
Real-time Hierarchical Facial Performance Capture
Luming Ma

University of Houston
lma15@uh.edu

Zhigang Deng
University of Houston

zdeng4@uh.edu

Real-time Setup

Coarse M
esh

D
isplacem

ent

Output

Figure 1: Our system captures fine-scale facial performance from amonocular RGB camera in real-time (left). We augment the
large-scale facial performance by per-vertex displacements via shape-from-shading to capture wrinkle-level details (right).

ABSTRACT
This paper presents a novel method to reconstruct high resolu-
tion facial geometry and appearance in real-time by capturing
an individual-specific face model with fine-scale details, based on
monocular RGB video input. Specifically, after reconstructing the
coarse facial model from the input video, we subsequently refine it
using shape-from-shading techniques, where illumination, albedo
texture, and displacements are recovered by minimizing the differ-
ence between the synthesized face and the input RGB video. In order
to recover wrinkle level details, we build a hierarchical face pyra-
mid through adaptive subdivisions and progressive refinements of
the mesh from a coarse level to a fine level. We both quantitatively
and qualitatively evaluate our method through many experiments
on various inputs. We demonstrate that our approach can produce
results close to off-line methods and better than previous real-time
methods.

CCS CONCEPTS
• Computing methodologies→ Shape modeling; Image-based
rendering;

KEYWORDS
Real-time 3D face reconstruction, multi-resolution modeling, per-
vertex displacements, shape-from-shading

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
I3D’19, May 21-23, 2019, Montreal, Quebec, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN xxx-x-xxxx-xxxx-x/xx/xx.
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

ACM Reference Format:
Luming Ma and Zhigang Deng. 2019. Real-time Hierarchical Facial Perfor-
mance Capture. In Proceedings of I3D’19.ACM, New York, NY, USA, 10 pages.
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
Capturing human facial performance has been a long standing
problem in computer graphics [ZollhÃűfer et al. 2018]. Since the
human eyes are particularly sensitive to facial performance and
appearance, creation of high resolution 3D face models and realistic
facial animations for films, VR systems, and games often involves
controlled lighting setups, multiple cameras, active markers, and
substantial post-editing from experienced artists [Williams 2006].
In recent years, social media and mobile applications bring increas-
ing demands for light-weight acquisition of facial performance on
consumer devices. To this end, passive methods leveraging stereo
cameras [Valgaerts et al. 2012] or depth information [Li et al. 2013;
Weise et al. 2011] have been proposed to capture detailed facial
performance using binocular or RGB-D cameras. These methods
achieve impressive results but are limited to the requirement of
binocular footages or depth data which are often unavailable for
legacy video footages.

Recently, researchers sought to only rely on monocular RGB
video for facial reconstruction [Garrido et al. 2013, 2016; Shi et al.
2014]. These methods utilize shading information for shape refine-
ments and achieve quality on par with the methods with stereo
and depth cameras. In the meantime, these methods require sub-
stantial computational time as well as information from forward
and backward frames of the video; therefore, they are unsuitable
for real-time acquisition applications. On the other hand, real-time
facial tracking and animation systems have also been developed
with a single RGB camera [Cao et al. 2014a, 2013]. Their data-driven

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

I3D’19, May 21-23, 2019, Montreal, Quebec, Canada L.Ma, and Z.Deng

CPU GPU

Input Video

Lighting Albedo

Image Pyramid

Coarse Hierarchy

Fine Hierarchy

Textured Result

Figure 2: System overview. Our system takes RGB video as
input and builds coarse mesh layers and image layers for hi-
erarchical reconstruction (Section 3). It then computes light-
ing (Section 4.1), albedo (Section 4.2), and vertex displace-
ments (Section 4.3) using shape-from-shading techniques.
The output is a high resolution mesh with wrinkle-level de-
tails.

methods, however, rely on strong face priors and could not cap-
ture individual-specific or transient details, such as wrinkles on
the forehead and around the eyes. Their recent development [Cao
et al. 2015] incorporates medium-scale frequencies into the coarse
face model by training regressors from high-resolution facial cap-
ture data. Even though plausible face wrinkles are produced, in a
nutshell, this learning-based (or data-driven) model is yet an ap-
proximation of the true facial performance and is also limited by
the data used for training. Despite considerable advances in facial
performance tracking, a method that accurately captures facial de-
tails, with low cost acquisition (e.g., a monocular camera) and in a
real-time rate, is still demanding.

In this paper we propose a geometry-based method to recon-
struct high resolution facial geometry and appearance in real-time
(Figure 1). It takes in RGB video from a single RGB camera and cap-
tures an individual-specific face model of the subject with wrinkle-
level details. The system runs fully automatic and does not require
off-line preprocessing for a novel user. We show that our results are
close to existing off-line methods. We believe this opens up more
possibilities in consumer-level interactive applications, such as fa-
cial performance avatar retargeting, on-line preview, immersive
VR games, and photo-realistic facial makeups.

Our method captures fine-scale facial performance by estimating
per-vertex displacements. We first reconstruct a low resolution fa-
cial geometry from the input video. This model presents large-scale
facial expressions but lacks wrinkle level details. We subsequently
refine it using shape-from-shading techniques. The coefficients of
incident illumination, albedo texture, and displacements are recov-
ered by minimizing the difference between the synthesized face
and the input RGB images. To endow the face model the capability
to capture fine-scale details, we adaptively subdivide the mesh into
a hierarchy of multiple resolutions. We also build a corresponding
pyramid for the input images. The vertex displacements estimated
on a coarse mesh capture low frequency deformations and are

prolonged to finer levels, where higher frequency details will be
captured from images of higher resolutions. Figure 2 shows the
schematic pipeline of our system.

The main contributions of our work can be summarized as:

• a complete, fully automatic system to capture fine-scale facial
performance from monocular RGB video;
• a hierarchical reconstruction method that is efficient and
robust to reconstruct high resolution face models; and
• a novel vertex displacement formula to solve the shape-from-
shading problem.

