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Abstract— Increasing attention is being given to the modeling
and simulation of traffic flow and crowd movement, two phe-
nomena that both deal with interactions between pedestrians
and cars in many situations. In particular, crowd simulation
is important for understanding mobility and transportation
patterns. In this paper, we propose an emotion-based crowd
simulation model integrating physical strength consumption.
Inspired by the theory of “the devoted actor,” the movements
of each individual in our model are determined by modeling
the influence of physical strength consumption and the emotion
of panic. In particular, human physical strength consumption
is computed using a physics-based numerical method. Inspired
by the James-Lange theory, panic levels are estimated by means
of an enhanced emotional contagion model that leverages the
inherent relationship between physical strength consumption and
panic. To the best of our knowledge, our model is the first method
integrating physical strength consumption into an emotion-based
crowd simulation model by exploiting the relationship between
physical strength consumption and emotion. We highlight the
performance on different scenarios and compare the resulting
behaviors with real-world video sequences. Our approach can
reliably predict changes in physical strength consumption and
panic levels of individuals in an emergency situation.

Index Terms— Pedestrian traffic simulation, crowd simulation,
emotional contagion, James-Lange theory.

I. INTRODUCTION

EFFICIENT and accurate crowd simulation is useful
for intelligent transportation systems since it can help

improve emergency planning and prevent congestion in transit
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hubs such as train stations and airports [1], [3]. One can also
analyze human mobility through the trajectories obtained by
crowd simulation models to get more knowledge of pedestrian
mobility behaviors in both qualitative and quantitative ways.
Because of various complex factors, it is challenging to model
realistic crowd behaviors in emergency scenarios. At a broad
level, crowd behavior in emergencies is governed by panic and
physical strength consumption [2].

The main purpose of crowd simulation algorithms is to
model the movements (in terms of speed and direction) of
individuals in a crowd [4]. We basically deal with two aspects
of human motivations: physiological and psychological fac-
tors. Physical strength consumption and emotion [5] are two
representative physiological and psychological factors, respec-
tively. Both have a great influence on individual movements.
These two factors influence each other and evolve dynamically.
It is important to describe the inherent relationship between
these two factors, which is more obvious in emergency or
evacuation situations [6]. Many approaches incorporate emo-
tions of individuals in crowd simulations, making it one of the
most commonly used psychological factors [7]–[9]. Panic can
prevent an individual from taking proper actions in emergency
situations [5]. Researchers have observed that external dangers
can directly cause changes in panic levels in an individual,
thereby further determining his or her movements [10]. We
mainly focus on the emotion of panic in emergency situations.
Most of the previous studies don’t consider the effect of
physical strength consumption on panic [11]. Physical strength
is a person’s or animal’s ability to exert force on physical
objects using muscles [12]. Physical strength consumption is
defined as the energy expenditure [13], [14] of a human, which
directly affects that human’s moving speed [15]. However, it is
difficult to describe the inherent relationship between physical
strength consumption and panic and to then combine these
factors to determine the movement of each individual [6].
Therefore, an emotion-based crowd simulation model integrat-
ing physical strength consumption is challenging due to the
following reasons:

(1) It is difficult to model the physical strength consumption
of an individual in a crowd accurately [16]. This task
involves considering many factors that are needed to
quantify the influence of physical strength consumption
on crowd movement [17].

(2) Accurately modeling an individual’s panic level in a
crowd is difficult because of its constant and dynamic
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Fig. 1. The relationships among physical strength consumption, panic,
and movement of individuals in a crowd. Physical strength consumption
is calculated according to the actual speed, mass, and moving time of
individuals. The panic levels are determined by the location and physical
strength consumption of the individual, and they further affect the individual’s
desired speed. Moreover, each individual’s current panic level will affect his
or her moving direction by changing the acceleration based on the inferred
force.

changes [18]. Various factors such as physical strength
consumption and individual movement affect panic lev-
els.

