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Figure 1: Our system swaps the face from a single source portrait image into an RGB live video stream. The result video retains
the facial performance of the target actor while with the identity of the source.

ABSTRACT
We present a novel high-fidelity real-time method to replace the
face in a target video clip by the face from a single source portrait
image. Specifically, we first reconstruct the illumination, albedo,
camera parameters, and wrinkle-level geometric details from both
the source image and the target video. Then, the albedo of the
source face is modified by a novel harmonization method to match
the target face. Finally, the source face is re-rendered and blended
into the target video using the lighting and camera parameters
from the target video. Our method runs fully automatically and
at real-time rate on any target face captured by cameras or from
legacy video. More importantly, unlike existing deep learning based
methods, our method does not need to pre-train any models, i.e.,
pre-collecting a large image/video dataset of the source or target
face for model training is not needed. We demonstrate that a high
level of video-realism can be achieved by our method on a variety
of human faces with different identities, ethnicities, skin colors, and
expressions.
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1 INTRODUCTION
Face swapping or replacement has been a very active research field
in recent years. One of typical face swapping scenarios can be de-
scribed as follows: given a target video/image, the appearance of the
inner face is swapped by the face from a source video/image, while
the facial expression, skin color, hair, illumination, and background
of the target video/image are preserved [Dale et al. 2011; Garrido
et al. 2014]. To date, a number of off-the-shelf applications have
been designed to achieve this goal, including Deepfakes [Deepfakes
2019] and Face Swap1.

Despite potential legal and ethical concerns have emerged in the
society in recent years, the face swapping technique itself has rich
research values and numerous useful application scenarios in film
taking, video editing, and identity protection. For instance, the face
1https://faceswap.ms/
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of a stunt actor who performs in a dangerous environment can be
replaced by a star actor's face captured in a safe studio. It is also
applicable to revive the dead actors in legacy �lms by replacing
with the face of the substitute. For video amateurs, an automatic
tool that can put the faces of themselves or friends into movie or
video clips to create fun content with minimal manual involvement
is in great demanding. Furthermore, replacing the face with another
identity or virtual avatar in real-time video streaming or conference
could be practically needed to protect identity privacy.

Even though noticeable progresses have been made on face swap-
ping over the past several years,video-realisticface swapping is
still challenging. The di�erences of face shapes, expressions, head
poses, and illuminations between the source and the target faces
have posed signi�cant di�culties on the problem. In addition, the
human eyes are particularly sensitive to the imperfection in synthe-
sized facial performance and appearance. Previously, researchers
sought to tackle the problem by searching for the most similar
images/frames from an image database [Bitouk et al. 2008] or video
frames [Garrido et al.2014] and replacing faces through image warp-
ing. This line of methods highly relies on the similarity of head
poses, expressions, and illuminations between the source and the
target images. Another line of approaches resorted to reconstruct
3D face models from both the source and the target images and
then re-render the source face into the target background photo-
realistically. Although promising results have been presented [Blanz
et al. 2004; Dale et al. 2011], these methods typically involve man-
ual interventions (e.g., face alignment) from users. More recently,
deep learning approaches [Deepfakes 2019] have been proposed
to automatically swap the faces of two identities. However, they
require a large image dataset of the face identities and expensive
training of the model before running, which undermines the wide
applicability, accessibility, and generality of these methods.

In this paper, we propose a new, automatic, real-time method to
swap the face in the target video by the face from asinglesource
portrait image. Just imagine a sel�e image of yourself and an actor
interview video clip are given, our method can create a new video
clip in which you were taking the interview. In our method, 3D
face models with wrinkle level details, appearances, head poses,
and illuminations are �rst reconstructed from the source image and
the target video, respectively. Then, a novel face image is rendered
using the identity, predicted wrinkles and adapted albedo of the
source face and the head pose, expression and illumination of the
target face.

Compared to state of the art methods, the main advantages of
our method include: (i) little dependency of the source face data
(i.e., only need a single still portrait image), (ii) fully automatic
and real-time processing, and (iii) swapping both face shape and
appearance. More importantly, unlike existing deep learning based
methods, our method does not require any assumption of the input
face nor require any training data; therefore, our method does
not need to collect a large amount of face images for expensive
and time-consuming model training, which can bring signi�cant
convenience and e�ciency to users. As a result, our method can
also generalize well to unseen faces.

