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Abstract—Numerous research efforts have been conducted to
simulate the crowd movements, while relatively few of them
are specifically focused on multihazard situations. In this paper,
we propose a novel crowd simulation method by modeling the
generation and contagion of panic emotion under multihazard
circumstances. In order to depict the effect from hazards and
other agents to crowd movement, we first classify hazards into
different types (transient and persistent, concurrent and non-
concurrent, and static and dynamic) based on their inherent
characteristics. Second, we introduce the concept of perilous field
for each hazard and further transform the critical level of the
field to its invoked-panic emotion. After that, we propose an emo-
tional contagion model to simulate the evolving process of panic
emotion caused by multiple hazards. Finally, we introduce an
emotional reciprocal velocity obstacles (RVOs) model to simulate
the crowd behaviors by augmenting the traditional RVO model
with emotional contagion, which for the first time combines the
emotional impact and local avoidance together. Our experimen-
tal results demonstrate that the overall approach is robust, can
better generate realistic crowds and the panic emotion dynamics
in a crowd. Furthermore, it is recommended that our method
can be applied to various complex multihazard environments.

Index Terms—Crowd simulation, emotional contagion, emo-
tional reciprocal velocity obstacles (ERVOs), multihazard.

I. INTRODUCTION

THE ADVANCES in the study of typical crowd behaviors
(such as stampede incidents and terrorist attacks) in vari-

ous domains, including psychology, security management, and
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computer science, have pointed out that simulating both senti-
mental state evolution and decision-making of a crowd under
different circumstances is an efficient way to show inherent
laws of nature [1]. This problem has been considered as a
system that as a class of multi-input multioutput systems in the
nonstrict feedback structure [2]. As a result, it is important to
accurately model both simulation environment and emotional
contagion among individuals for realistic crowd simulation.

Recent research efforts of crowd simulation in emergency
circumstances have been mostly focused on those situations
where there is only one hazard in the area of interest [3]–[9].
However, in some real-world cases, multiple hazards may
occur in the same area over a period of time, such as the two
sequential bombing attacks in Boston, MA, USA, in 2013.
Traditional crowd simulation algorithms with a single haz-
ard in the scenario cannot be applied to these cases directly
because of the following reasons.

1) A multihazard scenario, including different types of
hazards, different critical levels of hazards, dynamic
changes of hazards, various evacuation strategies, and so
on, is more complex than the case with a single hazard.
The traditional single-hazard models are very difficult to
handle all the above factors in a unified way.

2) The emotional contagion in multihazard environment
is a complex combining process of emotional spread-
ing, concerning both direct effects from hazards and
indirect effects from neighboring individuals. However,
the existing emotional contagion models are mainly
designed for single-hazard scenes and cannot be applied
to multihazard scenes directly.

3) Traditional multiagent navigation algorithms, like recip-
rocal velocity obstacles (RVO) [8], have not considered
the emotion of individuals, which means they are short
of the mechanism to deal with the conflict between
obstacle avoidance and panic escaping. Therefore, the
simulation results under multihazard circumstance by
these algorithms appear less realistic.

In order to tackle the above challenges, in this paper, we
propose a novel multihazard scene model to describe different
effects of various types of hazards, which is mainly applied
to fire and explosion situations. In this model, the hazards are
classified into six different types according to three kinds of
inherent attributes: 1) durations; 2) time of occurrence; and
3) dynamics. Based on the definitions of these hazards, we
further propose the concept of perilous field and a conver-
sion function to map the criticality of the perilous field to
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the emotion of individuals. It is noteworthy that emotion in
this paper mainly refers to the panic mood of individuals in
emergency situations.

In order to depict the complex process of panic spread-
ing, we put forward a new emotional contagion model spe-
cially designed for multihazard situations by combining panic
emotions from different hazards and individuals. Finally, an
emotional RVOs (ERVOs) model, inspired from the tradi-
tional RVO model, is proposed to drive the crowd movement.
Different from the existing RVO model, the ERVO model inte-
grates the emotional effect into velocity decision for the first
time.

The contributions of this paper are as follows.
1) We propose a novel multihazard scene model for the

description of emergency fire and explosion situations,
containing six different types of hazards with their
dynamic changing process and a unified criticality con-
version function.

2) We propose a new emotional contagion model in mul-
tihazard scenarios, which combines different emotional
effects from hazards and individuals in a crowd.

3) We propose a novel crowd behavior simulation method,
the ERVO to simulate how people under a panic mode
choose their paths to safe places or planned goals in a
realistic way.

The rest of this paper are organized as follows. Background
and related work are reviewed in Section II. The overview
of this paper is introduced in Section III. The definition of
multiple types of hazards and emergency scenes are described
in Section IV. The emotional contagion process is explained in
detail in Section V. The simulation method of crowd movement
is described in Section VI. Our experiments are presented in
Section VII. Finally, this paper is concluded in Section VIII.

II. RELATED WORK

Although numerous research efforts have been conducted
to simulate crowd movements, relatively little literature has
been specifically focused on emergency evacuation simulation
involved with multiple hazards. In this section, we will mainly
review recent works that are clearly related to this paper. For
more comprehensive review on crowd simulation techniques,
please refer to [10].