2 RELATEDWORK
Off-line Face Reconstruction. Many previous works have been

focused on building 3D face models in controlled environments
[Klehm et al. 2015]. The works of [Ma et al. 2008; Zhang et al. 2004]
employ structured light and photometric stereo for face scanning.
Some methods attach markers on the face [Bickel et al. 2007; Huang
et al. 2011] to acquire dynamic deformations of 3D facial perfor-
mance. Despite high quality face models reconstructed, the above
methods typically involve complex intrusive setups to the subjects.
Passive solutions were also developed using stereo images [Beeler
et al. 2010, 2011; Bradley et al. 2010; Gotardo et al. 2018] or light-
weight binocular cameras [Valgaerts et al. 2012]. Some other works
rely on data priors to constrain the reconstructed face, such as
morphable models [Blanz and Vetter 1999] and multi-linear models
[Cao et al. 2014b; Vlasic et al. 2005]. High frequency details such as
wrinkles are typically missing from these methods, which requires
further refinements [Bermano et al. 2014].

Reconstruction from monocular video [Fyffe et al. 2014; Garrido
et al. 2013; Shi et al. 2014; Suwajanakorn et al. 2014] in uncontrolled
environments draws more attention in recent years due to its low
cost setup and applicability to various legacy video footage. Follow-
up works of [Garrido et al. 2016; Suwajanakorn et al. 2015] build
controllable face rigs and appearance from video for animation.
Similarly, Ichim et al. [2015] create fully rigged 3D personalized
avatars from hand-held video input. All the above methods, how-
ever, require intensive off-line processing and are not applicable to
real-time scenarios.

Real-time Face Capture. Real-time facial tracking systems have
been developed using structured light [Weise et al. 2009], where
an individual-specific face model is fitted offline first and then
tracked online for expression transferring. Another category com-
bines depth information from a single RGB-D camera [Chen et al.
2013; Hsieh et al. 2015; Li et al. 2013; Thies et al. 2015, 2018a,b; Weise
et al. 2011; Zollhöfer et al. 2014] to track facial expression deforma-
tions in real-time. Regression based face tracking has been proposed
by Cao et al. [2014a, 2013] to capture coarse 3D facial geometry
from a single monocular camera in real-time. Their follow-up work
[Cao et al. 2015] learns displacement patches from captured tex-
ture to predict medium-scale details. Recently, Wang et al. [2016]
track facial expression and eye gaze simultaneously, and Thies et al.
[2016] fit parametric face models by combining the photometric
consistencies from RGB input sequence. From the perspective of
computer vision community, deep learning methods, such as CNN
[Guo et al. 2018; Sela et al. 2017; Tewari et al. 2018, 2017], have

Real-time Hierarchical Facial Performance Capture I3D’19, May 21-23, 2019, Montreal, Quebec, Canada

Level 3

Level 2

Level 1
Level 0

Figure 3: An example of 4-level hierarchy where lower lev-
els have higher resolutionmeshes and images. The closeups
show the topology for the same mesh blocks at two consec-
utive levels, with the lower level containing 4 more vertices
denoted as circles.

been extensively used to reconstruct facial performance from im-
ages/video. Even though noticeable progresses have been made in
the area of real-time face capture, fine-scale details reconstruction
is still a weakness compared to off-line methods.

Shape-from-Shading. Acquiring 3D shape from a single image
given the known lighting condition and surface reflectance is a well
established technique, a.k.a shape-from-shading (SfS) [Horn 1975],
in the area of photometric stereo. Vlasic et al. [2009] capture dy-
namic normal maps from multiple views using SfS under designed
lighting. A popular use case of SfS is coarse shape refinements under
uniform lighting [Beeler et al. 2012] or even uncontrolled lighting
[Wu et al. 2013, 2011] by approximating lighting with spherical
harmonics [Basri and Jacobs 2003]. This technique has also been
widely used in facial reconstruction for fine-scale geometry refine-
ments since human faces are generally assumed to be Lambertian
surfaces with statistical shape priors. The works of [Garrido et al.
2013, 2016; Ichim et al. 2015; Kemelmacher-Shlizerman and Basri
2011; Shi et al. 2014; Suwajanakorn et al. 2014] reconstruct fine-
scale face shapes and albedo from RGB video in an off-line manner.
A real-time method related to ours is [Wu et al. 2014], where light-
ing and refined depth map are estimated from shading cues using a
RGB-D camera. Their method, however, cannot reconstruct para-
metric face models or albedo texture, while our method builds a
textured face blendshape model that is ready for animation and
expression reenactment using only a monocular camera.

3 HIERARCHICAL RECONSTRUCTION
Our method focuses on augmenting a coarse face model captured
from input RGB video with wrinkle and fold details. The coarse
model could be generated by any real-time methods such as [Cao
et al. 2014a] and [Wang et al. 2016]. In our system, we use [Wang
et al. 2016] which fits a bilinear face model to the input video by
estimating the camera parameters, head pose, identity vector, and
expression vector. The captured face model contains 5.6K vertices
and 33K triangle faces presenting large-scale facial deformations.

Mesh and Image Hierarchy. The resolution of the mesh is too low
to faithfully reproduce the subtle details of the input image through

vertex displacements. Therefore, we propose a hierarchical ap-
proach to progressively capture finer details using higher resolution
meshes. Specifically, we use the coarsemesh as the control mesh and
iteratively subdivide it to build a mesh hierarchy {M0,M1, . . . ,Mk }

withM0 denoting the coarsest level andMk denoting the finest level.
A corresponding image pyramid {I0, I1, . . . , Ik } is also constructed
from the GPU generated mipmap of the input frame. Figure 3 shows
an example of the constructed hierarchy, where the top level has
the lowest resolution mesh and image while the bottom level has
the highest resolution. The closeups show that 4 new vertices (cir-
cle) are inserted into a mesh block (red square) after subdivision
to account for the additional pixels in the corresponding higher
resolution image.

