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A Deep Learning-Based Model for Head and Eye Motion
Generation in Three-party Conversations

AOBO JIN, QIXIN DENG, YUTING ZHANG, and ZHIGANG DENG, University of Houston

Fig. 1. Three-party conversational animations synthesized by our approach based on novel speech input.
Green blocks denote the left interlocutor’s speaking time, pink blocks denote themiddle interlocutor’s speak-
ing time, and yellow blocks denote the right interlocutor’s speaking time, and red solid circles denote the
four selected frames shown in the top.

In this paper we propose a novel deep learning based approach to generate realistic three-party head and
eye motions based on novel acoustic speech input together with speaker marking (i.e., speaking time for
each interlocutor). Specifically, we first acquire a high quality, three-party conversational motion dataset.
Then, based on the acquired dataset, we train a deep learning based framework to automatically predict the
dynamic directions of both the eyes and heads of all the interlocutors based on speech signal input. Via
the combination of existing lip-sync and speech-driven hand/body gesture generation algorithms, we can
generate realistic three-party conversational animations. Through many experiments and comparative user
studies, we demonstrate that our approach can generate realistic three-party head-and-eye motions based on
novel speech recorded on new subjects with different genders and ethnicities.
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(a) (b)

Fig. 2. (a): The middle interlocutor is speaking to the left interlocutor at this frame, both of the two listeners
show their interest by looking at the speaker. The triangle above the head points to the current speaker, and
the dashed directional lines represent the DFocs of the interlocutors. (b): The left interlocutor is speaking
but not looking at any other interlocutor. Meanwhile, the two listeners look at each other and do not show
noticeable interest in the speaker.

1 INTRODUCTION
Group conversation is probably one of the most common human-human communication forms in
our society. Over the years, its interaction patterns, pathologies, and paradoxes have been exten-
sively studied in many fields including communication, psychology, and behavior sciences [Wat-
zlawick et al. 2011]. Meanwhile, in recent years computationally understanding and modeling
multi-party conversations have also attracted increasing attention in the fields of human-computer
interaction(HCI) [Ding et al. 2017; Gu and Badler 2006; Otsuka et al. 2007, 2005; Vertegaal et al.
2000] and human-robot interaction [Foster et al. 2012; Johansson et al. 2013; Kondo et al. 2013;
Matsuyama et al. 2010; Mutlu et al. 2009] due to its broad applications.

To date relatively few efforts have been attempted to synthesize realistic multi-party head-and-
eye animations, not to mention the whole three-party conversational animations, despite such
animation techniques can be potentially applied to a variety of applications, including virtual real-
ity, computer-mediated communication, teleconferencing, and conversational agents. For example,
previously researchers have developed a number of approaches to generate conversational hand
gestures and other gesture modalities such as facial expression and body movements, using ei-
ther rule-based algorithms [Cassell et al. 1994, 2001; Marsella et al. 2013] or data-driven schemes
[Levine et al. 2010, 2009; Stone et al. 2004]. These approaches demonstrated certain successes of
generating the gestures of a single virtual speaker or dyadic conversational animations. However,
whether and how they can be effectively applied or extended to generate realistic multi-party
conversational head-and-eye animations has not been established. On the other hand, generating
realistic multi-party head-and-eye animations from limited user input (e.g., speech) is technically
challenging, due to the following main reasons. First, the interaction patterns of multi-party (even
three-party) conversations are significantly more complex than the counterparts in dyadic conver-
sations [Goodwin and Heritage 1990; Watzlawick et al. 2011].

Second, regardless the employed algorithms, the generation of realistic multi-party conversa-
tional head-and-eye animations would need a delicately recorded, multi-party conversational mo-
tion dataset. However, acquiring and processing such a non-trivial dataset itself is unavoidably
time-consuming and expensive.
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To tackle the above challenges, in this paper we propose a novel deep learning based approach
to generate realistic three-party head-and-eye animations based on novel acoustic speech input
together with speaker marking. Instead of focusing on the animation generation for any forms
of multi-party conversations that could involve with a varying number of interlocutors, our work
specifically focuses on the head-and-eye animation synthesis of three-party conversations, because:
i) three-party conversation is the simplest form of multi-party conversations, and ii) three-party
conversations have all the necessary ingredients of multi-party conversations; an effectivemethod-
ology for three-party conversational animation synthesis would provide a promising first step
towards the generation of various general forms of multi-party conversational animations.