A. Crowd Evacuation With Social or Physical Model

One kind of important crowd movement scenarios is to sim-
ulate the emergency evacuation. Helbing et al. [3] employed
the social force model, combined with social psychology
and physics models for the first time, to describe the panic
behavior in evacuation. After that, the lattice gas model [11],
multigrid model [12], agent-based model [5], virtual hin-
drance model [13], etc., have also been proposed to describe
the dynamical behaviors of the emergency crowd. The com-
monness among these methods is that they choose some
typical characteristics of the crowd first, and then use corre-
sponding models to describe different evacuation behaviors.
Other studies considering more factors in crowd evacu-
ation process, Narain et al. [4] simulated the clustering

behaviors of a high density crowd in a combined macro–
micro perspective. Funge et al. [14] put forward a cognitive
model to direct autonomous characters to perform specific
tasks, which outperforms many traditional behaviors models.
Durupinar et al. [15] analyzed the impact of psychological
factors on the crowd movement from the perspective of social
psychology. Lai et al. [16] aimed at a problem of adaptive
quantized control for a class of uncertain nonlinear systems
preceded by asymmetric actuator backlash, which is similar
with our motion analysis with agents in unexpected situations.
Wang et al. [17] proposed a semantic-level crowd evaluation
metric, which analyze the semantic information between real
and simulated data. Başak et al. [18] validated and optimize
crowd simulation by using a data-driven approach, which
proves the parameters learned from the real videos can bet-
ter represent the common traits of incidents when simulation.
Oğuz et al. [1] used continuous dynamic model, to simulate the
movements of agents in outdoor emergency situations success-
fully. In this paper, our crowd behavior model mainly focuses
on the micro-level behavior simulation. According to differ-
ent multihazard environments, we divide the crowd movement
into various cases and design crowd behaviors for each case
specially.

B. Crowd Simulation With Psychological Model

In the real world, emotional state of an individual plays
a vital role in his/her decision-making, which fundamentally
determines his/her movements at each time step [19], [20].
Therefore, many recent works start to consider the psycholog-
ical factors of agents, especially during the simulating process
of crowd movement [21]. Belkaid et al. [22] stressed the
important role that emotional modulation plays on behavior
organization by analyzing the relationships between emotion
and cognition. Bosse et al. [23] proposed the absorption
model based on the heat dissipation theory in thermody-
namic, which embodies the role of authority figures in the
process of emotional contagion. Tsai et al. [24] devised a
multiagent evacuation simulation tool ESCAPES, where an
agent will accept the emotion of other agents who has the
strongest mood or has special identity. Minh et al. [25]
proposed an agent-based evacuation model by considering
emotion propagation among individuals to make the simu-
lation more realistic. Lhommet et al. [26] also proposed a
computational model of emotional contagion based on individ-
ual personality and relationships. Durupinar et al. [15] created
a system that enables the specification of different crowd types
ranging from audiences to mobs based on a computational
mapping from the OCEAN personality traits to emotional con-
tagion. Tsai et al. [27] combined the dynamics-based and
epidemiological-based models to describe the dynamics of
emotional spreading from the perspective of social psychology.
Fu et al. [28] used a modified SIR model, originally proposed
in [29], to model the emotion evolving in the process of emer-
gency crowd movement. The work in [30] proposes a stress
model to realize the interactive simulation of dynamic crowd
behaviors. Although stress is similar to our panic emotion in
terms of the impact on crowd behaviors, there are still some
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inherent differences. For one certain crowd scene, they mainly
model one type of stress in it and the stress of external envi-
ronment on individuals. The mutual influence impact among
different individuals is ignored. In addition, their model only
focuses on the changes of individuals’ velocities caused by the
magnitude of stress. By contrast, in this paper, the emotional
state of agents in emergency situations is mainly the panic
emotion. Due to different emotional spreading and reception
for various agents, we analyze the emotional contagion by
involving the personality factors. Since the panic effect is not
only coming from various hazards but also from neighboring
individuals, a new micro-continuous emotion contagion model
is designed.

C. Crowd Path Planning

Generally, path planning can be regarded as the
multiobjective optimization [31] and local information
interaction [32], [33] problems. In the process of crowd evac-
uation, an individual’s action decision [34]–[40] is dependent
on the evacuating directions of nearby agents, the locations of
hazards, and the obstacles in the scene.

Some researches develop a variety of methods to avoid the
collision problem through the calculation of possible posi-
tions of individuals at the next time step [41], [42]. On the
premise of collision avoidance, Kluge and Prassler [43] used
a local obstacle avoidance approach, combined with individ-
ual’s emotion states to calculate the movements of agents
iteratively. Van den Berg et al. [8] proposed the well-known
RVOs model to drive the multiagent navigation without col-
lision. Concretely, the reactive behavior of one agent at each
time step depends on the behaviors of all the other agents.
In their method, a collision-avoidance velocity for each agent
is chosen by taking into account the positions and recipro-
cal velocities of all agents in the scenario. By constructing
visual trees, Belkhouche [44] proposed a shortest path with-
out conflict. Guy et al. [9] proposed an optimization method
for collision avoidance on the basis of the RVO model for
real-time simulation of large-scale crowd movement. In addi-
tion, they also proposed an energy-saving simulation method
with the minimum energy consumption as the guidelines [45].
Furthermore, a series of path planning and navigation algo-
rithms [46]–[49] are also described in mass population under
complex background. In this paper, we enhance the traditional
RVO model with emotional contagion in multihazard circum-
stances. Panic is used to describe the emotional state of each
agent, which is changed dynamically and affect the behaviors
of individuals.