Inspired by the theory of “the devoted actor” [2], which
shows that an individual’s physiological state has an effect
on his or her psychological state, we propose the first (to
the best of our knowledge) emotion-based crowd simula-
tion model based on physical strength consumption (illus-
trated in Figure 1). The main contributions of our work
include:

• We introduce a physical strength consumption calculation
method based on how individuals work under the laws
of physics and quantitively characterize their dynamic
changes during the crowd movement.

• We present a comprehensive emotion calculation method
for physical strength consumption based on the
James-Lange theory. Our new proposed model is used
to derive the relationship between physical strength con-
sumption and panic and examines how both of them
govern the movement.

The rest of this paper is organized as follows. Background
and related work are reviewed in Section II. The definition
of our proposed crowd simulation model is introduced in
Section III. Different benchmark scenarios and results are
presented in Section IV.

II. RELATED WORK

In this section, we provide a brief overview of prior work on
crowd simulation. We divide the summaries based on whether

the works involve physical, psychological, or physiological
factors.

A. Simple Crowd Simulation Models

In this subsection, we summarize representative crowd sim-
ulation models that do not consider psychological or physio-
logical factors [1], [19]–[21].

In the real world, many environmental factors influence an
individual’s movement, i.e. scene layout, moving pedestrians,
and stationary groups [22]–[25]. During the evacuation of
a crowd, the behavioral choice of an individual is highly
dependent on the moving directions of nearby individuals,
the hazard location, and obstacles [26]. Moussaid et al. [27]
propose a cognitive science approach based on behavioral
heuristics. Guided by visual information, pedestrians apply
two simple cognitive procedures to adapt their moving direc-
tions and speed. Zhou et al. [28] propose a fuzzy logic
approach to model and simulate pedestrian dynamic behaviors,
which are based on human experiences and human knowledge,
and perceptual information obtained from interactions with the
surrounding environment. Zhou et al. [29] focus on the role
of leaders who can guide the movements of passengers during
the evacuation. Cassol et al. [30] focus on global path planning
with the main goal of identifying the best evacuation routes
for a specific population when leaving a certain building. To
realize better behavioral choices, most approaches calculate
the position of each individual at the next time step to obtain
a conflict-free moving path in a global scenario [31]. How-
ever, these approaches are not applicable to highly complex
scenes with dense crowds. Other approaches use local obstacle
avoidance methods. Namely, once the movement state of
an individual is determined, the movement states of other
individuals are updated by using local collision avoidance
techniques [32].

In practice, these approaches face many difficulties
in terms of accurately controlling the individual move-
ments. Researchers in this field are increasingly focus-
ing on integrating global path planning and local obstacle
avoidance [33], [34]. Weiss et al. [35] model collision avoid-
ance constraints both in terms of short and long-term ranges
to deal with sparse and dense crowds. In [36], intergroup- and
intragroup-level techniques are presented to perform coherent
and collision-free navigation using reciprocal collision avoid-
ance. Mutual information about the dynamic crowd is used to
guide agents’ movements by combining both macroscopic and
microscopic controls [37]. By constructing a visual tree, the
shortest path without collisions is obtained in [38]. In addition,
in [39], [40], and [41], path planning and navigation algorithms
are described for crowd simulation in complex contexts. Fur-
thermore, in [42], an effective long-range collision avoidance
algorithm is proposed.

In contrast to these works, our model enhances the tra-
ditional social force model to avoid collisions with sur-
rounding individuals and obstacles by combining panic and
physical strength consumption calculations. Traditional crowd
simulation models are not concerned with this approach.
In our model, we mainly deal with moving directions and
moving speeds, which are largely influenced by panic and
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physical strength consumption during a relatively short period
of time.

B. Crowd Simulation With Psychological Factors

The psychological state of an individual plays a vital role in
his or her decision-making process [43]–[47]. Stress and panic
are typical psychological factors and have a great influence on
the movement of individuals in a crowd. In this subsection,
we introduce representative works on them.