Specifically, in our approach we first acquire a high quality, three-party conversational motion
dataset. The dataset is multi-modal, since we simultaneously record the facial expressions, head
movements, hand gestures, torso movements, and acoustic speech of all the interlocutors in three-
party conversations. Then, to generate plausible, speech-synchronized interaction snapshots (an
interaction snapshot encodes the combined torso-head-eye directions of all the interlocutors at a
particular frame), we train a deep learning based model based on the above acquired dataset. The
trained model can automatically predict the interaction snapshots based on speech input as well
as speaker marking. After that, we further refine each interaction snapshot by deriving the corre-
sponding eye motion and head/torso motion from the obtained Direction-of-Focus (DFoc) of each
interlocutor (i.e., DFoc is an individual concept.), which is enclosed in the interaction snapshot.
In a nutshell, the DFoc is the combination of torso-head-eye directions. Since the torso direction
is represented in the world coordinate system, head direction is defined in the torso coordinate
system, and eye rotation angle is based on the head coordinate system, we need to transform them
into the same coordinate system to compute the DFoc. For example, if an individual turns the
head 10◦ to left without both torso movement and eye movement, we treat both torso rotation
and eye rotation as zero. Furthermore, via the combination of existing lip-sync and speech-driven
hand/body gesture generation algorithms, our approach can generate realistic three-party conver-
sational animations. Through many experiments and comparative user studies, we demonstrate
that our complete pipeline can generate realistic three-party conversational animations based on
novel speech recorded on new subjects with different genders and ethnicities. Figure 1 shows the
input and output of our animation synthesis system. Figure 2 shows two examples of interaction
snapshots in a synthesized three-party conversation.

The main contributions of this work include:

• A new speech feature expression for training LSTM model to predict the interaction snap-
shots; and

• A deep learning based approach to automatically synthesize the interaction snapshots that
enclose the DFocs of all the interlocutors in three-party conversations, based on novel acous-
tic speech input together with speaker marking.

2 RELATEDWORK
In this section, we briefly review recent efforts that are most related to our work, including con-
versational gaze synthesis and head motion synthesis. For a comprehensive review on facial ani-
mation synthesis, please refer to recent surveys [Deng and Noh 2008; Lewis et al. 2014; Ruhland
et al. 2014].

Conversational Gaze Synthesis. Researchers have pursued a variety of efforts on gaze synthe-
sis [Ruhland et al. 2014]. As pointed out in the existing literature [Lee et al. 2002; Vertegaal et al.
2001], humans typically have different gaze patterns depending on their conversational states such
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as speaking or listening. As one of the early works in the field, Lee et al. [2002] statistically an-
alyze pre-recorded gaze data of a subject during speaking/listening and then further synthesize
novel saccadic movements using the first-order statistics. Vinayagamoorthy et al. [2004] proposed
a computational gaze model for two avatars engaging in a dyadic interaction in virtual environ-
ment, based on a pre-collected face-to-face gaze dataset. Thiebaux et al. [2009] proposed a gaze
controller to realize various manners of gaze through a rich set of input parameters to produce
desired expressive gaze animations. Steptoe et al. [2010] proposed a parametric model for both
eyelids and blinks based on the reported findings from other fields such as ophthalmology and
psychology. Later, along the data-driven direction, Deng and colleagues [Deng et al. 2005; Le et al.
2012; Ma and Deng 2009] developed a series of statistical gaze models from recorded conversa-
tional gaze data, including the statistical modeling of gaze-head coupling [Le et al. 2012; Ma and
Deng 2009]. In addition, researchers have also used the visual attention on virtual environment to
guide the generation of plausible gazes on avatars [Gu and Badler 2006; Khullar and Badler 2001;
Pejsa et al. 2016; Peters and O’Sullivan 2003].

Head Motion Synthesis. Many previous works have been proposed to generate realistic head
motion on avatars [Munhall et al. 2004]. For example, Graf et al. [2002] studied the conditional
probabilities of pitch accents accompanied by primitive head movements such as nodding. Realiz-
ing the importance of high quality data for head motion generation, Chuang and Bregler [2005]
first create a database of head motion sequences indexed by pitch features and then synthesize
new head motions through global optimization that maximizes the match of pitch features in the
database. Along this line, based on a pre-recorded audio-visual dataset, researcher have trained
different forms of Hidden Markov models (HMMs) for head motion generation [Busso et al. 2007,
2005; Lee and Marsella 2009; Sargin et al. 2008]. Later, Le et al. [2012] developed a Gaussian Mix-
ture Model to learn the probability distribution between kinematic features of head motion (e.g.,
Euler angles, and angular velocities) and the prosody features of speech for the effective gener-
ation of head motion frame-by-frame. Different from the above works that are focused on head
movements on talking avatars, Gratch and colleagues developed statistical models to learn a set of
rules from an annotated conversation dataset in order to generate gestures including head move-
ments on listening agents [Gratch et al. 2006; Maatman et al. 2005]. In addition, how to effectively
synchronize head movement with gaze has also been explored previously [Le et al. 2012; Ma and
Deng 2009; Masuko and Hoshino 2006]. Notably, Marsella et al. [2013] proposed a rule-based ani-
mation method to generate virtual conversations between two parties, driven by speech as well as
annotated texts as the input. However, although their method can generate animated performance
for a dyadic conversation, how to apply or extend it for the generation of virtual conversational
animations involved with three or more parties has not been demonstrated.