III. SYSTEM OVERVIEW

As shown in Fig. 1, the main methodology of this paper is
divided into three parts: 1) multihazard environment modeling
in Section IV; 2) emotional contagion process under multihaz-
ard situations in Section V; and 3) crowd behavior simulation
based on ERVO in Section VI.

Specifically, in order to simulate the crowd behavior in mul-
tihazard situations realistically, we analyze different types of
hazards according to their properties, the time of occurrence

and duration. After that, we propose a perilous field consisting
of multiple hazards and define a conversion function to map
the intensity of danger to panic emotion. Besides the direct
effects from hazards, panic propagations also exist among dif-
ferent agents in emergency scenes. So we build an emotional
contagion model (ECM) to handle the above cases. The ECM
computes the panic emotion of each agent in the dangerous
field according to the distance between this agent and the haz-
ards using the above conversion function. At the same time,
the ECM accumulates the contagious panic emotion from other
agents to obtain the final emotion of each agent. To realize
multiagent navigation with panic emotion under multihazard
situations, we propose an ERVO model to simulate the crowd
behaviors. The major contribution of ERVO is a new mecha-
nism of velocity decision by integrating both traditional RVO
and panic emotion.

IV. MULTIHAZARD ENVIRONMENT MODELING

The characteristics of complexity, interactivity, and
time-varying make crowd behavior simulation challenging,
especially in multihazard environments. In order to achieve
realistic simulation results, we first need to model multihazard
simulation environment quantitatively.

According to their durations, we divide hazards into two
different types: 1) transient and 2) persistent. The former only
lasts for a moment, while the latter lasts for relatively long
time. Both of them would cause drastic changes to the psy-
chological state of a crowd, and individuals in the dangerous
area would respond immediately. The difference between them
is that a transient hazard only threats those individuals at the
time when it is happening. Once it disappears, the threat will
also disappear immediately. By contrast, a persistent hazard
will continue to impact those individuals in the dangerous area
during its existence.

According to their generation time, we divide hazards into
concurrent and nonconcurrent. Specifically, when some haz-
ards occur concurrently, their influences on neighboring agents
can be treated as a single one. These influences should be
accumulated together. For nonconcurrent hazards, we need to
consider the status of the crowd each time when a new haz-
ard happens. If an agent has already been affected by other
hazards before or has its own emotion, the new effect needs
to be accumulated.

More importantly, the static and dynamic characteristics of
hazards also play vital effects on the crowd movement in com-
plex situations. Based on this fact, we classify the hazards
with fixed position and influence radius as static ones. Other
cases, such as fixed position with variable influence radius
and variable position with fixed or variable influence radius
are regarded as dynamic hazards. For dynamic hazards, they
may have different states over the time, which determine their
position and area of influence dynamically.

The above six basic types of hazards have obviously
different impacts on the crowd movement. Realistic multihaz-
ard scenarios usually consist of these basic types and their
combinations.
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(a)

(b) (c)

Fig. 1. Framework of crowd behavior simulation in multihazard situations, consisting of three parts. (a) Estimation of crowd panic in multihazard environment.
(b) Panic propagation in emergency situation. (c) Impact on crowd movement from panic emotion. The red solid circle represents the hazard in our circumstance,
different blue solid circles in (a) represent agents with different panic emotion values. The darker the color, the greater the panic emotion. In (b), the panic
emotion of one agent (blue solid circle) is affected by other agents (green solid circles) in its perceiving range. Stress safety directions, emotional directions,
and combined directions of agents are annotated by yellow arrows shown in (c).

After analyzing these hazards qualitatively, we give quan-
titative descriptions for them. We first define a perilous field
as the circular area with the hazard position as the center and
a radius. Each agent is aware of the existence of hazards in
the scene through self-perception or neighbor contagion. The
influence of danger is limited in space: the farther the distance
to the hazard, the weaker influence to the crowd. For differ-
ent types of hazards, due to the uncertainty of their location
and range, new perilous fields will be formed constantly along
with the time. Defining the hazard position as Ps, for exam-
ple, it can affect all agents in its perilous field with radius,
defined as rs, in the existence time, defined by U. If the dif-
fusion velocity and diffusion time for the hazard is vs and ts,
respectively, where vs = {vs1, vs2, . . . , vsn}, n → ∞ depicts
all possible directions for the diffusion, the new hazard point
P′

s can be defined as follows:

P′
s = Ps + ts · vs

= {Ps + ts · vs1, Ps + ts · vs2, . . . , Ps + ts · vsn}. (1)

The dangerous range As after the diffusion forms a closed
area consisting of Ps as the source point and all points P′

s as
the boundary. Then we divide this area into two parts using a
line between 1 and (n/2), and this area can be expressed as
the sum of integration of these two parts

As =
∫ n

2

1
(Ps + ts · vs)dvs −

∫ n
2

n
(Ps + ts · vs)dvs . (2)