In [18], authors focus on stress, which is defined as any
change caused by interactions between the environment and
individuals. Generally, stress is caused by a discrepancy
between environmental demands and the abilities of individ-
uals. Stress can have positive effects on individual behav-
ior. In emergency or evacuation situations, stress improves
the performance of individuals [18]. It can be chronic and
long-term [18]. However, stress and panic are inherently dif-
ferent. Panic is short-term and changeable and usually leads to
negative effects on individuals [48]. One of the most disastrous
forms of collective human behavior is the kind of crowd
stampede induced by panic, often leading to fatalities as people
are crushed or trampled [10].

An individual’s stress and panic are mirrored by oth-
ers and they are disseminated within the crowd [7]. There
are two separate lines of emotional contagion research:
epidemiological-based and thermodynamics-based.

The epidemiological SIR model [49] divides the individuals
in a crowd into three categories: infected, susceptible, and
recovered. At first this model is used to simulate the spread
of rumor [50]. Then the epidemiological SIR model is used
to describe emotion propagation. In [7], the epidemiologi-
cal SIR model is combined with the OCEAN personality
model [51]. The phenomenon of emotional contagion occurs
more obviously in a panicked crowd. In [52], the cellular
automata model is combined with the SIR model (CA-SIRS)
to describe emotional contagion in an emergency situation.
In [53], a qualitatively simulated approach is proposed to
model emotional contagion process in a large-scale emergency
evacuation siutation, which confirms that the effectiveness
of rescue guidance is influenced by the leading emotion of
the crowd. There is another kind of emotional contagion
models based on thermodynamics [54]. Bosse et al. define
emotional contagion within groups based on a multi-agent
approach. They focuses mostly on emotions of groups rather
than those of single individuals. Neto et al. [44] improve this
model adapting it into BioCrowds and coping with emotional
contagion within different groups of agents. Some researchers
combine these two kinds of emotional contagion models to
describe dynamic emotion propagation from the perspective
of social psychology [55].

Because panic has a great influence on individual movement
and often leads to serious consequences, we focus on panic in
emergency situations. Inspired by the James-Lange theory in
biological psychology, we improve the Durupinar model [7]
by considering the influence of physical strength consumption
on panic levels. In contrast to previous methods considering
only panic, we further demonstrate the relationship between
physical strength consumption and panic.

C. Crowd Simulation With Physiological Factors

To complete a comprehensive analysis of crowd movement,
we must consider not only psychological factors, but also
physiological factors of individuals as other important factors
in determining the crowd movement [15].

Physical strength is one of the most important phys-
iological parameters that affects individual movement.
Bruneau et al. [56] apply the principle of minimum
energy (PME) on groups of different sizes and densities.
In [13], [57], some physiological indicators (such as physical
strength consumption and heart rate) are described. Further-
more, the relationship between physical strength consumption
and heart rate is revealed, which is also a method for predicting
physical strength consumption based on heart rate during
moderate and vigorous exercise. Work in [15] shows that the
relationship between physical strength consumption and speed
is nonlinear. In [17], researchers investigate how the cumula-
tive consumption of physical strength affects the evacuation
time of individuals. Guy et al. [58] propose the principle
of least effort (PLE) to compute the physical strength con-
sumption required by various movements. These approaches
are focused on the relationship between physical strength and
other physiological parameters (heart rate and oxygen uptake,
for example) or individual movement. In [16], the authors
choose four other basic physiological characteristics, including
gender, age, health, and body shape, and map them to a
navigation method.

Inspired by prior approaches, we focus on physical strength
consumption, which is a very important physiological fac-
tor. Physical strength consumption is central to research
in human biology and biological anthropology [59] and is
closely related to a variety of factors such as heart rate,
oxygen consumption, etc. [57]. It directly affects the mov-
ing speed of an individual [17]. Other physiological fac-
tors (such as gender, age, health, and body shape) can
influence movement through physical strength consumption.
We analyze the relationship between physical strength con-
sumption and panic. We also describe the effects of phys-
ical strength consumption on the physical movements of
individuals.