3 OUR APPROACH
Since the turn information is provided as one of the inputs, automatically generating speech-
synchronized motions of the eyes, head, and torso for each interlocutor at each frame is the main
task. In this work, we solve the synthesis of the above coordinated movements as a two-steps pro-
cess, by introducing a novel middle-level concept, interaction snapshots. Specifically, (i) at the first
step, based on our acquired three-party conversational motion dataset (§4), we train two Long
Short-Term Memory (LSTM) models, given our novel expression of input speech features: one
for the speaker and the other for listeners, to generate an interaction snapshot at current frame
(§5), using the interaction snapshot at the previous frame and the acoustic speech features at the
current frame as the inputs. Our listener LSTM model implicitly learns the patterns that typically
occur in three-party conversations (refer to Figure 4), and such patterns cannot be modeled by any
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Fig. 3. Schematic view of our approach. It generates interaction snapshots frame by frame. This figure uses
the generation of the i-th frame as an example. The system consists of two main components: interaction
snapshots synthesis, and animation refinement. The color blocks on the input audio mark the speaking time
of different interlocutors: the pink block for the left interlocutor, the green block for the middle interlocutor,
and the yellow block for the right interlocutor.

two-party listener models. (ii) At the second step, we introduce a data-driven scheme to automat-
ically refine each interaction snapshot (enclosing the DFoc of every interlocutor) obtained at the
first step by decomposing the DFoc of each interlocutor into two parts (§5.3): eye gaze, and the
head-torso combined movement. The latter is further split into head movement and the upper body
movement later. Figure 3 illustrates the schematic view of our approach.

It is noteworthy that, the difference between the interaction snapshot and DFoc in this work is:
the former is a collective concept, representing the simultaneous DFocs of all the three interlocu-
tors at a particular time instant (or frame), while the latter is an individual concept. For example,
the DFoc of an individual is his/her combined torso-head-and-eye direction at a particular time
instant (or frame). In other words, the relation between an interaction snapshot and the DFoc of
an individual (enclosed in this interaction snapshot) is the same as that between a member and a
set that includes this member.

Speaker Speaker Speaker

Listener 1 Listener 2 Listener 1 Listener 2 Listener 1 Listener 2

Fig. 4. Top views of some interaction snapshots that could occur in three-party conversations. The interac-
tion snapshot in the left can be synthesized with existing two-party listener models. However, other two
interaction snapshots can only be synthesized by our approach.

4 DATA ACQUISITION AND PROCESSING
To acquire high-quality three-party conversational motion data that need to be used in this work,
we specifically built an in-house, hybrid data acquisition system, described below. A ten-cameras
VICON optical motion capture system was installed in a controlled lab environment to capture the
motions of three interlocutors. Each interlocutor was asked to wear a mocap suit attached with
optical markers to record their upper body motions, and facial markers were also glued on their
faces (see Figure 5). Three Canon HD cameras were used to record the close-up facial video of the
three interlocutors, respectively. Their voice was recorded by a wired microphone in the middle
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Microphone

VICON Camera
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Fig. 5. A snapshot of the in-house built, data acquisition system for three-party conversationmotion capture.

of them. All the acquired data (i.e., 3D mocap data, video data, and speech data) were temporally
aligned and later down-sampled to 30 frames per second. Note that the originally recorded mocap
data is 120 frames per second, and video data is 30 frames per second. In addition, from the recorded
3D mocap data, we calculated the joint angles of the upper skeleton for each interlocutor, with the
aid of inverse kinematics. In this work, we recorded three-party conversations of two groups: the
first group contains three males and the second contains three females.

During the data acquisition, three interlocutors were instructed to stand at the three places of
T markers, formed an equilateral triangle with a distance of 1 meter to each other. Before the
recording of each session, interlocutors were asked to stay at their original locations (i.e., the T
markers) as much as possible to minimize the influence of the lower body on the motion of the
upper body; however, they were allowed to naturally move their upper bodies, hands, and heads
during the conversation. They were instructed to choose any topics of interest for group discus-
sion in a normal speed, with natural non-verbal behaviors. To this end, we recorded a total of 10
three-party conversation sessions: 5 for three males and 5 for three females, each of which lasts
from 8 to 10 minutes. The total number of frames in our dataset is about 144K after the dataset
was re-sampled to 30 frames per second. At the post-processing step, we first removed those spo-
radic conversational segments that contain overlapping speech (i.e., two or more interlocutors are
speaking simultaneously), since speech data was recorded by the microphone placed in the mid-
dle of three interlocutors and we cannot accurately extract each speaker’s speech in the case of
overlapping speech.

In order to collect natural eye motions during conversations, all the interlocutors did not wear
eye tracking devices. Instead, from the recorded close-up face video of each interlocutor, we recov-
ered his/her 3D eye gazes through a combination of two existing methods [Le et al. 2012; Wang
et al. 2016]. Our work does not consider eyelid motion, so we did not collect any eyelid motion data.
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Also, we predicted the gaze directions using the gaze tracking algorithms [Le et al. 2012; Wang
et al. 2016] when the eyes are closed.