According to the above description, the dangerous impact
on each agent is related to the dangerous range of hazard and
the distance between the hazard and an agent. The farther
the distance is, the smaller the impact, all points with the
same distance from hazard share the same dangerous impact.
In order to depict this symmetry and attenuation, which is
inspired by the work in [1], a Gaussian distribution function
is chosen to depict this procedure by the following equation:

!s(P, t) =

⎧
⎨

⎩
1√

2π ·rs
e
− (P−Ds)2

2rs2 if ∥P − Ds∥ < rs and t ∈ U

0 otherwise.
(3)

Here, !s(P, t) is the strength of danger at the position P
produced by hazard s at time t. U is the duration of hazard s.
Ds is the intersection position of line PPs and the hazard area
As(Ds can be seen as the hazard position Ps in static haz-
ard situations), and rs is its influence radius. It is noteworthy
that danger strength will be 1.0 if position P is within the
dangerous range As.

V. EMOTIONAL CONTAGION MODEL CONSTRUCTION

The emotional contagion model under multihazard situa-
tions needs to consider the panic emotion invoked directly by
the hazards, panic propagation among individuals, and panic
attenuation. The final panic emotion of each agent can be
obtained by summing up these three components.
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A. Emotional Impact From Multiple Hazards

In Section IV, we have defined the perilous field and the
strength of danger of different hazards. Since the normalized
value of the strength of danger is within the range [0, 1],
which is the same as the property of emotional value [28],
therefore, we adopt the strength of danger, perceived by the
agent directly, as the panic value at the current position in the
following equation:

Eh
i (P, t) =

n∑

s=1

!s(P, t). (4)

Here, Eh
i (P, t) represents the panic value of agent i affected

by all the hazards s at time t and position P, where n denotes
the total number of hazards.

B. Emotional Contagion Among Individuals

In real life, individuals escaping from the perilous field will
carry panic emotion and propagate the panic continuously to
infect other individuals within a certain distance when they
are moving. Individuals who perceive this panic may also be
affected by them, incorporate into their emotions and then pass
them out. In addition, emotional contagion among different
agents are totally different. The extent of emotional transmis-
sion among agents depend on their personalities, which affect
their ability of expression and reception.

In order to depict the above process, we use the emo-
tional contagion model proposed in [15], which incorpo-
rate a complex but easy-to-use psychological component
into agents to simulate various crowd types. One person-
ality model and two thresholds are used in this process.
Specifically, OCEAN personality model [50] defines a 5-D
vector ⟨#O,#C,#E,#A,#N⟩ to characterize the individuals’
five kinds of personality: 1) openness; 2) conscientiousness;
3) extraversion; 4) agreeableness; and 5) neuroticism. Each
dimension takes a value between −1 and 1. Moreover, per-
sonality can also affect the decision of agent in different
situations. The two thresholds are expressiveness and suscepti-
bility. Expressiveness correlated with extroversion, represents
the ability to diffuse emotion. Susceptibility represents the
minimum value of agent be affected by other agents. Taking
agent i and agent j as an example, if the emotional value
for agent j at certain time is higher than its expressive force
threshold, it will express the emotion to others. At the same
time, if all emotions agent i received exceeds its susceptibility
threshold, agent i can be affected by this emotion. The expres-
siveness threshold for agent j and susceptibility threshold for
agent i are defined as follows:

eTj ∼ N
(

0.5 − 0.5ψE
j ,
((

0.5 − 0.5ψE
j

)
/10

)2
)

(5)

susTi(t) ∼ N
(

0.5 − 0.5εj,
((

0.5 − 0.5εj
)
/10

)2) (6)

where N(., .) represents a normal distribution with the former
as a mean and the latter parameter as a standard deviation,
the empathy value εi(εi ∈ [−1, 1]) in (7) for agent i can be

described as follows [51]:

εi = 0.354ψO + 0.177ψC + 0.135ψE + 0.312ψA + 0.021ψN .

(7)

Then for the susceptible agent i, all effect caused by all
agent j who is expressive and in the perceived range of it at
time t can be computed by the following equation:

Ec
i (P, t) =

t∑

t′=t−k+1

n∑

j=1

di
(
t′
)
Ec′

j
(
Pj, t′

)
(8)

where di(t′) ∼ N(0.1, 0.0001) represents the dose values which
agent i accepted from agent j at time t′ and Ec′

j (Pj, t′) is the
panic emotion of agent j within the perceiving range of agent i
at time t′. The value of k is set as 10 based on [15], which
means the emotional accumulation of agent i at time t is deter-
mined by the emotional values in the last ten consecutive time
steps.