III. OUR MODEL

Our emotion-based crowd simulation model comprehen-
sively considers physical strength consumption in emergencies
to influence crowd movement. The flowchart of our model
is presented in Figure 2. Strenuous movements are often
observed in individuals in emergency or evacuation situations,
and the relationship among them is more obvious in such
situations. Therefore, we mainly focus on simulating crowd
movements in such emergency situations.

Our model consists of three important components: phys-
ical strength consumption, panic, and individual movement.
Human physical strength consumption is computed with a
physics-based method (Section III-B). Panic levels are deter-
mined through an enhanced emotional contagion model that
leverages the inherent relationship between physical strength
consumption and panic (Section III-C). Our model computes
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Fig. 2. The flowchart of our model. (a) Changes in the external environment can cause emotional fluctuations. For example, a hazard occurs and the red
area represents the range of influence of the hazard. (b) The emotional changes of one individual are calculated according to the direct impact of the hazard
and emotional contagion of his or her neighbors (Section III-C). (c) The desired speed and direction of each individual are calculated based on an updated
panic assessment (Section III-D). (d) Using the limit of physical strength consumption, the actual speed is determined [15] (Section III-D). (e) The calculation
of physical strength consumption affected by the actual speed (Section III-B). In contrast, the cumulative physical strength consumption also determines the
actual maximal speed of the individual at the next timestep (Section III-D). The current physical strength consumption reflects the emotional experience of
an individual (Section III-C). (f) The position of the individual is updated according to its actual speed. If the individual is panicked, we return to step (b);
otherwise, the flowchart ends (Section III-C).

the movement of an individual by modeling the physical
influence of strength consumption and panic (Section III-D).

A. Symbols and Notations

For convenience, the important parameters and their descrip-
tions used in our model are listed in Table I.

B. Physical Strength Consumption Calculation

Physical strength consumption is one of the most commonly
used physiological indicators and is closely related to individ-
ual movement. It is defined by the following equation:

P (t) = Phor (t) + Pver (t) (1)

where P (t) denotes the total physical strength consumption
at time t and Phor (t), Pver (t) denote the physical strength
consumption along the horizontal and the vertical directions,
respectively. They are defined as follows:

Phor (t) =
t�

i=1

F x
i · di (2)

Pver (t) =
t�

i=1

F y
i · hi (3)

F x
i is the driving force of the individual along the horizontal

direction. This force overcomes friction. di is the moving
distance of the individual at time t. F x

i ·di represents the work
done by the individual along the horizontal direction. F y

i is
the pulling force of the individual along the vertical direction.
This force overcomes gravity. hi is the rising height of the
individual at time t, and F y

i · hi represents the work done by
the individual along the vertical direction.

Fig. 3. Schematic of the physical strength consumption calculation. vx
i is

the velocity component of an individual in the horizontal direction at time i,
and the length of each time step is τ . The horizontal speed of the individual
changes from vx

i−1 to vx
i in time interval τ .

According to the laws of physics, F x
i is defined as follows:

F x
i = fi +

(vx
i − vx

i−1)m
τ

(4)

A diagram of the physical strength consumption calculation is
shown in Figure 3.

The friction fi is defined in Equation 5, ki is defined
in Equation 6, and ti is defined in Equation 7 according
to [60], [61]. μ is the friction factor, which is related to the
shoes and the ground. In our implementation, μ = 0.58 is
adopted, which is also recommended in [62]. vi is the current
velocity magnitude, vmin is the minimal velocity magnitude,
and vmax is the maximal velocity magnitude.

fi = ti · μ · mg · ki (5)
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TABLE I

THE PARAMETERS USED IN OUR MODEL

ki = 1.5 + 0.5 · vi − vmin

vmax − vmin
(6)

ti = 0.6 − 0.2 · vi − vmin

vmax − vmin
(7)

where ki is the coefficient of the weight, ti is the time of
the individual’s foot touching the ground, ki ∝ vi, ti ∝−1 vi,
fi ∝ ki, and fi ∝ ti. If one stands with both feet on a force
plate, ti = ki = 1.