4-8 subdivision. We employ the 4-8 subdivision scheme [Velho
and Zorin 2001] to adaptively subdivide the mesh. The reason we
choose this scheme is two-folds: (i) our coarse meshM0 is a trian-
gulated quadrilateral mesh which exactly meets the requirement of
4-8 subdivision. (ii) 4-8 subdivision results in conforming meshes
(without edge cracks) and simple adaptive subdivisions. As shown
in Figure 4, our initial control mesh consists of thousands of quad
blocks. The two triangles { f1, f2} are called themate triangles of
a block {v1,v2,v3,v4}. Notice that a regular triangle f1 has two
vertices v1, v3 with valence = 8 and one vertex v2 with valence =
4. We denote the edge v1v3 which is opposite to the vertex with
valence = 4 as an interior edge. The basic subdivision operation
of a mesh block is bisection: a new vertex is inserted to bisect the
interior edge and two new edges are created to connect the new
vertex to the two vertices with valence = 4. The positions of the
new vertex and the old vertices are computed using the face mask
and vertex mask, respectively, as shown in the middle of Figure 4.

v1

v3

v2

v4

f1
f2 f1

f2

Initial Mesh

Face Mask

Vertex Mask Adaptive Subdivision

¼ ¼

¼ ¼
1⁄8

1⁄8

1⁄81⁄8 1⁄8

1⁄8

1⁄8

1⁄8

½ ½

Figure 4: 4-8 subdivision. Left: a coarse initial mesh; Mid-
dle: the face/vertex mask for mesh block bisection; Right:
themulti-level adaptive subdivision. The added vertices and
edges are denoted as circles and dashed lines, respectively.

We build each finer mesh Mi+1 from the coarser mesh Mi by
looping through all the faces f ∈ F with the adaptFace function
(Algorithm 1). To prevent over-refinements, i.e., multiple vertices
are projected to a single pixel, we skip the triangle faces whose
interior edge is smaller than a threshold ε when projected to the
image space (line 4) using the estimated head pose and camera
parameters. The subdivision terminates when no triangle face needs
to be adapted. Prior to the bisection of a face f , the mate face of
f (denoted as f .mate) needs to be at the same subdivision level
as f (line 5) to prevent cracks, since f .mate might be skipped by
previous subdivision steps. Then, we update the positions of the

I3D’19, May 21-23, 2019, Montreal, Quebec, Canada L.Ma, and Z.Deng

two end vertices of the interior edge of f using the adaptVertex
function. The actual bisection operation of adaptFace is performed
by bisecting the interior edge (line 10) and the two triangles f
(line 12) and f .mate (line 13). Note that we only construct the mesh
hierarchy at the start of the video and then keep it fixed. At run-time,
the mesh is progressively refined from coarse levels and prolonged
to fine levels following the same topology and face/vertex mask. We
will discuss our displacements-based hierarchical mesh refinements
in more details in Section 4.3.

Algorithm 1: Adaptive 4-8 Subdivision
1 Function adaptFace(V , F , f):
2 if f has not been processed then
3 e ← getInteriorEdge(f);
4 if project(e).length > ε then
5 while f.mate.level < f.level do
6 adaptFace(V , F , f .mate);
7 end
8 adaptVertex(V , F , e .start , f .level);
9 adaptVertex(V , F , e .end , f .level);

10 v ← bisectEdge(e);
11 put v in V ;
12 f1 ← bisectTriangle(f);
13 f2 ← bisectTriangle(f .mate);
14 put f1, f2 in F ;
15 end
16 end
17 end
18 Function adaptVertex(V , F , v , l):
19 if v has not been processed then
20 for f ∈ F containing v do
21 while f.level < l do
22 adaptFace(V , F , f);
23 end
24 end
25 updateVertexPosition(v);
26 end
27 end

4 SHADING BASED REFINEMENTS
Similar to previous off-line methods [Shi et al. 2014], we assume hu-
man faces are Lambertian surfaces, and employ shape-from-shading
to capture dynamic fine details such as wrinkles and folds. We en-
code the fine surface bumps as the displacements along surface
normals and recover them jointly with the unknown illumination
and albedo from the input RGB images. We also parameterize the
incident lighting with spherical harmonics [Basri and Jacobs 2003],
and assume the lighting contributes equally to each RGB channel.
Therefore, the reflected irradiance R at vertex i is represented as:

Ri = l
T · SH (ni)ρi , (1)

where ρi is the face albedo at vertex i , l is the vector of spherical
harmonics coefficients of incident lighting, and SH is the spherical

harmonics basis functions taking a unit length surface normal ni
as the input. We take the 2nd order harmonic approximation that
capturesmore than 99% of the energy in a face image [Kemelmacher-
Shlizerman and Basri 2011]. Then SH (n) ∈ R9 evaluates to:

SH (n) = (1,nx ,ny ,nz ,nxny ,nxnz ,nynz ,n2
x − n

2
y , 3n

2
z − 1)T ,

where nx , ny , and nz are the components of the normal n.
We solve the inverse rendering equation (Eq. 1) in an analysis-

by-synthesis strategy. The lighting, albedo, and displacements are
iteratively optimized by minimizing the difference between the
current observed image I and the rendered image R:

Edata =
K∑
i=1
∥Ii − Ri ∥

2 , (2)

where Ii is the sampled image color by projecting vertex i onto
the image plane according to head pose and camera parameters,
and K is the number of vertices. At a frame t , we first roughly
approximate the refined (target) face mesh as the captured coarse
mesh augmented with the displacements from the previous frame:

Mt
d = Mt + dt−1N t ,

whereMt is the coarse mesh without refinements, N t is its derived
per-vertex normals, andMt

d is the augmented mesh with the previ-
ous frame’s displacements dt−1. We will drop the superscript t in
the remainder of this paper. Then, the lighting can be estimated (Sec.
4.1) using the recomputed vertex normals fromMd and the albedo
from the previous frame. The albedo is subsequently updated (Sec.
4.2) with the computed lighting and normals. Note that the albedo is
computed only at the start of the video and remains fixed thereafter.
Finally, the displacements are re-estimated (Sec. 4.3) for current
frame by formulating normals as a function of displacements. We
describe the details of each step below.