C. Emotion Combination

Based on the documented observations [15], the panic emo-
tion of individuals will decay over time gradually until to the
normal state. So we define an emotional attenuation function
to describe this process, where a parameter η is the emotional
decay rate. For agent i at time step t, its new panic can be
computed as follows:

Ed
i (P, t) = Ei

(
Ppre, t − 1

)
· η η ∈ (0, 1]. (9)

As mentioned at the beginning of this section, the final panic
emotion of each agent can be obtained by combining all above
three components. Considering (4), (8), and (9), the incremen-
tal panic of the agent i, who is at the position P and at time
t, can be computed by (10). With this incremental value, we
can obtain the panic emotion by (11). It is noteworthy that the
emotional value Ei(P, t) needs to be normalized after update

'Ei(P, t) = Eh
i (P, t) + Ec

i (P, t) − Ed
i (P, t) (10)

Ei(P, t) = Ei
(
Ppre, t − 1

)
+'Ei(P, t). (11)

VI. EMOTIONAL RECIPROCAL VELOCITY OBSTACLE

After the panic of each agent in a multihazard environment
is computed during evacuation, the stressful behaviors of these
agents affected by the panic emotion can be determined. The
location and moving direction of an agent are denoted as P
and

→
V , respectively. When the agent has perceived the impact

from a hazard s at location Ps, it will try to follow the stress

safety direction
→

PsP to escape from the hazard instinctively.
By contrast, those agents who are not within the impacted area
of any hazard, will follow their original moving directions. If
an agent is affected by multiple hazards, then all the stress
safety directions of interest will be the result of a weighted
sum. So, the stress safety direction of an agent in multihazard
situations can be described by the following equation:

→
Vs

i (P, t) =
{∑n−1

s=0 !s(P, t) ·
→

PsP if ∥P − Ps∥ < rs and t ∈ U
→
V otherwise.

(12)

Authorized licensed use limited to: University of Houston. Downloaded on May 10,2025 at 23:30:36 UTC from IEEE Xplore.  Restrictions apply. 



1572 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021

Fig. 2. Stress safety direction invoked by hazards. Red solid circles represent
hazards and dotted circles are the perilous fields of the hazards. The original
directions of agents are represented by blue triangles, while the stress safety
directions of affected agents are denoted by red triangles.

Here,
→

Vs
i (P, t) is defined as the safety evacuation direction

for agent i at the position P and time t. U is the duration of
hazard s. Fig. 2 shows different safety evacuation directions
chosen by a group of individuals.

Besides the direct emotional impact from hazards, the con-
tagious panic emotion received from its neighbors may also
alter agents’ original moving directions. As mentioned in [3],
we assume the probability of agent i following its original
direction is pi and the probability 1 − pi to follow the oth-
ers’ directions. Thus, the new direction can be defined as the
addition of these two direction vectors. In this paper, the prob-
ability pi is equal to the panic value Ei(P, t) of agent i. The
updated moving direction of agent i at time t is defined as
follows:

→
Vc

i (P, t) = Ei(P, t)
→

Vs
i (P, t) +(1 − Ei(P, t))

∑

j∈R(i)

→
Vc

j
(
Pj, t

)
.

(13)

Here,
→

Vc
i (P, t) represents the moving direction of agent i

who is at the position P at time t.
∑

j∈R(i)

→
Vc

j (Pj, t) is the
combined moving directions of those agents who are in the
emotional perception range of agent i. R(i) denotes neighbor-
ing agents within the perception range of agent i. When the
agent is going to change its direction, we assume the magni-
tude of its velocity will remain. In other words, the velocity
module of the agent at that time should be Vc

i .
In (13), the moving direction of agent i is only influenced

by panic emotion. However, in the actual crowd movement,
the final direction of an agent is also influenced by its planned
targets and other neighboring moving agents. In other words,
the local obstacle avoidance and global path planning for agents
also need to be considered. The RVO model [8] is an efficient
and safe multiobject automatic navigation algorithm. However,
during the obstacle avoidance, the RVO model focuses on the
position and velocity of the current agent and other agents
[refer to (14)], but does not take into account the emotional
impact on speed selection invoked by surrounding obstacles

and existing hazards. In (14), RVOi
j(Vj, Vi,α

i
j) is the collision

area for agent i caused by agent j [illustrated in the gray area
around the white circle of Fig. 3 (RVO)], which means that
agent i and agent j will collide with each other once the velocity
of agent i fall into this area. Vi and Vj represent the velocity
for agent i and agent (or hazard) j. αi

j is the effort chosen by
agent i to avoid the collision with agent (or hazard) j, which
is implicitly assumed to (1/2) in the original RVO model. For
more details of the RVO model, please refer to [8]

RVOi
j

(
Vj, Vi,α

i
j

)
=
{

V′
i|

1

αi
j
V′

i +
(

1 − 1

αi
j

)

Vi ∈ VOi
j
(
Vj
)
}

.

(14)

Inspired by the RVO model, we propose a new ERVO model
by integrating emotional contagion into crowd movement plan-
ning. This new model constructs a new collision area [shown
by the gray triangle areas in Fig. 3 (ERVO)] by considering
the current velocity Vi and the updated velocity Vc

i of the
agent, and also the velocity Vj as described in (15). The effort
made by agent i to avoid collision with agent (or hazard) j is
defined as follows:

ERVOi
j

(
Vj, Vi, Vc

i ,α
i
j

)
=
{

V′
i|

1

αi
j

(
V′

i + Vc
i
)

+
(

1 − 1

αi
j

)

Vi ∈ VOi
j
(
Vj
)
}

(15)

αi
j = Ej(P, t)

Ei(P, t) + Ej(P, t)
. (16)

During the crowd simulation, for agent i, if Vi is outside of
the ERVO of agent (or hazard) j, both of them will never col-
lide. The ERVO model can be used to navigate a large number
of agents in a complex multihazard scenario. For each agent i
in the scene, it has a current position P, a current velocity
Vi, an updated velocity Vc

i , a current panic emotion Ei(P, t),
and a goal location Gi. For a hazard s, it has position Ps and
duration t. For obstacle o, it has current position Po and veloc-
ity Vo. Static obstacles have zero velocity in particular. In our
experiments, we choose a small time step't to simulate crowd
behaviors. Within this time step, we select a new velocity for
each object independently and update its position according
to the surrounding environment until all of the agents have
reached the safe area or their goals.