The physical strength consumption in the horizontal direc-
tion is defined by:

Phor (t) =
1
2
·

t�
i=1

� �
(vx

i )2 − �
vx

i−1

�2
�

m

+ti · μ · mg · ki

�
vx

i + vx
i−1

�
τ
�

(8)

According to the laws of physics, F y
i is defined by the

following equation:

F y
i = mg +

(vy
i − vy

i−1)m
τ

(9)

where vy
i is the velocity component in the vertical direction

at time i.
The physical strength consumption in the vertical direction

is defined by:

Pver (t) =
1
2
·

t�
i=1

��
(vy

i )2 − �
vy

i−1

�2
�

m

+
�
vy

i + vy
i−1

�
mgτ

�
(10)

C. Panic Calculation Considering Physical Strength
Consumption

This section presents the calculation method for the panic
level of an individual. E ∈ [0, 1] indicates the approximate
level of panic. The panic level E consists of two components.
The first is the emotional cognitive component Eo, which
relates to the hazard and encompasses emotional contagion.
The second is the emotional experience component Ep, which
is calculated using physical strength consumption and heart
rate. Therefore, the final emotion value is defined as follows:

E = w · Eo + (1 − w) · Ep (11)

where w is a weighting parameter, and 0 < w < 1.
1) The Emotional Cognitive Component: In this section,

we present the calculation method of Eo. Eo consists of three
terms: effect from hazard Eh

o , emotional contagion Ec
o, and

emotional attenuation Ed
o .

a) Effect from hazard Eh
oEh
oEh
o : When individuals are able to

perceive a hazard, they may become panicked. Eh
o is defined

as follows [63]:

Eh
o (L, t) =

n−1�
s=0

Γs (L, t) (12)

Γs (L, t) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2π · rs

e
− (L−Ls)2

2rs2

if �L − Ls� < rs and t ∈ U

0 otherwise

(13)

where L is the location of an individual, Ls is the location of
a hazard, rs is the radius of the influence range of the hazard,
and U is the duration of the hazard.

b) Effect from emotional contagion Ec
oEc
oEc
o: There are two

kinds of representative models of emotional contagion: the
Neto model [44] and the Durupinar model [7]. They use fun-
damentally different mechanisms, but both can generate good
results. However, the Neto model defines too many parameters
for each pairwise interaction [64] and it is hard to compute
these parameters automatically. Moreover, personality is also
a very important, long-term, stable psychological factor and
it is vital for simulating heterogeneous crowd behavior [7].
The Neto model simplifies the personality factor while the
Durupinar model pays more attention to that factor and is
effective at capturing the differences between individuals.
Personality is an important part of our model. We consider the
effect of personality on panic. According to the above analysis,
the Durupinar model is more suitable. In the virtual scenario
of Section IV-A, we implement a comparable experiment
to verify our motivation. Next, we present the emotional
contagion method in our model.

During evacuation, individuals can be in one of two states:
susceptible or infected. When the panic level of an individual
exceeds a certain threshold T1, the individual will be infected.
If the intensity of an individual’s panic surpasses another
threshold T2, then the individual can spread the panic to his
or her neighbors. In a general case, T1 < T2. T1 and T2

are correlated with individual personalities. Here we represent
the personalities of individuals using the OCEAN personality
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model [7]. The personality of an individual is represented
by a five-dimensional vector < O, C, E, A, N >. Each
factor is randomly distributed with a Gaussian distribution
N(0, 0.25) [7]. T1 ∝−1 N, T1 ∝ C [51]. T2 ∝−1 E [7], [51].
T1 and T2 are defined by the following:

T1 = α · C − β · N + γ (14)

where α = 0.1, β = 0.1, and γ = 0.15.

T2 = δ − ξ · E (15)

where δ = 0.35, and ξ = 0.1. These parameters are determined
according to the methods in [65].

Within the perceived range, when a susceptible individual
i sees an expressive individual j (the panic value is higher
than threshold T2), i gets exposed by receiving a random
dose di from a specified probability distribution multiplied
by the panic intensity of j. The dose values di are randomly
distributed with a Gaussian distribution N(0.1, 0.01). We
denote the panic value of individual j at time t� as ej (t�).
The panic value of individual i due to emotional contagion is
defined in Equation 16 [7].

