task is to choose the speaker in each clip. We describe
the elements of the protocol in this user study as follows. (1)
Participants: in total, there were 34 participants consisting
of 22 males and 12 females with the age ranging from 21 to
70 (M=30.06 years, SD=9.9 years). (2) Stimuli: the range
of speaker turn length was splitted into 5 non-overlapping
intervals: 0.5 to 3 seconds, 3 to 6 seconds, 6 to 9 seconds, 9
to 12 seconds, and 12 to 20.3 seconds. 5 speaker turns were
randomly selected from each interval. To this end, a total of
25 speaker turns were chosen (5 intervals x 5 samples per
interval). The shortest selected sample lasts 1.1 seconds, and
the longest one lasts 13.6 seconds. Furthermore, 2 different
versions (conditions) of the virtual character animations were
created for each speaker turn:

e Condition 1: gaze is estimated based on head orientation
alone.

e Condition 2: gaze is estimated based on the joint head and
eyeball orientations.

In total, 50 animation clips (without speech) were generated,
which consists of 25 pair-wise animation clips with Conditions
1 and 2.

Procedure: The 50 animation clips are presented to each
participant in a random order (refer to Figure 9). When par-
ticipants watch the animation clips, they are explicitly in-
formed that they can watch these animations as many times as
they want; that only one interlocutor is speaking without turn-
taking, and that the lines represent the gaze orientations of the
virtual characters. Meanwhile, they are not explicitly informed
whether the gaze orientation is estimated by the joint head and
eyeball movement data or by the head movement data alone.
After watching each animation clip, the participants are asked
to select which character (red, green, or yellow) is the speaker
in the animation, described below.
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Figure 9. A user study snapshot of a participant

e Which virtual character is most likely the speaker?

Results: We report two types of recognition accuracies, whose
difference is whether the length of speaker turn is viewed as
a dependent variable. The length of speaker turn is not taken
as a dependent variable in the first type while it is taken in the
second type. The condition mentioned above is always taken
as a dependent variable.

Considering the condition as a dependent variable, the first
type contains two recognition accuracies: one is calculated
based on the subjective judgment results from those 25 ani-
mation clips with Condition 1, and the other one is calculated
based on the subjective judgement results from those 25 an-
imation clips with Condition 2. The results are reported in
Figure 10.

The second type is to calculate the recognition accuracy for
each animation clip. The results are reported in Figure 11,
where the blue and red points represent the results with Condi-
tion 1 and Condition 2, respectively. In this figure, the vertical
axis represents the recognition accuracy, and the horizontal
axis represents the index of an animation clip. Note that the
animation clips in this figure are ordered by their lengths (i.e.,
the length of speaker turn) in an increasing order. The red
and blue points positioned with the same values in the hori-
zontal axis are associated with the two pair-wise animations
(corresponding to Conditions 1 and 2, respectively).

Test of the hypotheses H1-sub and H2-sub. To test the hy-
pothesis H1-sub, the first type of recognition accuracy is com-
pared with the baseline (33.3%). The results are shown in
Figure 10. One-sided t-Test is conducted on the subjective
judgment results from the 25 animation clips with Condition
1 and the other 25 clips with Condition 2. According to the
results with Condition 1, the recognition accuracy (M=67.7%,
SD=0.25) is statistically higher than the baseline: t(24)=6.92,
p<.0001. Also, according to the results with Condition 2,
the recognition accuracy (M=81.4%, SD=0.21) is statistically
higher than the baseline: t(24)=11.75, p<.0001. The hypoth-
esis H1-sub is accepted not only for Condition 1 but also for
Condition 2.

To test the hypothesis H2-sub, a paired-sample t-Test is con-
ducted to compare the subjective judgment results with Con-
ditions 1 and 2. The comparison results show that the results
with Condition 2 (M=81.4%, SD=0.21) lead to statistically

P<.0001
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Figure 10. Overall subjective speaker identification accuracies (blue for

condition 1 and red for condition 2). Standard deviations are plotted as
the vertical bars.
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Figure 11. Subjective speaker identification accuracy as a function of
speaker turn length. The red hollow circles show the results with Con-
dition 2 (joint head and eyeball motion data) while the blue solid circles
show the results with Condition 1 (only head motion data). In 21 out of
25 pairwise comparisons, Condition 2 outperforms Condition 1, while
Condition 1 outperforms Condition 2 in 4 pairwise comparisons, whose
indexes are 8, 17, 18 and 24.

higher recognition accuracies than those with Condition 1
(M=67.7%, SD=0.25): t(24)=3.65, p<.01. Therefore, the hy-
pothesis H2-sub is accepted.

