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Dear editor,

As one of the fundamental tasks in indoor scene modeling,

indoor layout programming has been extensively studied in

the past decades. Some existing approaches adopt a heuris-

tic exploration that generates the arrangement of indoor ob-

jects from an initial state (e.g., a messy indoor scene or

manual arrangement by users), following the pre-specified

constraints such as object-object or object-human relations

of indoor scenes. However, these works always focused on

the relative object arrangement, while ignoring the impact

of the room environment. That is mainly because man-

made guidelines for layout programming can only cover lim-

ited factors such as object alignment, while actual situations

could involve more sophisticated factors.

Many design details and priors are embedded in the lay-

outs of indoor scenes created by professional interior de-

signers; thus, some methods attempted to leverage layout

examples to generate plausible indoor layouts. However,

even though they can achieve global solutions that consider

room configurations such as the room size, the positions of

windows and doors, the variations of their solutions are fun-

damentally limited by the shapes of the indoor scene exam-

ples. In other words, given a room with irregular shape (e.g.,

non-rectangle rooms or rooms with curved walls), it would

be difficult for these methods to use their defined room fea-

tures which always focus on rectangle rooms to describe the

input room, and also not easy to find proper layout exam-

ples. We observe that in reality, two rooms with different

configurations might have similar paths between two certain

locations, and the observations on the paths are also simi-

lar. Therefore, an intriguing, widely open research question

arises: Can we leverage limited indoor scene examples to

tackle the layout programming of indoor scenes with irregu-

lar room configurations?

In this work, we propose to leverage a virtual naviga-

tion detector to explore plausible paths of the given room

for certain indoor objects to the door, in order to determine

their positions/directions. Specifically, we choose the indoor

scene example with similar paths to the given room with re-

spect to certain related objects as the reference, which is a

drastic turn from existing methods that choose an example

solely based on the similarity of room configurations. In this

way, the task of layout programming can be re-formulated

as searching for certain paths of the indoor objects guided

by indoor scene examples (Figure 1).

Virtual Navigation Detector. The virtual naviga-

tion detector contains both the navigation and classification

models. The first one is a reinforcement learning model aim-

ing at generating candidate paths in a given room, while the

second one is a deep classifier based on transfer learning via

the ImageNet-pretrained ResNet-50 [1]. We sample the 2D

bounding box of the floor plan for both the given room and

the dataset scenes (from the SUNCG dataset [2] with furni-

ture removed), and set cameras with four different directions

(i.e., up, down, left, right) to capture its observation images

at each cell.

We adopt the method of [3] as the network architecture

of our navigation model, and use the same reward mecha-

nism as [3] to train the reinforcement learning model with

four actions including move forward, move back, turn left,

or turn right. The trained navigation model is able to gen-

erate plausible paths that suit for the configuration of the

given room. The classification model is trained via transfer

learning, which fine-turns the ImageNet-pretrained ResNet-

50 with the observation images of the dataset indoor scenes.

In this manner, given a series of observation images captured

along a candidate path of the given room, the classifier can

find a proper class, i.e., a certain indoor scene example, as

the reference to guide the layout programming.

Layout Programming. For a given room, let Pi =

{pi0, pi1, · · · , pik} be the i-th candidate path that has a to-

tal of k states along the path. The ResNet feature of the

associated observation image for the state p is denoted as

f(p). Let p̃j be the state where a certain category of object

was ever placed in the reference room from the datasets,

suggested by the trained classification model (e.g., of the

j-th class), we define the following distance metric for path
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Figure 1 The pipeline of our method. Aiming at placing the given objects into the input room, our method has a navigation

model trained by the input room with the observation at the current state and the view towards a door as the target, and a

classification model trained by lightweight indoor scene datasets with respect to different object categories. The navigation model

is to generate candidate paths, and the classification model is to evaluate the paths and choose the proper one, to determine the

position/direction for the placement of the given object.

selection:

d(Pi) = ||f(pi0)− f(p̃j)||22 + δ(pi0). (1)

In the above equation, j is determined by arg maxj N(Pi, j),

where N(Pi, j) is the number of states (in the set of Pi),

whose observation images are classified to the j-th class by

the trained classification model. That is, we choose the class

that most observation images are classified into for a cer-

tain path. δ(pi0) is used to detect whether object collisions

will occur in the position where the object would be placed,

namely, if no collision exists in the initial state of the path,

δ(pi0) = 0; and δ(pi0) = inf otherwise. Note that, if multiple

objects are placed in the same room, the order of placements

will impact the programmed layout.

From the candidate paths, we choose the one with the

minimum distance d(Pi), and use the initial state of the se-

lected path as the position to place the associated indoor

object. We try all four directions at this position to deter-

mine the object direction which would have the minimum

feature distance. Our method allows the user to browse the

suggested paths in turns to choose the preferred one. We

adopt a flexible sampling step size to generate the grid of

the room, to limit the number of cells on the grid and ensure

the time complexity of the navigation model training stage

to be close to constant. To improve computing efficiency, we

only consider core furniture in the room and use the posi-

tions/directions of the core furniture to arrange the associ-

ated objects. For example, in a given living room, we train

the classification model for couch (the core furniture) but ig-

nore the associated objects such as coffee table and TV set.

These associated objects can be arranged by pre-specifying

the possible ranges of the relative positions/directions to

their associated core furniture.

Experiments. We show several indoor scenes whose lay-

outs are programmed by the virtual navigation detector in

Appendix A. On average, the time cost for training the nav-

igation model for a given room takes less than 10 minutes

to process 1 million frames of observation images on an off-

the-shelf PC. Once the virtual navigation detector is trained,

the layout programming takes less than 10 seconds. The ex-

periments are conducted on a PC with Intel Core i7-8700K

3.70GHz CPU with 32GB RAM and NVIDIA GeForce RTX

2080 Ti GPU. To validate the effectiveness of our method

for layout programming, especially for non-rectangle rooms,

we conducted a user study to compare the indoor layouts

created by our method, and those by the state-of-the-art

data-driven indoor synthesis methods [4,5]. The results (see

Appendix B) show that our method performs better on non-

rectangle rooms compared with [4, 5], benefited from the

navigation model which makes our results adaptive to the

non-rectangle room inputs.

Conclusion. We proposed a novel approach to program-

ming indoor scene layouts, based on the local observation

features captured by virtual navigation detectors. It ex-

tends the applicability of limited indoor scene examples as

the references to guide the layout creation of rooms with

complex configurations. The effectiveness of the proposed

method was demonstrated through several synthesized in-

door scenes and comparisons.
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