In sum, the contributions of this work include:

� an automatic real-time system to swap the face in a monoc-
ular RGB video by the face from a single portrait image;

� a method to predict wrinkle dynamics of the source face in
target expressions; and

� an appearance harmonization method to video-realistically
blend the synthesized face into the target video.

2 RELATED WORK
Our method consists of 3D face tracking and swapping from video.
We brie�y describe recent related works in the two directions below.

3D Face Tracking.Reconstruction of 3D face from video is cru-
cial in graphics and enables many applications in games, �lms and
VR/AR [Zollhöfer et al. 2018]. A signi�cant body of works stem
from the seminal morphable face model [Blanz and Vetter 1999],
where a statistical model is learned from face scans and later em-
ployed to reconstruct facial identity and expression from videos
or images. Similarly, [Vlasic et al. 2005] and [Cao et al. 2014b] use
multi-linear face models to capture large scale facial expressions.
Due to the strong data prior constraint, they cannot capture high
frequency details such as wrinkles, which requires further re�ne-
ments [Bermano et al. 2014]. To reconstruct high resolution face
models, structured light and photometric stereo methods [Ma et al.
2008; Zhang et al. 2004] were proposed for face scanning. Passive
solutions using multi-view images [Beeler et al. 2010, 2012, 2011;
Gotardo et al. 2018] and binocular cameras [Valgaerts et al. 2012]
are capable of capturing pore-level geometric details. However,
the aforementioned methods usually require delicate camera and
lighting setup in controlled environment, which is unfriendly to
amateur users and also lacks the ability to process online video
clips. In recent years, monocular methods [Fy�e et al. 2014; Garrido
et al. 2013; Shi et al. 2014; Suwajanakorn et al. 2014] have shown
that shape-from-shading techniques [Horn 1975] can obtain �ne-
scale details from single RGB video, which opens up the door to
build 3D faces from legacy video. The works of [Garrido et al. 2016;
Ichim et al. 2015; Suwajanakorn et al. 2015] can build fully rigged
face models and appearance from monocular video. All the above
methods, however, require intensive o�-line processing and are not
applicable to real-time applications.

Real-time face capture methods were �rst developed using RGB-
D cameras [Chen et al. 2013; Hsieh et al. 2015; Li et al. 2013; Weise
et al. 2011; Zollhöfer et al. 2014]. Later, Cao et al. [2014a; 2013]
proposed to capture coarse geometry using regression based face
tracking from a RGB camera. Their follow-up work [Cao et al. 2015]
learns displacement patches from 2D images to predict medium-
scale details. Recently Ma and Deng [2019b] proposed a hierarchical
method to capture wrinkle-level face model via vertex displacement
optimization on GPU in real-time. Another category of methods
solves the 3D face reconstruction problem using deep learning
techniques, including CNN [Guo et al. 2018; Sela et al. 2017; Tewari
et al. 2018] and autoencoder [Bagautdinov et al. 2018; Lombardi
et al. 2018; Tewari et al. 2017; Wu et al. 2018].

Face Reenactment.Face Reenactment transfers the expression of
a source actor to a target video. Researchers proposed to use a RGB-
D camera to transfer facial expressions in real-time [Thies et al.
2015, 2016; Xu et al. 2014]. Useful scenarios of this technique in-
clude Vdub [Garrido et al. 2015], which transfers a dubber's mouth
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motion to the actor in the target video; FaceVR [Thies et al. 2018a]
which transfers the facial expression of a source actor who is wear-
ing a head-mounted display (HMD) to the target video; and portrait
animation which transfers the source expression to a portrait image
[Averbuch-Elor et al. 2017] or video [Thies et al. 2018b]. [Ma and
Deng 2019a] directly reenacts the facial expression from video in
real-time without the driving actor by learning expression correla-
tions using a deep learning approach.