Test of the hypothesis H3-sub. To test the hypothesis H3-sub,
the second type of recognition accuracy is taken into account,
which is illustrated in Figure 11. As shown in this figure, the
red and the blue curves do not show any obvious (increasing or
decreasing) trend along with the length of speaker turn, which
does not provide sufficient evidence to statistically test the
hypothesis H3-sub.

Additionally, as observed in Figure 11, Condition 2 outper-
forms Condition 1 in 21 pair-wise comparisons while Condi-
tion 1 outperforms Condition 2 in 4 pair-wise comparisons
(8th, 17th, 18th and 24th). In other words, Condition 1 out-
performs Condition 2 with the probability of 16%(= 4/25).
This implies that the hypothesis H3-sub cannot be rigorously
validated for each pair-wise comparison, although in our ex-
periments it holds true with the probability of 84%(= 21/25).
On the other hand, the probability of the hypothesis H3-sub
holding true, 84%, is substantially larger than the probability
of the hypothesis H3-sub holding false, 16%, which is in line
with the validated hypothesis H2-sub.



Furthermore, the recognition accuracies shown by the red
points in Figure 11 are higher than the baseline (33.3%) ex-
cept for the shortest (1st) speaker turn that lasts 1.1 seconds,
while most of the blue points are higher than the baseline ex-
cept for the shortest speaker turn (1.1 seconds) and the 7th
one (6.2 seconds). These observations provide empirical evi-
dence that in general the hypothesis H1-sub (either condition
1 or condition 2) holds true, in particular, when the length of
speaker turn becomes large.

DISCUSSION

In this section, we discuss the experimental results from a
multifaceted perspective, including both the objective analy-
sis and the subjective judgment, along with the formulated
hypotheses.

Discussion on the Hypotheses H1-obj and H1-sub

Both the hypotheses H1-obj and H1-sub are validated by the
joint head and eyeball azimuth angles (Condition 2). This sug-
gests that the joint head and eyeball movement data provides
a reliable cue to identify the speaker from the interlocutors in
a three-party conversation, which can be not only captured by
the proposed objective analysis method but also perceived by
human subjects.

The statistical validation of the hypothesis H1-obj suggests
that the interactive behavior of eye contact plays an important
role in speaker identification. This also serves an empirical
foundation to properly merge eye contact into synthesized
head and eyeball animations in order to build more socially
engaging, realistic conversational characters in various appli-
cations.

Rienks et al. [35] reported that humans use the knowledge of
gaze patterns to distinguish the speaker from listeners, which is
in line with the successful validation of the hypothesis HI-sub
in our work. Although eye contact is not explicitly indicated
in the used animation clips, the validation of the hypothesis
H1-sub suggests that human viewers could be intrinsically
skilled at decoding the occurrences of eye contact or other
interactive gaze patterns (e.g., convergence or divergence).

Additionally, Rienks et al. [35] reported that gaze estimated
by the head azimuth angle alone does not provide a sufficient
cue for reliable speaker identification, which is not supported
by the validated hypothesis H1-sub in our work. This differ-
ence could result from three factors. First, the video clips
used in [35] record virtual humans from the side view, which
degrades the perceptual judgment on the gaze orientations for
participants, while the animation clips in our work are created
from the top view, which allows the participants to faithfully
perceive and observe the gaze orientations. Second, from
the participants’ perspective, the subtle rotation angle of gaze
could be easily overlooked. To overcome this problem, a gaze
line is used in our work for highlighting the gaze orientation
with even subtle angle change. Third, more importantly, the
eyeball rotation angle is not considered in their work, while it
is used in our work to estimate the gaze orientation. This fac-
tor is also supported by the statistically validated hypotheses
H2-obj and H2-sub.

Discussion on the hypotheses H2-obj and H2-sub

The statistical validation of the hypotheses H2-obj and H2-
sub suggests that the joint head and eyeball movement data
provides a more reliable cue to identify the speaker from
the interlocutors than the head movement data alone. In our
study, the contribution of eyeball movement to the speaker
identification can be well captured by our objective analysis
method as well as subjective perception study experiment.