Based on the recorded acoustic speech, its speech transcription, timing, and the speaking time
of each interlocutor were obtained manually by a language expert with the aid of the Praat tool
1. We also used Praat to extract the pitch and intensity features from acoustic speech. For a small
percentage of frames that do not have pitch values, we generated uniformly distributed random
values to fill the gap.

5 INTERACTION SNAPSHOTS SYNTHESIS
As aforementioned, the core element of our approach, which is also the key contribution of this
work, is to synthesize interaction snapshots and further derive the eye gazes and head/torso move-
ments of all the interlocutors in a three-party conversational animation. Which speech features
are good for the training of a machine learning model has always been a non-trivial, widely open
problem. In this work, we design new speech feature representations (described below) to train
LSTMmodels, and then we describe how to synthesize an interaction snapshot at each frame using
the trained LSTM models.

5.1 Data Representation for LSTM Training
To train the LSTM model, we first need to transform our data to representations that are suitable
for LSTM training. For acoustic speech, we use its pitch, P , and intensity, I , as its features with a
window size of 33.3 ms. Instead of adopting MFCC features that have been widely used in speech
recognition and lip-sync applications, we choose pitch/intensity features since prosodic features
(including pitch, intensity, etc.) have been demonstrated their strong relevance to head motion in
the literature [Busso et al. 2007, 2005; Chuang and Bregler 2005].

In this work, instead of directly using the pitch and intensity at current frame, we use their
differences between the current frame and the previous frame (i.e., Pi − Pi−1, and Ii − Ii−1) as the
speech features for LSTM training. This is inspired by random forest models, where the difference
of image features is often used to eliminate the illumination effect.

Also, we further decompose the calculated DFoc of an interlocutor into three Euler angles (i.e.,
yaw α , pitch β , and roll γ ). Since in three-party conversation scenarios, γ typically stay at zero.
Therefore, in this work we ignore γ and focus on α and β .

In addition, since we need to model and generate the DFocs of the three interlocutors (one is the
speaker, and the other two are listeners) that together form an interaction snapshot, we will train
two different types of LSTM models: one for the speaker (called the speaker LSTM model), and the
other for the listeners (called the listener LSTM model).

To train the speaker LSTM model, the input feature vector at a data frame i is the following
4-dimensional vector:

Xi = (Pi − Pi−1, Ii − Ii−1,αi−1, βi−1) (1)

The first two elements in the above Eq. 1 are the pitch and intensity of the speech between the
current frame and the previous frame, respectively, and the last two elements are the two rotational
angles of interest at the previous frame i − 1.

By contrast, to train the listener LSTMmodel, the input feature vector at frame i is the following
6-dimensional vector.

1http://www.fon.hum.uva.nl/praat/
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Xi =

{
(Pi − Pi−1, Ii − Ii−1, 0, 0,αi−1, βi−1) speaker on left
(0, 0, Pi − Pi−1, Ii − Ii−1,αi−1, βi−1) speaker on right (2)

In the above Eq. 2, if the speaker is on the left side of this listener, we add two zero elements
after the two speech feature elements; otherwise, we add them before the speech feature elements.
Note that the three interlocutors stood at the vertices of an equilateral triangle during data capture
(refer to §4). Therefore, from the perspective of a listener, the speaker would be either on the left
or on the right.

For the above input feature vector at a training frame i , its corresponding expected output (also
called the label vector in this work) is a 2-dimensional vector: Yi = (αi , βi ) of the speaker (for the
speaker LSTM model) or of the listener (for the listener LSTM model). Here (αi , βi ) represents the
DFoc of this particular interlocutor at current frame.

We further carefully chopped the pre-recorded long conversation data into short subsequences
with the same length.The duration of each subsequence is 1 second (i.e., 30 frames). To this end, we
obtained 3033 subsequences for the speaker LSTM model, and 4421 subsequences for the listener
LSTM model. Note that we do not differentiate the two listeners at any moment, which enables us
to combine their data together in this work.

5.2 LSTM Models
LSTM is a recurrent neural network (RNN) model designed to handle sequence problems [Hochre-
iter and Schmidhuber 1997]. There are three gates in a LSTM cell: a forget gate f , an input gate
i , and an output gate o. By controlling these gates, LSTM can learn to remember some impor-
tant information and forget some unnecessary information from the previous state. LSTM has a
major advantage to handle long sequences that a standard RNN cannot handle. During the back-
propagation, the standard RNN typically has a vanishing or exploding gradients problem. With
the three gates, LSTM can better handle these problems.

The LSTM model can have different formats, mainly classified as four types: one-to-one, one-to-
many, many-to-one, and many-to-many. Two different types exist in many-to-many LSTM: in the
first one, the length of the input sequence is the same as that of the output one; in the other one,
the length of the input sequence does not need to be the same as that of the output. Since in this
work we have a feature vector (input) and a label vector (output) at each data frame, so we choose
many-to-many LSTM as our model.