4.1 Lighting Estimation
We assume the illumination varies across frames but penalize sud-
den changes between consecutive frames with a smoothing term.
The total energy function for illumination becomes:

E(l) = Edata +w1

lt − lt−1

2

, (3)

Minimizing this energy in terms of l is equivalent to solving the
linear system Al = b, where A is a (3K + 9) by 9 matrix. The top 3K
rows evaluate to the product of SH (n) and each channel of ρ, and the
bottom 9 rows are an identity matrix. We only consider those visible
vertices whose normals face to the camera (nz > 0). This leads to a
highly over-constrained linear system and substantial set-up and
computational time if conducted on the CPU. To achieve real-time
performance, we resort to a pure GPU solution. We construct the
matrix A and the vector b on the GPU with each thread assembling
one row. Then, we compute ATA and ATb using cuBLAS and solve
the normal equation ATAb = ATb using Cholesky decomposition
provided by cuSOLVER. Since illumination is a global environment
attribute, its accuracy will not be significantly improved on finer
levels. Hence, we directly use the coarsest meshM0 for fast compu-
tation.

Real-time Hierarchical Facial Performance Capture I3D’19, May 21-23, 2019, Montreal, Quebec, Canada

Figure 5: From an input RGB image (left), we recover albedo
texture (middle) and incident lighting (right).

4.2 Albedo Recovery
Given the estimated lighting and approximated normals, the albedo
at each vertex can be naively computed as ρi = Ii

lT ·SH (ni)
. However,

this leads to baking the residuals of Edata into the albedo, such
that fine details, such as wrinkles, are interpreted as albedo change.
Therefore, we incorporate a Laplacian regularization term to adapt
the albedo to be as smooth as the prior average albedo. The energy
function becomes:

E(ρ) = Edata +w2 ∥Lρ − Lρ̄∥
2 , (4)

where ρ̄ is the average albedo provided by the FaceWarehosue [Cao
et al. 2014b], and L represents the graph Laplacian matrix with
respect to the mesh.

Minimizing Eq. 4 is equivalent to solving a sparse linear least
square problem Aρ = b. For a mesh with E edges, this problem
has 3K unknowns, (3K + 3E) residuals, and (3K + 6E) non-zero
values. Similar to the lighting estimation, we also convert it to the
normal equation using cuSPARSER and solve it using cuSOLVER.
Note that we only update the albedo within the first several frames
and keep it fixed afterwards. Because we would like to elude baking
geometric detail into the albedo, it is desired for all the mesh levels
in our hierarchy to have as close as possible albedo. Therefore,
we compute the albedo on the coarsest mesh M0 and prolong to
finer levels where the albedo for additional vertices are interpolated
with the vertex mask in Figure 4. Figure 5 shows an example of the
recovered albedo and lighting.

4.3 Displacements Refinement
Nowwe introduce how to augment the coarse mesh with geometric
details via shape-from-shading. Equipped with the initialized mesh
hierarchy described in Section 3, we first build the corresponding
image pyramid on the GPU for a particular frame t . Starting from
the coarsest level, we enhance the mesh with vertex displacements
to improve the consistency between surface reflectance R and the
corresponding image I . The computed displacements on coarser
level are then prolonged to the next finer level as an initialization
for further improvement as well as a constraint to regularize the
displacements on the finer level to be close to those on the coarser
level. The advantages of this progressive approach over direct re-
finements on the finest level include improved robustness and less
noise. Therefore, to obtain a smooth face surface, a smoothness
term that measures local displacement smoothness is required in

the energy function. A proper weight of this term, however, is very
difficult to find: a large weight may result in an over-smoothed
surface that does not contain fine details; while a small weight may
bring noise to the surface. In our approach, we use coarser levels
to capture lower frequency bands of geometric features that serve
as a reasonable guidance for refinements at finer levels. On finer
levels, higher frequency details are added and noise is removed
using the higher resolution input image. The difference between
with and without hierarchical refinements can be seen in Figure 6:
using a small smoothness weight, the direct reconstruction method
incurs noise around nose; while our hierarchical method gradually
removes noise from coarse levels and adds details on finer levels.

Direct Reconstruction

Level 0

Level 1

Level 2

Level 3Level 4

Our Hierarchical Reconstruction

Figure 6: Our hierarchical method (right) progressively re-
fines the coarse mesh, producing a less noisy, high res-
olution geometry, compared to the direct reconstruction
method (left) that only refines on the highest resolution
level.

To solve the displacements d , we first formulate Edata as a func-
tion of d . For a vertex vi , its normal ni is calculated as a weighted
sum of all the neighboring face normals. If the weight ω is set to
be twice of the area of the neighbor triangle, the vertex normal
calculation can be converted to:

ni =
∑

ω
(vj −vi) × (vk −vi)

|(vj −vi) × (vk −vi)|
=
∑
(vj −vi) × (vk −vi),

where vj and vk are the other two vertices of a triangle containing
vi . In this way, we can obtain the vertex normals for the coarse
mesh. Recall that the refined vertex position can be presented as
a displacement along the coarse normal, thus the vertex normal
on the desired refined mesh can be expressed as a function of
displacements d :

n∗i =
∑
((vj +djnj)−(vi +dini))×((vk +dknk)−(vi +dini)), (5)

where di , dj , and dk denote the unknown displacements for vertex
vi , vj , and vk , respectively. By substituting Eq. 5 into Edata (Eq. 2),
we obtain an energy function where d is the only unknown variable.
Nonetheless, the problem is still under-constrained. We instead
impose additional constraints and optimize the following non-linear

I3D’19, May 21-23, 2019, Montreal, Quebec, Canada L.Ma, and Z.Deng

Figure 7: The normal map and coarse mesh before (left) and
after (right) our shape-from-shading refinements.

energy function:
E(d) =Edata +w3Esmooth +w4Ehier +w5Ecoarse ,

s.t. ∂M(d) = 0,
(6)

where ∂M denotes the boundary of the face surface, serving as the
Dirichlet boundary condition.