Ec
i,o (L, t) =

t�
t�=0

�
∀j|j∈Visibility(i)∧j is expressive

di (t�) ej (t�)

(16)

c) Effect from emotional attenuation Ed
oEd
oEd
o : Emotional

attenuation is defined in Equation 17 [63].

Ed
o (L, t) = Eo (Lpre, t − 1) · η(t) (17)

where Ed
o (L, t) is an emotion decay function and η(t) is

the decay rate. η(t) is positively related to the individual
personality factor N [7]. Inspired by [7], [17], it is defined
as follows:

η (t) =

⎧⎨
⎩

0 t < t1
eβ2(t−t2) − eβ2(t−1−t2)

1 + eβ2(t−t2)
+ α · N t ≥ t1

(18)

where β2 = 0.1, η ∝ N , and α = 0.1.
The change of the emotional cognitive component

ΔEo (L, t) is defined in Equation 19 [63]. The Eo is defined
in Equation 20 [63].

ΔEo (L, t) = Eh
o (L, t) + Ec

o (L, t) − Ed
o (L, t) (19)

Eo (L, t) = Eo (Lpre, t − 1) + ΔEo (L, t) (20)

2) The Emotional Experience Component: In this section,
we present the calculation method of Ep. Individual emotions
undergo three stages: cognition, action, and experience. First,
an event occurs, and the individual perceives the current scene
(emotional cognitive stage). Subsequently, the individual acts
in a way that corresponds with physiological changes (action
stage). Finally, the individual has the emotional experience
(experience stage) [6].

Under emergency situations, once a hazard occurs, the indi-
viduals around it immediately take different actions, requiring
physical strength consumption. Physical strength consumption
in one minute is chosen as the measure of physiological

changes. The current heart rate is calculated using physical
strength consumption. Then, the increment of the emotional
experience value is calculated based on the heart rate incre-
ment. Thereafter, the current emotional experience value Ep

is obtained. The details of the calculation method are as
follows.

Equation 21 describes the relationship between physical
strength consumption in a minute (KJ/min) and heart rate
(beat/min) when individuals experience panic and attempt to
escape from the hazard [57]. According to Equation 21, we can
calculate the current heart rate (HR) based on physical strength
consumption in a minute (�P ) (21), shown at the bottom of
the next page. where gender = 1 for males and 0 for females,
age (year) ∈ [19,45], weight (kg) ∈ [47,116], ΔP (t) =
P (t) − P (t − τ), and τ = 60s.

Furthermore, according to [66], heart rate (HR) and inten-
sity of anxiety or fear (emotional experience) are positively
correlated. In [66], the heart rate per minute is recorded
before and after an electric shock, and emotional experience is
reported once per minute. �Ep and �HR are the increments
of emotional experience and heart rate, respectively, compared
with the values when individuals are not panicked. The �HR
is defined as follows:

�HR(t) = HR(t) − HR(0) (22)

where HR(t) is the heart rate at time t and HR(0) is the heart
rate when individuals are not panicked.

Using a linear curve fitting method, we can obtain the
relationship between �HR and �Ep.

�Ep(t) = 0.03669 · �HR(t) − 0.0724 (23)

Ep is defined in Equation 24 and Ep (0) = 0.

Ep (t) = Ep (t − 1) + ΔEp (t) (24)

D. Individual Movement Model

Based on the results of physical strength consumption and
panic, the movement of each individual can be determined
accurately through moving direction and moving speed.

1) Moving Direction: When a hazard occurs, individuals
who can perceive the hazard directly will be panicked and
calculate their own safety evacuation directions V s

i (L, t) [63].
V round

i (t) is the combined moving directions of individuals
who are in the perceived range of the individual i.