In this work, we employ a one-layer LSTM instead of a two-layers LSTM, since we found the
one-layer LSTM can generate dresired results, and the training efficiency of the one-layer LSTM is
much more faster than that of the two-layers LSTM. We randomly split the dataset to the training
data (90%) and the test data (10%) for both the speaker LSTM model and the listener LSTM model.
In the trained LSTM model, the number of units is set to 512 for each layer. In order to overcome
the over-fitting problem, the dropout rate is set to 0.5. The start learning rate for the model is
0.001 using Adam optimizer, and the decayed learning rate is used, which is 0.95 for every 2000
steps. In order to train the LSTM model, normalization also need to be done on both the feature
vector sequences and the label vector sequences. For all the sequences, we divide the 95% max
value for each dimension to make the range of the training data from -1 to 1 and remove outliers.
The maximal number of training steps is set to 40000 for both the speaker LSTM model and the
listener LSTM model. We trained both of the LSTM models on GPU to speed-up the efficiency.

After the two LSTM models are trained, we use the 10% retained test data to evaluate their
effectiveness and accuracy. Figure 6 shows the experiment results when the trained LSTM models
are applied to two randomly chosen test sequences for the speaker LSTM model and the listener
LSTM model, respectively. As shown in this figure, the predicted DFocs by our LSTM models are
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Fig. 6. (a) A test result for the speaker LSTMmodel: the top panel is the yaw angle α , the bottom is the pitch
angle β , and (b): A test result for the listener LSTMmodel, the top panel is the yaw angle α , the bottom panel
is the pitch angle β .

reasonably close to the ground-truth. Also, at frame #17 and after, there is a clear discrepancy
between the top and the bottom panels in Figure 6(b). The main reason is, the LSTM model can
somehow “remember” previous states and still utilize the previous states for prediction. In the
case of Figure 6(b), the input speech becomes silent since frame #17. During the LSTM model
training, we labeled the corresponding output as zeros for the silence speech part. Therefore, in
the bottom panel of Figure 6(b), the LSTM model continues to use the remembered previous states
for prediction, instead of immediately stopping at zero. By contrast, in the top panel of Figure 6(b),
its remembered previous states before frame #17 have been flat already and thus its predictions
are flat at frame #17 and after.

In addition, for each of the two LSTM models, we ran all the test sequences and then computed
the mean square error (MSE): 0.83 and 0.57 for the yaw and pitch angles (in degree), respectively,
in the case of the speaker LSTM model; 0.41 and 0.43 for the yaw and pitch angles (in degree),
respectively, in the case of the listener LSTM model.
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(a) (b)

Fig. 7. (a): Samples in a bin (10◦-11◦) of the Yaw angle α , and (b): Samples in a bin (19◦-20◦) of the Pitch
angle β .

5.3 Interaction Snapshots Refinement
After the above interaction snapshot at current frame is predicted, we need to further decompose
the predicted DFoc of each interlocutor into (i) eye gaze, (ii) head movement, and (iii) torso move-
ment before transferring these movements to 3D humanmodels. Our strategy is to first decompose
a DFoc to (1) eye gaze and (2) the head-torso combined movement, and then the latter is further
split into head movement and the torso movement.

Specifically, we decompose each predicted DFoc in the space of the yaw angle α and in the
space of the pitch angle β , respectively, using the same methodology (described below), since the
yaw/pitch angles can be regarded independent of each other. Recall that in §5.1, the DFoc of each
interlocutor at every frame of our acquired dataset has been converted to the representation of (α ,
β). Actually, when computing (α , β) at each data frame for each interlocutor, we also pre-computed
and saved its corresponding yaw and pitch angles for the eyes and the head+torso combination,
respectively: (αe , βe ) and (αh+t , βh+t ).

Quantization: Without the loss of generality, take the decomposition of α as an example, we
first quantize the α angles of all the frames in our dataset to a number of bins. The bin size is 1◦
and the total number of bins is 60 (i.e., −30◦ to 30◦, determined by the min/max among all the α
angles in our dataset). In this way, each bin includes the α angles of some frames, called α samples
in this writing. Specifically, each α sample is a two-dimensional vector (αe , αh+t ).

GMM fitting for each bin: Then, we use a Gaussian Mixture Model (GMM) to fit all the α samples
in each bin Bi (examples are shown in Figure 7). After that, given any (αe , αh+t ) we can straight-
forwardly calculate its probability based on the fitted GMM: A higher probability value means this
specific combination (αe , αh+t ) has a higher chance to occur to achieve the combined α angle in
Bi ; and vice versa.

Decomposition: Now we describe how to decompose any predicted (αk , βk ) at frame k into its
corresponding eye and head+torso parts: (αke , βke ) and (αkh+t , β

k
h+t ). We use the decomposition of

αk as a specific example and the decomposition of βk is done similarly. Since such a decomposition
at the previous frame k-1 (i.e., (αk−1e ,αk−1h+t )) has already been obtained, we need to compute this
decomposition at current frame k as follows. First, αk is mapped to a specific bin (assuming the
mapped bin is Bi ) using the above same quantization step. Then, we use the following formula to
select the optimal (αke , αkh+t ):
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(a)

(b)

Fig. 8. Example results of the DFoc decomposition in our method. (a) The decomposed Yaw angles α by our
method. (b) The decomposed Pitch angles β by our method.