VII. EXPERIMENTAL RESULTS

We run a diverse set of crowd simulations in multihaz-
ard situations, all experiments are realized by using C++ in
the Visual Studio and Unity 3-D platform. Our experimental
results show that our method can soundly generate realistic
movement as well as panic emotion dynamics in a crowd. In
Section VII-A, we simulate crowd behaviors in four differ-
ent outdoor multihazard scenes. In Section VII-B, we analyze
the importance of our emotional contagion mechanism and
different influence in different scenarios. Then the emotional
contagion model is proved to be more suitable for our multi-
hazard situations in Section VII-C. Furthermore, we validate
the realism of our simulation results by comparing them with
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Fig. 3. Collision area computed by the traditional RVO model and our ERVO model for agent i. Gray triangle areas around white circles and red solid circles
represent the collision areas caused by agents and hazards, respectively. The black, blue, green, and red arrows are separately the original direction, stress
safety direction, emotional contagion direction, and final direction of one agent. The emotional contagion direction of an agent is determined by combining
its safety stress direction with those of its neighbors. The final direction is determined by combining its original direction and emotional contagion direction.

(a) (b)

(c) (d)

Fig. 4. Movement trajectories of forty agents in different types of hazard scenarios. In each scenario, black points represent the initial positions of all agents,
the lines drawn by different colors are used to depict different paths of agents, while trajectories for the same agent use the same color in different conditions.
In addition, the red solid and hollow circles represent persistent and transient hazard positions, respectively. While the green one represent the positions of the
second hazards in the concurrent conditions. Persistent hazards occur at the (a) same time and (c) different moments. Transient hazards occur at the (b) same
time and (d) different moments.

the crowd movement in real world in Section VII-D and the
effectiveness of our method in different virtual environments
in Section VII-E.

A. Crowd Simulation Under Different Multihazard Scenarios

As discussed before, different hazard types have various
effects on crowd movement. We simulate emergency behaviors
in a crowd with the following two-hazard situations.

1) Persistent hazards occur at the same time.
2) Transient hazards occur at the same time.
3) Persistent hazards occur at different moments.
4) Transient hazards occur at different moments.

All simulations run in open field, and each simulation involves
40 agents. The persistent hazards and transient hazards are
represented by fire and explosion, respectively. The time step

is set to 0.25 s and other parameters in our system are
set experimentally: the influence radius rs = 10 m, emo-
tional decay parameter η = 0.01, the personality parameters
#O,#C,#E,#A, and #N are set to random numbers between
−1 and 1 to simplify depicting different agents, and the
perceived scope is set to 4 m for all agents.

Path flow maps for all agents are used to depict the crowd
movement differences among this four conditions. As illus-
trated in Fig. 4, the black points are the original positions
of all agents, lines of different colors are used to depict
different paths of agents, while trace flows for the same
agent indicated by the same color in four conditions, the
red solid and hollow circles represent persistent and tran-
sient hazard positions in our scenarios, respectively. While the
second hazards occur in the concurrent conditions draw by
green.
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Fig. 5. One snapshot in the condition of persistent hazards occur at the same
time, where the cylinders are used to depict agents, different colors represent
different panic values of them, the darker the color is, the larger its panic
value.

If two hazards occur at the same time as shown in Fig. 4(a)
and (b). Agents around these two hazards will change their
routes to be distant far away from them. When compared with
the transient condition, based on the persistent effect from haz-
ards, more emotional contagion lead to jittery for many paths
of agents [shown in Fig. 4(a)], while trajectory for the agents in
transient conditions are smoother owing to the disappearance
of hazards in this scenario [shown in Fig. 4(b)].

If two hazards occur at different moments, as shown in
Fig. 4(c) and (d). When the first hazard occurs, agents in the
perilous field of this hazard will change their movement direc-
tion far away from it, while other agents keep the original
movement. When the second hazard occurs, if the first one
does not disappear, agents will escape away from both of the
two hazards [shown in Fig. 4(c)]. By contrast, some agents’
path may move to or pass through the area where the first
hazard disappeared [shown in Fig. 4(d)].

In addition to that the panic emotion changes of agents
are also important during this procedure. Fig. 5 illustrates a
snapshot in the condition of persistent hazards occur at the
same time, where we use a cylinder to represent an agent
and visualize its panic value using different colors. Despite
those two dead agents drawn by the black cylinders, the white,
light red, red, dark red, and red black are used to repre-
sent Ei = 0, Ei ∈ (0, 0.3], Ei ∈ (0.3, 0.5], Ei ∈ (0.5, 0.7],
and Ei ∈ (0.7, 1.0], respectively. The larger the panic value
is, the darker its color. For more dynamic simulation details
in different multihazard conditions, we refer readers to the
supplementary video.