→
V s

i (L, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n−1

s=0

Γs (L, t) ·
→

LsL

if �L − Ls� < rs and t ∈ U
→
V otherwise

(25)

V round
i (t) =

�
∀j|j∈Visibility(i)∧j is expressive

Vj (t) (26)

Finally, the moving direction Vi (t) of actual velocity of an
individual who directly perceives the hazard is defined as
follows:

Vi (t) = E · V s
i (L, t) + (1 − E) · V round

i (t) (27)
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TABLE II

DEPENDENCE OF SPEED DECAY RATE AND MAXIMAL-LIMIT SPEED ON
PHYSICAL STRENGTH CONSUMPTION. AS THE PHYSICAL STRENGTH

CONSUMPTION INCREASES, THE MAXIMAL-LIMIT

SPEED DECREASES

where E is the panic emotion value. The moving direction of
an individual i is influenced by panic level, safety evacuation
direction, and other neighboring panicked individuals.

Individual i can perceive the hazard indirectly through the
surrounding panicked individuals. The individual i moves in
the direction of Vi (t), as shown in Equation 28. V old

i (t) is
the moving direction of the individual i at the last moment
when he is not panicked. The more panicked the individual
is, the more easily he moves with other neighboring panicked
individuals. Nonetheless, if the individual i is not panicked,
he or she still moves in his or her original direction.

Vi (t) = (1 − E) · V old
i (t) + E · V round

i (t) (28)

2) Moving Speed: In a panic situation, the speed of an
individual i is expressed by the following equation [10]:

vdesired
i = (1 − E) · vNOR

i + E · vMAX
i (29)

where vdesired
i is the speed considering only the emotion

factor, and 0 ≤ E ≤ 1. The speed of an individual in the
normal case (the panic value is equal to zero) is vNOR

i , and the
maximal speed is vMAX

i . The more panicked an individual is,
the faster his or her speed.

However, an individual is limited by his or her own physical
strength consumption. In some cases, the moving speed of an
individual cannot reach the desired speed due to the maximum
limit dictated by current physical strength consumption. The
actual speed cannot exceed the maximal speed vp.

vactual
i = min

�
vdesired

i , vp
�

(30)

The dependence of the decay rate [17] and maximal speed
on physical strength consumption is presented in Table II.

The actual speed can be calculated using Equation 31.

vactual
i = min

�
(1 − E) · vNOR

i + E · vMAX
i , vMAX

i · ξ� (31)

IV. EXPERIMENTS

Our proposed algorithm is used to simulate crowd move-
ments in emergency scenarios and we demonstrate the benefits
of it. There are one kind of direct real data and two kinds of

indirect inferable data in this paper: physical data, psycholog-
ical data and physiological data. In detail, these data refer to
the movement trajectory, panic emotion, and physical strength
consumption of individuals, respectively. These three kinds
of data are all extracted or inferred from real videos. Some
videos are chosen from public UMN dataset [67] (Figures 4).
The dataset comprises videos of 11 different scenarios of an
escape event in 3 different indoor and outdoor scenes. In
addition, real-world videos (Figures 7, 9, and 10) are chosen
from real emergency incidents. We annotate the trajectories of
all the individuals of these videos using the annotation tool
in [68]. The panic levels and physical strength consumption
of the crowd in real-world videos can be inferred indirectly
from physical movements. We assign initial movement states,
initial panic levels, and physical strength consumption of all
the individuals in real scenes to our model. According to these
initial conditions, our model can predict the trajectories of
individuals and we are able to compare them with the ground
truth. Evaluation results show that the simulated moving trends
of our model are closer to those in the real-world videos than
the results of other models. We also use our proposed model
in different virtual scenarios, such as a subway station and a
crosswalk. These scenes have dense crowds and the probability
of hazard occurrence in these scenarios is high. We simulate
the crowd movements in these scenarios after one hazard.