Smoothness Constraint. For a C2 surface, its local displacements
should change smoothly. Similar to albedo, we employ graph Lapla-
cian to improve the displacement smoothness:

Esmooth = ∥Ld ∥
2 =

K∑
i=1

di − r∑
j=1

1
r
dj

2

,

where r is the number of 1-ring neighbors for vertex vi , and dj is
the j-th neighbor’s displacements.

Hierarchical Constraint. For the mesh at a level higher than 0, we
initialize its displacements as the prolongation of the displacements
at the coarser level. We also use the prolonged displacements pd as
a regularizer for the current level:

Ehier =
K∑
i=1
∥pdi − di ∥

2 .

Coarse Constraint. We assume that the coarse mesh already pro-
vides a good approximation of the ground truth, thus the displace-
ments are expected to be small:

Ecoarse =
K∑
i=1
∥di ∥

2 .

Figure 7 presents the enhanced surface details for the normal
map and the geometry after refinements. The non-linear energy
Eq. 6 consists of K unknowns and 6K residuals. We employ a data-
parallel GPU Gauss-Newton solver for real-time optimization.

4.4 Energy Minimization
Gauss-Newton Solver. The non-linear energy E(d) can be rewrit-

ten as the sum of squared residuals:

E(d) =
6K∑
k=1
∥rk (d)∥2 =

6K∑
k=1
∥yk − fk (d)∥2 . (7)

Initialized by the displacements from the previous frame, we aim to
find the local optimal displacements d∗ ∈ RK where the gradient is
zero. To this end, we update the parameter vector d through several
Gauss-Newton steps. At a step n, dn is updated as:

dn+1 = dn + ∆d and JT J∆d = JT (y − f(d)), (8)

where J is the Jacobian matrix of f with its (i, j)th component =
∂fi (d)
∂dj

. We only evaluate the data term of J at the initialization of
each step and store it into the global memory while evaluate the
other terms on-the-fly for less memory access. The optimal step
length ∆d is computed by the PCG solver, described below.

Preconditioned Conjugate Gradient (PCG) Solver. Similar to the
work of [Zollhöfer et al. 2014], our PCG solver requires 2 kernel
calls at initialization and 3 kernel calls per iteration loop for syn-
chronizations across thread blocks. We use the Jacobi conditioner
to ensure a fast convergence. The inverses of the diagonal entries of
JT J are computed at initialization. However, to take advantage of
the sparsity of J , we never explicitly evaluate JT J . Instead, when-
ever we need the multiplication of matrix JT J with a vector p, we
convert it to two sequential matrix-vector multiplications Jp and
JT (Jp).

1 2 3 4 5
Frame

Lo
ss

5 PCG
7 PCG
10 PCG

Figure 8: The convergences of our Gauss-Newton solver for
10 Gauss-Newton steps within 5 frames.

5 RESULTS
In this section, we first describe the implementation and runtime of
our method. Then we both quantitatively and qualitatively evaluate
our method by comparing our result with input video, ground-truth
meshes, and results by existing offline and real-time methods.

5.1 Implementation
We implemented the coarse face reconstruction on the CPU using
C++ and the hierarchical refinements on the GPU using CUDA.
The two components run in fully parallel. We run 10 outer Gauss-
Newton steps and 7 inner PCG iterations for displacements refine-
ment. We compare the convergences of our solver with various
configurations, as shown in Figure 8. We found that the 10/7 con-
figuration achieved the optimal balance between the convergence
rate and the computational cost.

Table 1 presents the runtime statistics of our system that runs on
a desktop computer with Intel Core i7 CPU @3.7 GHz and nVidia
Geforce GTX 2080Ti GPU. We captured live facial performance of
subjects using a Logitech C922x Pro webcam which is capable of
recording at 720P resolution and 60 fps. Our system ran at 28 fps for
720P video and 50 fps for 800x600 video. The speedup from the GPU
solver is due to fewer levels in the hierarchy for lower resolution
input video. The final frame rate is determined by the slower side:
GPU in the case of 720P video and CPU in the case of 800x600 video.
All the results presented in the paper and supplemental demo video
were recorded at 720p for better visual quality.

Real-time Hierarchical Facial Performance Capture I3D’19, May 21-23, 2019, Montreal, Quebec, Canada

Table 1: Runtime statistics for our method and timing com-
parisonwith [Cao et al. 2015] and [Guo et al. 2018]. Note that
the albedo is not computed per frame in our method.

Ours
Albedo Lighting Displacement

1280x720 112 ms 1 ms 35 ms 28 fps
800x600 98 ms 1 ms 16 ms 50 fps

[Cao et al. 2015]
Global Tracker Local Detail

648x860 32 ms 23 ms 18 fps
[Guo et al. 2018]
CoarseNet FineNet

256x256 5 ms 15 ms 50 fps

5.2 Evaluation
We demonstrate the accuracy and effectiveness of our method in
Figure 9, where fine-scale facial geometries are captured for subjects
with various skin colors, head poses, expressions, and wrinkles. We
show that our method is capable of capturing fine-scale skin details
from shading changes for live camera video streams as well as
legacy video footages.