(αke ,α
k
h+t ) = arg min

(α ∗
e ,α ∗

h+t )∈Bi
| |(α∗

e ,α
∗
h+t )

T − (αk−1e ,αk−1h+t )
T | |2/P∗ (3)

Here (α∗
e ,α

∗
h+t ) is any α sample in Bi , (αk−1e , αk−1h+t ) is the known decomposition at the previous

frame k-1, and P∗ is the calculated probability value of (α∗
e ,α

∗
h+t ) according to the fitted GMM of

Bi . The underlying rationale in Eq. 3 is to give a large penalty if the difference of the α samples
between the current frame and the previous frame is large, or the calculated probability of the
α sample is small. For the first frame, we simply choose the sample in Bi that has the largest
probability since the information of the previous frame is unavailable.

We also evaluated the interaction snapshot refinement step. Given a sequence of DFocs for one
interlocutor (called the original DFoc sequence), we decomposed the sequence into a sequence of
eye gazes and a sequence of head+torso movements, as shown in Fig. 8. Then, we added them to-
gether to recover the DFoc sequence and compared the recovered DFoc sequence with the original
DFoc sequence. As shown in this figure, our recovered DFoc sequence is reasonably close to but a
little more smoother than the original one.

6 ADD OTHER ANIMATION DETAILS
To demonstrate the effectiveness of our approach, we also need to add other animation details
of all the interlocutors including the lip-sync and hand/body movements of the speaker, and the
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hand/body movements of the two listeners. Below we describe how these animations are added
onto our work.

Lip-sync of the speaker. We employ the Lipsync Tool (Annosoft Inc., 2018) to generate lip-sync
based on speech input. This tool uses pre-defined 17 visemes to control mouth movements.

Hand/body gesture of the speaker. We directly implemented the gesture controllers by [Levine
et al. 2010] to generate hand/body gesture of the speaker based on acoustic speech input. However,
the difference between our implementation and the original work [Levine et al. 2010] is that we
selectively focus on the motion synthesis of the upper body (i.e., hands, arms, and torso), while
ignoring the head motion part.

Hand/Body gesture of listeners. We choose to extend the texture synthesis based eye motion syn-
thesis approach [Deng et al. 2005] to generate natural hand/body movements on listeners. Specif-
ically, from our acquired dataset, we select some frames as the hand/body motion examples in
our synthesis process. Each texel in this case includes all the joint angles of the upper body ex-
cept the head. Since in our work the lengths of to-be-synthesized listener gesture sequences vary
significantly, instead of choosing a fixed patch size as in the work of [Deng et al. 2005] that is
the critical parameter in the patch-based sampling algorithm, we employ an adaptive patch size,
which is ⌊n/10⌋ + 1. Here n denotes the length of the to-by-synthesized gesture sequence.

Head movement extraction. As described above, for each interlocutor (speaker or listener) in a
three-party conversation, we can obtain his/her upper body motion. Meanwhile, we obtain the
head-torso combined movement at current frame (§5.3). Therefore, we can straightforwardly ob-
tain the head movement at current frame by subtracting the torso movement from the head-torso
combined movement.

Test Audio Audio Len.
(frame)

Spe. DFoc
(second)

Lis. DFoc
(second)

Spe. Gestures
(second)

Lis. Gestures
(second)

Total
(second)

No. 1 25 2.48 0.53 137.10 0.04 140.15
No. 2 73 2.99 1.04 406.76 0.08 410.87
No. 3 374 4.60 4.13 1955.27 0.26 1964.26

Table 1. Runtime statistics of our approach for several test cases, Spe. stands for Speaker and Lis. stands for
Listener.

7 RESULTS AND EVALUATIONS
Validation of our divide-and-conquer methodology. In order to validate our divide-and-conquer

methodology (i.e., synthesize the motion of head+eye and the motion of hand+torso separately),
we calculated the correlation coefficient between the combined directions of head+gaze and the
directions of the torso in the space spanned by the yaw and pitch angles. The range of the calcu-
lated correlation coefficient is between -1 and 1; 0 represents “no correlation” and +/- 1 represents
“positive/negative linear correlation”. Figure 9 shows the visualized result of randomly selected,
10-minutes samples in our dataset. As shown in this figure, the calculated correlation coefficients
between the directions of head+gaze and the directions of the torso are -0.178 and 0.018 for the yaw
angle and the pitch angle, respectively. These coefficients show that the directions of head+gaze
and the directions of the torso do not have statistically strong correlations. In this way, this helps
to justify our divide-and-conquer strategy.
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Fig. 9. Plotting of randomly selected, 10-min data samples (the combined directions of the head+gaze vs. the
directions of the torso) in our dataset. (a) samples of the yaw angle α , and (b) samples of the pitch angle β .