B. Analysis of Emotional Contagion

In order to validate the effectiveness of the emotional conta-
gion in our method, we run crowd simulations in a scene with
and without this mechanism, respectively. Fig. 6 shows the
moving trajectories of three selected agents in the situation
with one transient hazard. Agents with emotional contagion
will adjust their moving directions to escape away from the
hazard even when they have not reached the nearby region

(a)

(b)

Fig. 6. Comparison of crowd movements with and without emotional conta-
gion. (a) Without emotional contagion model. (b) With emotional contagion
model.

of the hazard. In contrast, agents without emotional contagion
will keep moving along the original planned directions. The
trajectory of one agent is illustrated by one colorful line. From
these results, we can infer that the crowd movement in a hazard
environment is affected by the panic emotion significantly.

In the previous section, we have discussed the effect of
emotional propagation on crowd movement qualitatively. Here,
we mainly focus on the change of panic emotion of each
agent during the crowd evacuation, especially when persis-
tent/transient hazards occur at the same time. From Fig. 7,
we can see that the panic emotion value will increase to the
maximum when a persistent hazard happens. The reason is
that although the agent is moving far away from the hazard,
the agent is still in the perilous field and the panic value is
accumulated. When agents are out of the perilous field, their
panic values will decay and reach to a similar low level due
to the effect of emotion contagion. For a transient hazard, the
panic emotion will reach to the maximum immediately when
the hazard occurs, then it will decrease gradually.

C. Comparisons With Another Emotional Contagion Model

In order to validate the effectiveness of our emotional conta-
gion model among agents, we compare our simulation results
to an agent-based emotional contagion model proposed in [52].
Same personality and original state are chosen for 50 agents
in this two models, then the overall difference caused by emo-
tional contagion can be caught. After bomb occurs, agents may
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(a)

(b)

Fig. 7. Panic emotion changes in a crowd in different situations. The simu-
lation contains 15 agents and each colored line represents the panic emotion
of one agent in the scene. Panic changes caused by (a) persistent hazards and
(b) transient hazards.

(a)

(b)

Fig. 8. Agent numbers in different panic emotional interval during the
evacuation. Five panic emotion levels depicted by 0–4 with different colors,
the higher this value, the higher the panic emotion. Panic emotional interval
distribution over time in (a) model [52] and (b) our model.

have different panic emotions and movements in different time.
The panic emotion of all agents and movements simulation
results can be shown in Figs. 8 and 9.

(a)

(b)

Fig. 9. Comparison of crowd movements with another emotional contagion
model. (a) With our emotional contagion model. (b) With emotional contagion
model proposed in [52].

In Fig. 8, the number of distribution of agents panic emotion
is illustrated by five levels defined in Section VII-A, where
0 as the lowest panic emotion values 0 and level 5 repre-
sents the highest panic emotion values from 0.7 to 1.0. We
choose the explosion time at 4 s as the start time, which can
be seen that all agents have the high panic emotion almost
the whole evacuation process when used emotional contagion
model mentioned in [52], but in our model, the number of
lower emotion levels decrease first and increase as the fol-
lowing, the higher level ones reverses. The reason of this
phenomenon is that [52] considers all agents in the whole
scenes once a hazard occurs, and does not take emotion decay
into account. While in our emotional contagion model, each
agent have a perception range as well as expressiveness and
susceptibility to accept emotional contagion from others, and
their panic emotion change along with the movement.

In addition, the simulation results in this two conditions
shown in Fig. 9. The movement of agents after explosion in
our model are more dispersed as labeled by red ellipses, while
in another model, all agents behave toward an aggregation
states. With considering the different emotion changes in this
two models, lower panic emotion lead to a more independent
movement direction [shown in Fig. 9(a)] instead of gathered
movement based on stronger emotional contagion [shown in
Fig. 9(b)]. In real world, panic emotions will decrease when
the crowd are away from hazards. From the results of these two
different models, where be seen that our emotional contagion
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(a)

(b)

(c)

(d)

Fig. 10. Snapshots of ground-truth crowd evacuations on the outdoor ground and our corresponding simulation results. Three images from left to right is:
initial random status, at the beginning of the evacuation, one moment in the evacuation. The movement trajectories for all agents are drawn by the blue lines.
(a) and (c) Recorded video data (ground-truth). Our simulation (b) result [corresponding to (a)] and (d) result [corresponding to (c)].

model is more realistic and suitable to simulate the crowd
movement in the multihazard situations.

D. Comparisons With Real-World Crowd Behaviors

In order to validate our approach, we also compare the
simulation results with real-world crowd evacuation video.
Two crowd evacuation video are chosen in this part, first
one is chosen from the public available dataset of normal
crowd videos from the University of Minnesota [53], which
is designed to test the abnormal detection method originally.
In this scene, movement details are used to verify the similar-
ity between real-world crowd behaviors and our simulation
results. Although no predefined goals are set in advance,
agents can still be driven to escape in a realistic way by our
method. Illustrated in Fig. 10, three images in each row are

the crowd movement states at initial random conditions, at
the beginning of the evacuation, one moment after the haz-
ard occurs. The trajectories of agents are shown by the blue
lines. From the trajectories we can find that movement trends
of our simulation results are similar with that in real scenes.
Furthermore, we also compare the trajectory length and the
maximum speed of each agent from the moment when haz-
ard occurs to the end of simulation, as shown in Tables I
(comparison with the grassland scene) and II (comparison
with the square scene), where can be seen that our mean
trajectory length and mean maximum speed are close to the
true video data. Thus, we can see both overall movement
trend of the crowd and individuals’ movement details in the
crowd are similar to those in the recorded real-world crowd
video. More animation comparison details can be found in the
supplementary video.
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TABLE I
COMPARISON BETWEEN OUR SIMULATION RESULT AND