Face Swapping.Most face swapping methods can be categorized
into image-based, model-based, and learning based.2D image-based
methods [Garrido et al. 2014] select the most similar frame from
the source video and warp it to the target face. Image-to-image
methods [Bitouk et al. 2008; Kemelmacher-Shlizerman 2016] swap
the face by automatically selecting the closest face from a large face
database. Even though compelling results are produced, they cannot
be applied to video since the temporal consistency is not considered.
3D model-basedmethods [Blanz et al. 2004; Dale et al. 2011] track
the facial performance for both the source and the target faces and
re-render the source face under target conditions. Our method is
also model-based, but it does not need any manual work to help
the tracking and does not search for the closest frame in the source
sequence, which enables it to run in real-time. In addition, Dale et al.
[2011] do not render novel faces but re-time the source video using
dynamic time warping and blend the source and the target images
directly. Therefore, their method also highly relies on the similarity
between the source video and the target video. Our method builds
a 3D face model from the source image at initialization and then
renders it into the target. It maximally reduces the dependence
on source input. Recently,learning-basedmethods were proposed
to use CNN [Korshunova et al. 2017] or autoencoder [Deepfakes
2019] to learn face representations under various poses, expressions,
and lighting conditions. If enough training data can be collected,
these methods can produce robust and realistic results with proper
post-processing. However, collecting su�cient, often large-scale,
training data for speci�c faces is non-trivial and time-consuming, or
even infeasible for some cases (e.g., legacy face videos). Furthermore,
the face images they produce are generally low resolution, while
our method does not have the above issues. Recently, [Nirkin et al.
2018] proposed to train a generalized face segmentation network
on large face datasets, so that no additional data was required for
face swapping during testing. Similar to image-based methods, this
method cannot guarantee the temporal smoothness of the output
sequence.

3 APPROACH OVERVIEW
Our method takes a single source portrait image and a target video
clip as inputs, and outputs a video-realistic video clip with the
swapped source face. Our approach consists of several steps as
shown in Figure 2. We brie�y introduce our pipeline in this section
and describe the details of each step in the following sections.

We �rst reconstruct the 3D face models, albedos, illuminations,
and head poses from the source image and each frame of the target
video (Section 4). Each face model is further decomposed into a
coarse model representing facial expressions (Section 4.1) and ver-
tex displacements representing skin wrinkles (Section 4.2). Then,
we synthesize a novel source face mesh with target expression and

Figure 2: From the input source image and target video (a),
our system captures �ne-scale 3D facial performance (b).
The appearance of the source face is harmonized to match
the target video (c). A novel face is rendered with the source
identity, harmonized appearance under the target condi-
tions (d). The rendered face is blended into the warped target
frame (e).

(a) Input (b) Coarse Mesh (c) Fine Mesh (d) Textured

Figure 3: From an input image (a), a coarse mesh (b) is recon-
structed, and augmented with vertex displacements (c). The
re-rendering with the captured albedo and illumination is
shown in (d).

predicted wrinkle dynamics (Section 5). We adapt the albedo of
the source face to that of the target face through solving a Pois-
son equation (Section 6.1). The appearance is further harmonized
by injecting matched noise to compensate for the di�erent shot
conditions (Section 6.2). A novel face image can be rendered by com-
bining the novel mesh and harmonized appearance of the source
face, with the illumination and head pose of the face in each target
frame. Finally, we warp the target frame according to the key points
of the rendered face and blend them seamlessly (Section 7).

4 FACE TRACKING
In this section, we �rst describe how to capture coarse-scale 3D
facial performance in Section 4.1. Then, we describe how to re�ne
the captured model via shape-from-shading to obtain �ne-scale
details. The same method is applied to both the source image and
every frame in the target video.

4.1 Coarse Face Modeling
Reconstruction of a 3D face model from a 2D image is an intrinsi-
cally ill-posed problem. Similar to [Shi et al. 2014; Wang et al. 2016],
we �t a parametric 3D face model to the image. Speci�cally, we use
the FaceWarehouse dataset [Cao et al. 2014b] to construct a reduced
bilinear core tensorCr . A speci�c 3D face model can be created by
multiplying the tensorCr with a 50-dimensional identity vector
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� and a25-dimensional expression vector� . We also prede�ne 73
key points on the face model and run the local binary feature (LBF)
based regression method to automatically track the corresponding
2D facial landmark locations from the image. Then, a coarse face
model can be estimated by minimizing the distance between the
detected 2D landmarks and the projected 3D key points:

Et rackin g =
73Õ

i =1

k»R¹v i � 2 � � 3 � º + t¼ �pi k2
2 ; (1)

wherev i and pi are the corresponding sparse 3D and 2D key
point pairs,R andt are the rotation and translation of the head,
respectively. Figure 3b shows the coarse face model captured from
the input in Figure 3a.