In the validation of the hypothesis H2-obj, a significant gap be-
tween Conditions 1 and 2 indicates that the eyeball movement
is critical to improve the recognition accuracy in the objective
analysis process. Not surprisingly, in the validation of the
hypothesis H2-sub, a similar significant gap exists between
Conditions 1 and 2. This suggests that the role of eyeball
movement in three-party conversations can be directly per-
ceived by human observers. With being said, we also observe
that the head movement data alone can provide a reasonable
cue for speaker identification. This observation suggests that
human viewers are sensible to head movement for conversa-
tion coordination and are skilled in decoding information from
the head movement.

The statistical valiation of the hypotheses H2-obj and H2-sub
also provide convincing evidence that the eyeball movement
is crucial to accurately estimate human gaze in a conversation,
which contradicts to the previous finding that gaze can be well
approximated by head orientations alone [37, 2].

Discussion on the hypotheses H3-obj and H3-sub

The hypothesis H3-obj is partially true in the range from 1
to 4 seconds; alternatively, fluctuations are observed in the
range from 6 to 12 seconds. Moreover, the overall recognition
accuracy in the range from 6 to 12 seconds is higher than
that in the range from 1 to 4 seconds. Coincidentally, such
observations were also reported in Rienks et al. [35]. On one
hand, the observed overall increasing trend can be explained
by more information provided in a longer speaker turn. On
the other hand, the fluctuations observed in long intervals
could be explained as follows: the information complexity
increases with the increased length of speaker turn so that
the proposed Markov process falls short of well capturing the
increasing information complexity; therefore, its performance
has fluctations in this range.

Although the hypothesis H3-sub is not statistically validated
by the subjective judgments in our work, we observe that
the averaged recognition accuracy (81%) is much higher than
baseline (33.3%). This suggests that humans are intrinsically
skilled at identifying the speaker so that the identification
accuracy is independent of the length of speaker turn, to a
certain extent.

CONCLUSIONS

In this work, we have conducted a multifaceted study to under-
stand whether the speaker can be rigorously identified from
the interlocutors involved in three-party conversations based
on their gaze/head orientations. Based on recorded three-party
conversational behavior datasets, a Markov process based sta-
tistical framework is proposed to model the sequence of eye
contact between the human interlocutors, and further used to



identify the speaker. Meanwhile, a user study is conducted to
study this question using virtual characters in a conversation,
animated by pre-recorded human movement data. Then, par-
ticipants are invited to select the speaking virtual character by
watching the animation clips of virtual three-party conversa-
tions.

Our results show that the proposed objective analysis method
and humans are both capable of identifying the speaker and
that interactive eye contact behaviors provide a rigorious cue
for reliable speaker identification. Moreover, the gaze behav-
iors estimated from the joint head and eyeball movement data
clearly outperforms those from head movement data alone.
Additionally, the performance of the objective analysis de-
pends on the length of speaker turn while human judgment
is less dependent on it. Finally, our work indicates that the
eyeball movement is essential to the accurate estimation of the
gaze.

Some limitations exist in our current work:

1. This work relies on our definition of eye contact: eye contact
is determined by the left-right angles of head and eyeball
while the up-down angles are ignored. For some special
cases such as interlocutors have very different heights, only
the left-right angles could be insufficient to accurately esti-
mate the occurrences of eye contact.

2. Eye contact used in the objective analysis is only one of the
gaze interactive behaviors in multiparty conversations. The
previous works [33, 13] have defined a few gaze interactive
behaviors such as convergence and divergence. These in-
teractive gaze behaviors are not considered in our current
work.

3. The gaze lines used in the subjective judgment study play an
important role in highlighting the gaze orientations. How-
ever, such visual representations may exaggerate the hu-
mans’ perceptual capabilities on the conversational gaze.

4. The used datasets only contain three interlocutors standing
at the three vertices of an equilateral triangle in a strict
laboratory setting. It is still unclear whether our results can
be rigorously generalized to other spatial arrangements of
the interlocutors, to multiparty conversations with more than
three interlocutors, or to coarse-grained gaze estimation.
Furthermore, our work has not investigated the potential
biases from individuals (e.g., gender, social status, emotion,
etc.) and conversational topics.

5. Our work does not provide knowledge about what kind of
gaze patterns are more reliable recognizer of speaker role
and also overlooks the confidence of participants recogniz-
ing the speaker in the subjective experiments.

6. The participants in our subjective study acted as side ob-
servers instead of immersive interlocutors.

We will leave the tackling of the above limitations as the future
work. Additionally, we will work on emerging the rendition
of eye contact in the animation synthesis for virtual speaking
and listening characters.
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