Quantitative Evaluation. We first quantitatively evaluated our
method by comparing the input video (i.e., images) with the syn-
thesized textured face using estimated head pose, geometry, illumi-
nation, and albedo. As shown in Figure 10, the photometric error
is relatively low except at the corner of the forehead where the
highlight breaks the Lambertian surface assumption. We then eval-
uated our method on the binocular FaceCap dataset [Valgaerts et al.
2012], where we only use the image sequence from one camera as
input. We registered our mesh with the ground-truth mesh from
[Valgaerts et al. 2012] and computed the point-to-mesh distance. As
shown in Figure 11, our method achieved the average error = 1.96
mm and the standard deviation = 1.35 mm, which is more accurate
than the state-of-the-art, CNN-based, real-time method [Guo et al.
2018] that reported the average error = 2.08 mm and the standard
deviation = 1.63 mm.

Comparisons with Off-line Methods. We compared our method
with the state-of-the-art off-line methods that reconstruct faces
from RGB video. Beeler et al. [2011] capture high quality facial
performance with multiple synchronized cameras. This hardware
setup prevents their method from processing legacy video footages
(e.g., Youtube video). Moreover, their method requires the manual
selection of an anchor frame while our method runs in a fully
automatic manner. The work of [Garrido et al. 2013] also lacks the
capability to process legacy video as it relies on a high quality face
scan of the subject for blendshape construction. Besides, offline
methods typically involve iterative refinements across the whole
sequence, thereby are unsuitable for on-line tracking. As shown
in Figure 12, our method produced the results of close quality to
them but in real-time, without any preprocessing for the subject or
forward/backward information of input video.

Figure 9: Our method captures coarse-scale (the second row)
facial performance aswell as fine-scale (the third and fourth
rows) details on various identities, expressions, and head
poses without any preprocessing or manual corrections.

0

0.12

Figure 10: The photometric accuracy of our method (from
left to right): the input frame, our rendered face, and heat
map showing photometric errors.

Comparisons with Real-time Methods. Most existing real-time
methods [Cao et al. 2014a, 2013; Thies et al. 2016] target on cap-
turing coarse-scale facial expression and head motion from RGB
video. Recently, Cao et al. [2015] proposed to extend the coarse
global tracker with predicted local details. Their approach trains lo-
cal regressors by learning correlations between image patches and
surface details from a database of high-quality face scans. While
plausible displacements are combined to the coarse mesh, their
augmented mesh is not geometrically correct but only a close ap-
proximation of the true surface. Furthermore, medium-scale details
are only added to locations where image patches are detected as

I3D’19, May 21-23, 2019, Montreal, Quebec, Canada L.Ma, and Z.Deng

[Valgaerts et al. 2012] [Guo et al. 2018] Ours

0mm

12mm

Figure 11: Comparison between our method and the CNN-
based method [Guo et al. 2018]. From left to right: the in-
put video frame and ground truth mesh from the binocular
method [Valgaerts et al. 2012], the result by the CNN-based
method, and the result by our method.

wrinkles, while other regions are left with surface skins learned
from the database. As a result, large scale deformations such as
sunken cheeks (top of Figure 12) are often absent in their results.
Similarly, the CNN-based real-time method by Guo et al. [2018] pro-
duces an approximated but noisy surface (Figure 11). By contrast,
our method can produce truly reconstructed geometric details by
minimizing the shading energy over the whole face. Therefore, our
method is able to capture more accurate facial details as presented
in Figures 11 and 12. Compared to the above two real-time methods,
in terms of running time, our methods achieves highest frame rate
while at higher resolutions (see Table 1).

Limitations. Our current approach relies on the detection of
a sparse set of 2D facial landmarks. Inaccurate detections could
lead to incorrect head poses or subject identities. Since we assume
Lambertian reflectance for the face surface, specular highlights,
unsmooth illumination, and cast shadows could incur artifacts. Sim-
ilarly, occlusions such as hair and glasses might be misinterpreted
as geometric changes. The albedo texture is recovered within the
first several seconds. Therefore, as much as possible face orienta-
tions are encouraged during this stage for a complete albedo texture
recovery. Figure 13 shows some failure cases for specular highlights,
occlusions, and incomplete albedo texture on a novel head pose.

6 CONCLUSION
We present a real-time, automatic, geometry-based method for cap-
turing fine-scale facial performance from monocular RGB video.
Our method reconstructs large-scale head poses and expressions
as well as fine-scale wrinkles, lighting, and albedo in parallel and
in real-time. A novel hierarchical reconstruction method is also

Input [Garrido et al. 2013][Cao et al. 2015] Ours

Input [Beeler et al. 2011] [Cao et al. 2015] Ours

Figure 12: Compared to the offline monocular method [Gar-
rido et al. 2013] and amulti-view basedmethod [Beeler et al.
2011], our method produces similar results. Compared to
the real-time method of [Cao et al. 2015], our method ex-
cels in capturing large-scale deformations, such as sunken
cheeks on the top two rows.

Figure 13: Limitations. Specular highlights (red) and occlu-
sions (blue) cause artifacts. Insufficient head orientations
during initialization leads to incomplete albedo (green).

introduced to robustly solve the shape-from-shading surface re-
finements of human faces. We demonstrate that our approach can
produce results close to off-line methods and better than previous
real-time methods.

As the future work, we would like to enhance the coarse face
tracking algorithm by combining the dense correspondences of

Real-time Hierarchical Facial Performance Capture I3D’19, May 21-23, 2019, Montreal, Quebec, Canada

RGB values in the image space by introducing a face texture prior.
However, this will bring extra computation cost on the GPU and
breaks the current CPU-GPU parallel structure, since the photomet-
ric error will be transferred back to CPU for tracking improvements.
Therefore, a more sophisticated solver is demanded for this purpose.
We are also interested in updating the albedo texture with unseen
pixels in novel head pose or inferring a complete albedo texture
using deep learning techniques at initialization.

ACKNOWLEDGEMENTS
We would like to thank Dr. Fuhao Shi for numerous helps and in-
sightful discussion on face reconstruction and all the participants
in our data acquisition. We also would like to thank Chen Cao and
Yudong Guo for providing their results for comparison. This re-
search is in part funded by NSF IIS-1524782. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
agencies.