4.2 Shape from Shading Re�nement
The reconstructed face model contains 5.6K vertices and 33K tri-
angle faces presenting large-scale facial deformations. We further
re�ne it with �ne-scale details by estimating per-vertex displace-
ments by employing the algorithm in [Ma and Deng 2019b]. Since
the resolution of the mesh is too low to faithfully reproduce the
subtle details of the input image, we recursively apply 4-8 subdi-
vision [Velho and Zorin 2001] to the mesh until the vertices and
pixels have an approximately one-to-one mapping. Note that the
subdivision is applied to the source face model only and then copied
to the target face model, so that the source and the target face share
the same topology.

Inspired by the work of [Ma and Deng 2019b], we encode the
�ne surface bumps as the displacements along surface normals and
recover them jointly with the albedo and illumination using shape-
from-shading [Horn 1975]. We assume human faces are Lambertian
surfaces, and parameterize the incident lighting with spherical
harmonics [Basri and Jacobs 2003]. Thus, the unknown parameters
can be estimated by minimizing the di�erence between the input
face and the synthesized face:

Eshading =
KÕ

i =1

kIi � l � SH¹ni º� i k2
2 : (2)

Here,Ii is the sampled image gradient by projecting thei -th
vertex onto the image plane according to head pose, andK is the
number of vertices after subdivision.l is an unknown 9-dimensional
vector for the spherical harmonics coe�cients of incident lighting,
andSH is the second order spherical harmonics basis functions
taking a unit length surface normalni as the input. The vertex
normalni is calculated using the vertex positions of itself and its
1-ring neighbor vertices. We assume that the �ne face model is
formulated as moving each vertex of the coarse model along its
normal for a distancedi . Hence, the unknown normalni of the �ne
model is represented as a function of variabledi . � i is the unknown
face albedo at vertexi , which is initialized as the average face
albedo provided by the FaceWarehouse dataset [Cao et al. 2014b].
We employ block coordinate decent algorithm to alternatively solve
the unknown illuminationl , albedo� , and displacementd.

Illumination. We use the albedo and displacement from the pre-
vious frame to estimatel . We also impose a regularization term
 l t � l t � 1


 2
2 to penalize sudden changes between consecutive frames.

The shading energy function Eq. 2 can be reduced and solved as
a highly over-constrained linear system withK + 9 rows and9
columns.

Albedo.Similarly, we use the estimated illumination and displace-
ment from the previous frame to estimate� . To prevent the high fre-
quency image gradients from being interpreted as albedo changes,
we incorporate a Laplacian regularization termkL� � L �� k2

2 to adapt
the albedo to be as smooth as the prior average albedo�� . L is the
graph Laplacian matrix with respect to the mesh. This also leads
to solving a sparse linear least square problem with2K rows,K
columns, andK + 2E non-zero entries, whereE is the number of
edges in the subdivided mesh. Note that the albedo is computed
only at the start of the video and remains �xed thereafter.

Displacements.By substituting the estimated illumination and
albedo, the shading energy function Eq. 2 is still non-linear and
under-constrained in terms of displacementsdi . Here we impose
two additional constraints. For aC2 surface, its local displacements
should change smoothly. Similar to albedo, a smoothness constraint
is applied:kLdk2

2, whereL is the same graph Laplacian matrix. We
assume that the coarse mesh already provides a good approximation
of the ground truth, thus a regularization constraint is applied:kdk2

2.
The weight for the smoothness constraint and the regularization
constraint are set to30and 5, respectively. Figure 3c shows the
re�ned mesh using vertex displacements, and Figure 3d shows the
rendering result using the estimated albedo and illumination.

5 FACE SWAPPING
The task of face swapping is de�ned as replacing the face in the
target video with the face from the source image while retaining
the facial performance of the target actor. The hair, body and back-
ground in the target video are intact. Unlike recent deep learning
based face swapping methods that learn face features in 2D images,
our method also takes care of 3D face mesh swapping. We break the
face geometry into large-scale expression and �ne-scale wrinkles,
and transfer them separately from the target to the source.

Coarse mesh swapping.The coarse mesh of the swapped face is
represented as the combination of the identity of the source face
and the expression of the target face. The mesh is generated by
multiplying the FaceWarehouse core tensor by the identity param-
eter � S of the source image and the expression parameter� T of
each frame in the target video:~MS

t = Cr � 2 � S � 3 � T
t . Top right

of Figure 4 shows the swapped coarse mesh for one frame of the
target video. The whole mesh sequence is temporally smooth since
� S is constant and� T changes smoothly in the expression PCA
space.