REAL GRASSLAND SCENE

TABLE II
COMPARISON BETWEEN OUR SIMULATION RESULT AND

REAL SQUARE SCENE

The second one is the 911 terrorist attacks with two explo-
sion, while when considering the camera shaking and crowd
occlusion, movement details of agents cannot be obtained
accurately, thus this scene is mainly used to verify the similar-
ity of group movement trends between our simulation result
and true situation. In this circumstance, two bombs occurred
concurrent on the building, and all agents straight forward
in the whole procedure. As shown in Fig. 11, the crowd
movement directions are indicated by red arrows, more details
can be found in the supplementary video.

E. Applications in Different Scenarios

We apply our method to simulate crowd evacuation simula-
tions in office building (Fig. 12) and crossroads (Fig. 13) with
multiple hazards to check the effectiveness of our method.

In an office building, we numbered its four rooms as 1–4
from left to right and up to bottom. The corridor in the mid-
dle connects all these rooms together and there are no exits
on both sides. At the beginning, 50 agents located in different
rooms move randomly in Fig. 12(a). At the eighth frame, there
are two bomb explosions in rooms 1 and 4 at the same time
in Fig. 12(b). At the 64th frame, there is a fire in room 2 in
Fig. 12(c). From the simulation results, we observe the fol-
lowing: when bomb explosions occur, in order to avoid the
danger, agents in the rooms begin to move to rooms 2 and 3,
respectively. When room 2 is on fire, the agents in or aiming
to room 2 try to escape. At last, all of the agents move to the
safe room 3 in Fig. 12(d).

(a)

(b)

Fig. 11. Snapshots of the true video and our simulation result of 911 scenario,
where the red arrows represent the movement trends of crowd. (a) True video
data (911 terrorist attacks). (b) Simulation result.

The crossroad scene contains 50 pedestrians and two non-
current car bombs. When the simulation starts, agents cross
the road freely in Fig. 13(a). At the 16th frame, one black
car bomb explodes in Fig. 13(b) and another red car bomb
explodes at the 24th frame as shown in Fig. 13(c). When the
first car bomb occurs, the agents nearby evacuate immediately.
Some agents affected by their neighbors move away from the
black car bomb. Since the dangerous field of black car bomb
is limited, the agents far away from it continue to move along
their original paths. When the red car bomb occurs, these
agents who are in the perilous field also begin to evacuate,
while others just move in their original directions. Fig. 13(d)
is the result at the end time (at the 60th frame). The animation
details can be found in the supplementary video.

VIII. CONCLUSION

The crowd behavior simulation under multihazard environ-
ment is a very challenging problem, and the existing models
with a single hazard cannot be applied to these cases directly.
In this paper, we present a novel evacuation simulation method
by modeling the generation and contagion of panic emotion
under multihazard circumstances. First, we model multihazard
environment by classifying the hazards into different types
based on their inherent characteristics and introducing the
concept of perilous field for a hazard. Then, we propose a
novel emotion contagion model to simulate the panic emo-
tion evolving process in these situations. Finally, we introduce
an ERVOs model by augmenting the traditional RVO model
with emotional contagion, which combines the panic emo-
tion impact and local avoidance together for the first time.
By comparing our simulation results with the ground-truth
data and applying our algorithm in different virtual environ-
ments, our experimental results show that the overall approach
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(a)

(c)

(b)

(d)

Fig. 12. Evacuation simulation result by our approach in an office building. (a) First frame. (b) Eighth frame. (c) 64th frame. (d) 120th frame.

(a)

(c)

(b)

(d)

Fig. 13. Evacuation simulation result by our approach in a crossroad. (a) First frame. (b) 16th frame. (c) 24th frame. (d) 60th frame.

is robust and can better generate realistic crowds as well as
the panic emotion dynamics in a crowd in various multihazard
environments.

There are still several limitations in this paper. The first one
is that our current method relies on some important assump-
tions, such as all agents in our scenario are treated equally
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in the face of hazards except the different personalities, thus
they can perceive the danger level and be affected by the
hazards once he/she enter into the influence radius of them.
Besides that safe exits chosen in the simulation environment in
advance, especially in the office building situations, where the
doors are chosen as the sole exit for each room. In real world,
this is not very common. So we need to improve the sensing
capability of the agents in an unknown multihazard scenario.
The second is, in spite of considering agents personalities,
expressiveness, and susceptibility, diverse crowd movements
are shown in our simulation results, many other complex per-
sonality traits and prior expertise may also affect the emotion
changes and motion choices of each agent. In addition, the per-
sonality parameters in our emotional contagion model are set
randomly to depict different agents, while it may not include
all agents or some agents with special characters. Thus, more
factors need to be considered. Furthermore, our method is sen-
sitive to some key parameters, such as the strength of danger.
In the future, we want to utilize a large number of surveillance
video clips to calibrate and further improve our model.
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