REFERENCES
Ronen Basri and David W Jacobs. 2003. Lambertian reflectance and linear subspaces.

IEEE transactions on pattern analysis and machine intelligence 25, 2 (2003), 218–233.
Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner, and Markus Gross. 2010.

High-quality Single-shot Capture of Facial Geometry. ACM Trans. Graph. 29, 4
(July 2010), 40:1–40:9.

Thabo Beeler, Derek Bradley, Henning Zimmer, and Markus Gross. 2012. Improved
reconstruction of deforming surfaces by cancelling ambient occlusion. In Euro-
pean Conference on Computer Vision. Springer, Springer Berlin Heidelberg, Berlin,
Heidelberg, 30–43.

Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig Gots-
man, Robert W. Sumner, and Markus Gross. 2011. High-quality Passive Facial
Performance Capture Using Anchor Frames. ACM Trans. Graph. 30, 4 (July 2011),
75:1–75:10.

Amit H. Bermano, Derek Bradley, Thabo Beeler, Fabio Zund, Derek Nowrouzezahrai,
Ilya Baran, Olga Sorkine-Hornung, Hanspeter Pfister, Robert W. Sumner, Bernd
Bickel, and Markus Gross. 2014. Facial Performance Enhancement Using Dynamic
Shape Space Analysis. ACM Trans. Graph. 33, 2 (April 2014), 13:1–13:12.

Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy,
Hanspeter Pfister, and Markus Gross. 2007. Multi-scale Capture of Facial Geometry
and Motion. ACM Trans. Graph. 26, 3, Article 33 (July 2007).

Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of 3D
Faces. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). ACM, 187–194.

Derek Bradley, Wolfgang Heidrich, Tiberiu Popa, and Alla Sheffer. 2010. High Reso-
lution Passive Facial Performance Capture. ACM Trans. Graph. 29, 4 (July 2010),
41:1–41:10.

Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-time High-fidelity
Facial Performance Capture. ACM Trans. Graph. 34, 4 (July 2015), 46:1–46:9.

Chen Cao, Qiming Hou, and Kun Zhou. 2014a. Displaced Dynamic Expression Regres-
sion for Real-time Facial Tracking and Animation. ACM Trans. Graph. 33, 4 (July
2014), 43:1–43:10.

Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 2013. 3D Shape Regression for
Real-time Facial Animation. ACM Trans. Graph. 32, 4 (July 2013), 41:1–41:10.

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2014b. Faceware-
house: A 3d facial expression database for visual computing. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (2014), 413–425.

Yen-Lin Chen, Hsiang-TaoWu, Fuhao Shi, Xin Tong, and Jinxiang Chai. 2013. Accurate
and robust 3d facial capture using a single rgbd camera. In 2013 IEEE International
Conference on Computer Vision. 3615–3622.

Graham Fyffe, Andrew Jones, Oleg Alexander, Ryosuke Ichikari, and Paul Debevec.
2014. Driving High-Resolution Facial Scans with Video Performance Capture. ACM
Trans. Graph. 34, 1 (Dec. 2014), 8:1–8:14.

Pablo Garrido, Levi Valgaert, Chenglei Wu, and Christian Theobalt. 2013. Reconstruct-
ing Detailed Dynamic Face Geometry from Monocular Video. ACM Trans. Graph.
32, 6 (Nov. 2013), 158:1–158:10.

Pablo Garrido, Michael Zollhöfer, Dan Casas, Levi Valgaerts, Kiran Varanasi, Patrick
Pérez, and Christian Theobalt. 2016. Reconstruction of Personalized 3D Face Rigs
from Monocular Video. ACM Trans. Graph. 35, 3 (May 2016), 28:1–28:15.

Paulo Gotardo, Jérémy Riviere, Derek Bradley, Abhijeet Ghosh, and Thabo Beeler.
2018. Practical Dynamic Facial Appearance Modeling and Acquisition. ACM Trans.

Graph. 37, 6, Article 232 (Dec. 2018), 13 pages.
Yudong Guo, Juyong Zhang, Jianfei Cai, Boyi Jiang, and Jianmin Zheng. 2018. CNN-

based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic
Face Images. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018).

Berthold KP Horn. 1975. Obtaining shape from shading information. The psychology
of computer vision (1975), 115–155.

Pei-Lun Hsieh, Chongyang Ma, Jihun Yu, and Hao Li. 2015. Unconstrained realtime
facial performance capture. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1675–1683.

Haoda Huang, Jinxiang Chai, Xin Tong, and Hsiang-Tao Wu. 2011. Leveraging Motion
Capture and 3D Scanning for High-fidelity Facial Performance Acquisition. ACM
Trans. Graph. 30, 4 (July 2011), 74:1–74:10.

Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. 2015. Dynamic 3D Avatar
Creation from Hand-held Video Input. ACM Trans. Graph. 34, 4 (July 2015), 45:1–
45:14.

Ira Kemelmacher-Shlizerman and Ronen Basri. 2011. 3D face reconstruction from
a single image using a single reference face shape. IEEE transactions on pattern
analysis and machine intelligence 33, 2 (2011), 394–405.

Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery, Bernd
Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent advances in facial appear-
ance capture. Computer Graphics Forum 34, 2 (2015), 709–733.

Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime Facial Animation with
On-the-fly Correctives. ACM Trans. Graph. 32, 4 (July 2013), 42:1–42:10.

Wan-Chun Ma, Andrew Jones, Jen-Yuan Chiang, Tim Hawkins, Sune Frederiksen,
Pieter Peers, Marko Vukovic, Ming Ouhyoung, and Paul Debevec. 2008. Facial
Performance Synthesis Using Deformation-driven Polynomial Displacement Maps.
ACM Trans. Graph. 27, 5 (Dec. 2008), 121:1–121:10.