Wrinkle prediction.The coarse mesh is further augmented with
wrinkle details. The objective is to predict the most plausible person-
speci�c wrinkle motions of the source actor under the target expres-
sion. We tackle this using the Laplacian Coating Transfer technique
[Sorkine et al. 2004]. For the source face, we compute the Lapla-
cian coordinates of the coarse mesh~MS

0 and the �ne meshMS
0

respectively for the initial source face reconstructed from image.
The coating of the source mesh is de�ned as� S

0 = L¹MS
0 º � L¹ ~MS

0 º,
whereL is the Laplacian operator. Suppose that there exists a frame
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Figure 4: Face Mesh swapping from source (left) to target
(middle). Top right shows the coarse mesh of the source iden-
tity performing target expression, and bottom right is the
mesh with wrinkle details. Image courtesy: Joe Biden (pub-
lic domain).

in the target video that has the same expression as of the source
image. Then the corresponding coating of the target can be de-
�ned similarly as � T

0 = L¹MT
0 º � L¹ ~MT

0 º. For any framet in the
target video, the �ne-scale motionDT

t = � T
t � � T

0 is transferred
to the source mesh with a local rotationR at each vertex which
is the rotation of the tangent space between the coarse meshes
~MS
t and ~MT

t . The coating of the source face at framet is then pre-
dicted as� S

t = � S
0 + R¹DT

t º. Finally, the �ne-scale source mesh is
reconstructed by solving the following inverse Laplacian:

MS
t = L� 1¹L¹ ~MS

t º + � S
t º = L� 1¹L¹ ~MS

t º + � S
0 + R¹DT

t ºº: (3)

In practice, we �rst �nd a frame with the most similar expression
in the target video clip to that of the source image by measuring
the squared Mahalanobis distance:

Sim¹� T
t ; � S

0 º = ¹� T
t � � S

0 ºTC� 1
exp¹� T

t � � S
0 º; (4)

whereCexp is the covariance matrix of expression constructed
from the FaceWarehouse dataset. Then the mesh from the found
frame is set toMT

0 and used to compute the coating transfer. For
live applications, we set the mesh from the �rst frame asMT

0 and
keep updating it whenever a closer expression is found using Eq. 4.
Bottom right of Figure 4 shows the result of coating transfer where
the aging static wrinkles of the source actor are retained when
performing the target expression.

6 APPEARANCE HARMONIZATION
Synthesis of a photo-realistic novel face video that combines the
source face and the target background is challenging. The colors of
the source face and the target face may be quite di�erent, which
leads to obvious seams along the face boundary. In addition, the

Figure 5: The appearance of the source face is harmonized
to match that of the target face through albedo adaptation
(middle) and noise matching (right).

source face image and the target video are usually shot under dif-
ferent lighting conditions. Even alpha blending or gradient domain
composition may produce unrealistic results. A viable solution is
to apply image harmonization to the rendered face and the target
frame [Sunkavalli et al. 2010]. However, this method is not suit-
able for our real-time system, since it leads to the solving of very
large sparse linear systems, and cannot be ported to GPU trivially.
Our experiments also show that it cannot guarantee the temporal
consistency of the resulting sequence. Therefore, we propose to
harmonize the facial appearance in texture space. We compute the
adapted albedo and the matched noise for each vertex. The values
are computed only for the �rst several frames of the video when the
albedo of the target face is also being updated simultaneously. Then,
they will remain �xed during the rendering of the remaining video
frames so that the rendered facial appearance can be guaranteed to
be temporally consistent.

6.1 Albedo Adaptation
We compute an adapted albedo color at each vertex for face render-
ing. The adapted albedo is supposed to have a similar global color
to the target face while having the same local gradient to the source
face. This is equivalent to the solving of a Poisson equation [Pérez
et al. 2003] in the texture space: the albedo values of the boundary
vertices are set to the target face albedo and the albedo gradients
of the inner face are set to the source face albedo gradients. The
�nite di�erence discretization of the Poisson equation yields the
following discrete optimization problem:

Ealbedo =
Õ

i ; j 2E



 ¹� S

i � � S
j º � ¹ ^� i � ^� j º




2

2
;

s.t. ^� i = � T
i ; for i 2 @M

(5)
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