Effectiveness of our method. To evaluate the effectiveness of our method, we applied it to many
test speech clips for conversational animation generation. Note that some test conversational
speech clips were recorded on new subjects uninvolved with our data acquisition process (§4). Be-
fore our method is called for animation generation, we need to manually mark who is the speaker
in which period of the input speech. Figure 10 visualizes the resulting curves of head+torso and
gaze angles (including the yaw angle and the pitch angle) of a synthesized three-party conversa-
tional animation example. In particular, its left panel shows the angle curves as well as the speaking
time of each interlocutor, and its right panel shows the snapshots of the corresponding interlocu-
tors at selected frames. Note that the bottom interlocutor at frame #110 and the top interlocutor at
frame #600 in Figure 10 show the situations where a listener does not always look at the speaker
(also refer to Figure 4). By contrast, in existing two-party listener models the listener is typically
assumed to look at the speaker. For animation results, please refer to the supplemental demo video.

Runtime statistics. In all of our experiments, we ran our system on an off-the-shelf desktop com-
puter with the following configuration: Intel i7-6700 CPU @3.4 GHz, 16GB Memory, and NVIDIA
Geforce GTX 1070 GPU. The runtime statistics of the main steps of our system are shown in Table
1, where the speaker gesture generation module [Levine et al. 2010] consumes the majority (i.e.,
more than 99.7%) of the computational time in our current system. By contrast, the main contri-
bution of this work (i.e., the DFoc synthesis for all the interlocutors) is much more efficient at
runtime after the LSTM models are trained.

7.1 Perceptual User Studies
We further conducted perceptual user studies to evaluate the synthesized animation results by our
approach. Since several different aspects (including head motion, eye motion, hand gesture/body
motion, etc.) can potentially influence the visual perception of our synthesized animations, our
user studies consists of two studies: i) a paired comparison study for head+eye motion, and ii) a
paired comparison study for overall motion. Inspired by the demonstrated effectiveness of paired
comparison studies for graphics/animation applications [Le et al. 2012; Ledda et al. 2005; Ma and
Deng 2009], our two paired comparison studies are designed to perceptually compare the results
by our method, the results by a selected baseline method (i.e., a state of the art method), and
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110 950 110 950

Fig. 10. The visualization of a synthesized three-party conversation example by our approach: the head+torso
and gaze angles (including the yaw angle α and the pitch angle β) with their speak time. Each panel (from
top to bottom) shows the information of one interlocutor. The snapshots in the right show the rendered
corresponding interlocutor at three selected time frames.

the captured motion (ground-truth). We choose [Le et al. 2012] as the baseline method since it is
the state of the art method to automatically generate coordinated head+eye motion on a virtual
speaker based on acoustic speech input.

Specifically, in both studies, we randomly selected several three-party conversational speech
segments from our retained test dataset, and then produced their corresponding three-party con-
versational animations using three different approaches, respectively: our approach, directly using
the original pre-recorded motion (ground-truth), and the enhancement of [Le et al. 2012] (the base-
linemethod). Since the original method by [Le et al. 2012] only considers the automated generation
of the head+eye motion on the speaker, in our enhancement we added three modules used in our
method: lip-sync, the generation of speaker hand+torso gestures (except head+eye motion), and
the generation of listener gestures, onto the work of [Le et al. 2012] to ensure a fair comparison.

When producing animation clips with audio for our user studies, the same 3D scene, characters,
and video resolution (1920×1080 pixels) were used. Participants were asked to sit in the same con-
trolled environment, with a 0.6m distance away from a LCD monitor with 1920× 1080 resolution.
We did not impose maximal viewing time for each clip (in other words, participants can view the
same clip many times before making a choice). Participants were asked to select the perceptually
more realistic one between two side-by-side animation clips in a pair. They can optionally choose
the undecided choice if they had difficulty to tell which one is more realistic between the two clips
in a pair.

We recruited a total of 20 student volunteers in a university (16 males, 4 females; from 22 to 35
years old) to participate in our user studies. Note that both the order of displaying animation pairs
for each participant and the left/right positions of the two clips in a pair were randomized.

i) Head+eye motion paired comparison study. We randomly selected 5 audio clips (each
lasts about 15 seconds) from our retained test dataset, and then generated corresponding three-
party conversational animations using our approach and the aforementioned enhancement of [Le
et al. 2012], respectively. Also, we generated the corresponding ground-truth animation clips based
on the pre-recorded motion data. The same pre-recorded mouth motion data was used to animate
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themouth in all of the three comparisonmethods (ground-truth, ourmethod, and the enhancement
of [Le et al. 2012] - for convenience in the remaining writing we will just use [Le et al. 2012] to
refer to its enhanced version). We produced a total of 15 animation clips with audio and formed
10 different pairs (our method vs. ground-truth, and our method vs. [Le et al. 2012]). Finally, as
described previously, participants were asked to select the perceptually more realistic one between
the two side-by-side clips in each pair.