M. Sela, E. Richardson, and R. Kimmel. 2017. Unrestricted Facial Geometry Recon-
struction Using Image-to-Image Translation. In 2017 IEEE International Conference
on Computer Vision (ICCV). 1585–1594.

Fuhao Shi, Hsiang-Tao Wu, Xin Tong, and Jinxiang Chai. 2014. Automatic Acquisition
of High-fidelity Facial Performances Using Monocular Videos. ACM Trans. Graph.
33, 6 (Nov. 2014), 222:1–222:13.

Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz. 2014.
Total Moving Face Reconstruction. In Computer Vision – ECCV 2014, David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International
Publishing, Cham, 796–812.

Supasorn Suwajanakorn, StevenM Seitz, and Ira Kemelmacher-Shlizerman. 2015. What
makes tom hanks look like tom hanks. In 2015 IEEE International Conference on
Computer Vision (ICCV). 3952–3960.

Ayush Tewari, Michael Zollhöfer, Pablo Garrido, Florian Bernard, Hyeongwoo Kim,
Patrick Pérez, and Christian Theobalt. 2018. Self-supervised Multi-level Face Model
Learning for Monocular Reconstruction at over 250 Hz. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard,
Patrick Perez, and Theobalt Christian. 2017. MoFA: Model-based Deep Convolu-
tional Face Autoencoder for Unsupervised Monocular Reconstruction. In The IEEE
International Conference on Computer Vision (ICCV).

Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc Stamminger,
and Christian Theobalt. 2015. Real-time Expression Transfer for Facial Reenactment.
ACM Trans. Graph. 34, 6 (Oct. 2015), 183:1–183:14.

Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and Matthias
Nießner. 2016. Face2face: Real-time face capture and reenactment of rgb videos.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2387–
2395.

Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and Matthias
Niessner. 2018a. FaceVR: Real-Time Gaze-Aware Facial Reenactment in Virtual
Reality. ACM Trans. Graph. 37, 2, Article 25 (June 2018), 15 pages.

Justus Thies, Michael Zollhöfer, Christian Theobalt, Marc Stamminger, and Matthias
Niessner. 2018b. Headon: Real-time Reenactment of Human Portrait Videos. ACM
Trans. Graph. 37, 4, Article 164 (July 2018), 13 pages.

Levi Valgaerts, Chenglei Wu, Andrés Bruhn, Hans-Peter Seidel, and Christian Theobalt.
2012. Lightweight Binocular Facial Performance Capture Under Uncontrolled
Lighting. ACM Trans. Graph. 31, 6 (Nov. 2012), 187:1–187:11.

Luiz Velho and Denis Zorin. 2001. 4-8 Subdivision. Comput. Aided Geom. Des. 18, 5
(June 2001), 397–427.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popović. 2005. Face
Transfer with Multilinear Models. ACM Trans. Graph. 24, 3 (July 2005), 426–433.

Daniel Vlasic, Pieter Peers, Ilya Baran, Paul Debevec, Jovan Popović, Szymon
Rusinkiewicz, and Wojciech Matusik. 2009. Dynamic Shape Capture Using Multi-
view Photometric Stereo. ACM Trans. Graph. 28, 5 (Dec. 2009), 174:1–174:11.

Congyi Wang, Fuhao Shi, Shihong Xia, and Jinxiang Chai. 2016. Realtime 3D Eye
Gaze Animation Using a Single RGB Camera. ACM Trans. Graph. 35, 4 (July 2016),
118:1–118:14.

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime Performance-
based Facial Animation. ACM Trans. Graph. 30, 4 (July 2011), 77:1–77:10.

Thibaut Weise, Hao Li, Luc Van Gool, and Mark Pauly. 2009. Face/Off: Live Facial
Puppetry. In SCA’09. ACM, New York, NY, USA, 7–16.

I3D’19, May 21-23, 2019, Montreal, Quebec, Canada L.Ma, and Z.Deng

Lance Williams. 2006. Performance-driven Facial Animation. In ACM SIGGRAPH 2006
Courses (SIGGRAPH ’06). ACM, New York, NY, USA, Article 16.

Chenglei Wu, Carsten Stoll, Levi Valgaerts, and Christian Theobalt. 2013. On-set
Performance Capture of Multiple Actors with a Stereo Camera. ACM Trans. Graph.
32, 6 (Nov. 2013), 161:1–161:11.

Chenglei Wu, Kiran Varanasi, Yebin Liu, Hans-Peter Seidel, and Christian Theobalt.
2011. Shading-based dynamic shape refinement from multi-view video under
general illumination. In ICCV’11. ACM, New York, NY, USA, 1108–1115.

Chenglei Wu, Michael Zollhöfer, Matthias Nießner, Marc Stamminger, Shahram Izadi,
and Christian Theobalt. 2014. Real-time Shading-based Refinement for Consumer
Depth Cameras. ACM Trans. Graph. 33, 6 (Nov. 2014), 200:1–200:10.

Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. 2004. Spacetime Faces:
High Resolution Capture for Modeling and Animation. ACM Trans. Graph. 23, 3
(Aug. 2004), 548–558.

Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rehmann, Christopher
Zach, Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian
Theobalt, and Marc Stamminger. 2014. Real-time Non-rigid Reconstruction Using
an RGB-D Camera. ACM Trans. Graph. 33, 4 (July 2014), 156:1–156:12.

Michael ZollhÃűfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler, Patrick
PÃľrez, Marc Stamminger, Matthias NieÃ§ner, and Christian Theobalt. 2018. State
of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications.
Computer Graphics Forum 37, 2 (2018), 523–550.

	Abstract
	1 Introduction
	2 Related Work
	3 Hierarchical Reconstruction
	4 Shading based Refinements
	4.1 Lighting Estimation
	4.2 Albedo Recovery
	4.3 Displacements Refinement
	4.4 Energy Minimization

	5 Results
	5.1 Implementation
	5.2 Evaluation

	6 Conclusion
	References