Figure 11 shows the user voting result, where the symbol * denotes p-value < 0.05 for the com-
parison in the row through two-tailed independent paired t-test. As shown in this figure, our ap-
proach collected statistically significantly more votes than [Le et al. 2012] based on the speaker’s
head+eye motion (speaker based) and the overall head+eye motion of the three interlocutors (over-
all motion based). This is not surprising, since the model in [Le et al. 2012] is trained based on a
pre-collected dataset of two-party conversational motions and it is not specifically designed for an-
imating three-party conversations. On the other hand, when only considering listeners’ head+eye
motion (listeners based), our method obtained close votes as [Le et al. 2012], besides a large num-
ber of undecided votes (56). The main reason is that the same listener motion synthesis module is
used in both our method and [Le et al. 2012], as mentioned above. Finally, compared with the orig-
inal captured head+eye motion, our method collected close votes (all the p-values > 0.05). Note
that our method even collected 4 more votes in the ‘listeners based’ and ‘overall motion based’
paired comparisons than the original captured motion, arguably due to the subjective nature of
user studies.

Fig. 11. The obtained vote counts in our head+eye motion paired comparison study based on the speaker’s
head+eye motion (speaker based), listeners’ head+eye motion (listeners based), and the overall head+eye
motion of the three interlocutors (overall motion based). Star indicates the computed statistical significance
according to two-tailed independent paired t-test with p-value < 0.05.

ii) Overall motion paired comparison study. We randomly selected 5 audio clips (each
lasts about 15 seconds) from our retained test dataset to generate corresponding conversational
animations (including head motion, eye motion, hand gesture, body motion, etc.) by directly using
the original captured motion, by our method, and by [Le et al. 2012], respectively. Just like the
above study, we produced a total of 15 animation clips with audio and formed 10 different pairs
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(our method vs. ground-truth, and our method vs. [Le et al. 2012]), and participants were asked to
select the perceptually more realistic one between the two side-by-side clips in each pair.

Figure 12 illustrates the obtained vote counts from this study. Our approach received statisti-
cally significant more votes than [Le et al. 2012], regardless the participants did the perceptual
judgments based on the speaker’s motion (speaker based), listeners’ motion (listeners based), or
the overall motion of all the three parties (overall motion based). One interesting observation is
even though we generated the same motion for listeners in both our method and [Le et al. 2012],
our approach received 14 more votes than [Le et al. 2012]. One plausible explanation is that the par-
ticipants’ overall visual perception on the animated conversations was, to a certain extent, affected
by the speaker’s motion, regardless the given study instructions.

On the other hand, compared with the original captured motion, our approach received 17 fewer
votes based on the speaker’s motion (speaker based) and 7 fewer votes based on the overall motion
of the three interlocutors (overall motion based). Also, the calculated p-values for both the speaker
based paired comparison and the overall motion based paired comparison > 0.05, which means
the numbers of the votes received by our method and by the captured motion are not statistically
significantly different.

Fig. 12. The user vote counts in our overall motion paired comparison study, based on the speaker’s motion
(speaker based), listeners’ motion (listeners based) and the overall motion of the three interlocutors (overall
motion based). Star indicates the computed statistical significance according to a two-tailed independent
paired t-test with p-value < 0.05.

8 DISCUSSION AND CONCLUSION
In this paper we present a deep learning based approach to synthesize realistic head and eye anima-
tions in three-party conversations. Its novel and core element is a LSTM-based machine learning
model to predict the interaction snapshots (i.e., the DFocs of all the three interlocutors at any
moment). Since our system is data-driven, we particularly acquired a high-quality, three-party
conversational motion dataset for this work. Through many experiments as well as perceptual
user studies, we found that our approach is capable of generating plausible head-and-eye motions
for three-party conversational animations.
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As the first work in a new direction, our current approach has several limitations. First, the
computational efficiency of the whole system need to be further improved. Although, as aforemen-
tioned, the major computational bottleneck of our system is the generation of speaker gestures.
In the future, we plan to design more efficient runtime algorithms (e.g., deep learning-based algo-
rithms) to replace the current speaker gesture generation module. Second, our current approach
is specifically focused on the automation, while ignoring the affective states of the interlocutors
and the semantic aspects of the conversation content. Therefore, to produce more realistic three-
party (or even multi-party) conversational animations, as the next step, we would like to explore
the idea of extracting useful semantic features from the conversation content and the emotional
features of the conversation, and then further exploit them for more realistic motion synthesis.
Third, other physical arrangements of interlocutors (e.g., a semi-circle configuration) and detailed
finger motions for conversations are not considered in the current work. Finally, since only one
microphone was used to record acoustic speech during our data acquisition process, we cannot
accurately extract the prosody for each speaker when overlapping speech occurs.

As the future work, wewould like to explore how to extend or generalize the current three-party
conversational animation approach for general multi-party conversational animation synthesis.
In addition, the current approach can only be used for off-line applications. We are interested in
developing highly efficient algorithms and pipelines to online generate multi-party conversational
animations based on live speech input. We also plan to extract the emotional content from acoustic
speech and/or facial expressions and exploit such informations to improve the current system.
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