We have implemented the proposed model using Visual
C++ to simulate crowd movements in emergencies. The
Unity3D game engine has been used to visualize our crowd
simulation results. The computing platform corresponds a PC
with a quadcore 2.50 GHz CPU,16 GB memory, and an
Nvidia GeForce GTX 1080 Ti graphics card. The parameter
values in different scenarios used in the simulation are listed
in Table III. The mass of each individual is set to 60kg on
average and the radius to 0.3m (in Table III) [29]. Each factor
of the vector < O, C, E, A, N > is randomly distributed
with a Gaussian distribution N(0, 0.25) [7]. In most scenes,
the dose values di are randomly distributed with a Gaussian
distribution N(0.1, 0.01) [7]. In the Neto model, 
 = 0.5,
δ = 0.5, η = 0.5, and β = 1 [44]. The parameter values are
obtained by comparing the simulations with real-world videos.
A combination of genetic and greedy strategies are used to
sample plausible parameters for our model, maximizing the
match of the simulation algorithm to real data [65].

A. Comparisons

To validate our approach, we compare the simulation results
obtained by different methods with real-world crowd evacu-
ation videos. The trend in the simulation results obtained by
our model is that they are more similar to real-world videos
than results from other approaches.

1) Comparisons With Scenarios From Public UMN Dataset:
Comparisons between real scenes (chosen from the public

HR(t) =
�

87.3306 + 1.5850ΔP (t) − 0.3151weight− 0.3197age gender = 1
45.6221 + 2.2361ΔP (t) + 0.2824weight− 0.1655age gender = 0 (21)
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TABLE III

LIST OF PARAMETER VALUES USED IN OUR SIMULATIONS

Fig. 4. Comparisons between real scenes and simulation results by different models: (a) and (e) are real-world videos, (b) and (f) are simulated by our
model, (c) and (g) are simulated by the Durupinar model, (d) and (h) are simulated by the Neto model. Each row represents one scene. (a) The red ellipse
is Individual No. 1 and the yellow one is Individual No. 2. Individual No. 1 gets closer to Individual No. 2. (b) As the speed is influenced by physical
strength consumption, simulating the situation where Individual No. 1 gets closer to Individual No. 2 is easier using our model. In (g) and (h), the simulation
trajectories of different individuals in the red circle by the Durupinar and Neto models are similar and individuals easily get together, which is different from
the real-world video.

UMN dataset [67]) and the corresponding simulation results
are presented in Figure 4. We take two different real-world
scenarios as examples, and detailed results can be seen in the
supplementary video. Our model is compared with two other
representative emotion models: the Durupinar model [7] and
the Neto model [44].

In the Grass scenario, Individual No. 1 moves faster than
Individual No. 2, and Individual No. 1 moves closer to
Individual No. 2 (Figure 4a). The simulation result obtained
by our model in the Grass scenario is more realistic than those

obtained by the Durupinar and Neto models because the speed
is influenced by physical strength consumption in our model. If
an individual has consumed more physical strength than other
individuals, his moving speed decreases and other individuals
move faster than he does. Thus, simulating the situation is
easier when one individual gets closer to another individual.

In the Room scenario, some individuals are marked with
red circles in the simulation results obtained by the Durupinar
and Neto models (Figures 4g and 4h). The moving directions
and moving speeds of these individuals are almost the same.
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TABLE IV

ENTROPY METRIC AND SPATIAL DISTANCE FOR DIFFERENT
SIMULATION ALGORITHMS ON SCENARIOS OF GRASS AND

ROOM. A LOWER VALUE IMPLIES HIGHER SIMILARITY

WITH RESPECT TO THE REAL-WORLD

CROWD VIDEOS

The simulation result by our model conforms to the real-world
video. This is because the emotion mechanism of our model
changes the moving directions of individuals and drives them
to move away from the hazard. Meanwhile, the physical
strength consumption influences the individual’s speed.

We use the entropy metric [69] to evaluate the trajectories of
different simulation algorithms on different scenarios. Entropy
metric is used to measure the similarity between real-world
data and simulation results. A lower value of the entropy
metric means a smaller error and better similarity with the
real-world data. Its calculation method is described as follows.
The real-world crowd state is denoted as (x1 . . . xt), which
includes the positions of all the agents at different timesteps.
(y1 . . . yt) is the corresponding calculation result of our model.
M is the estimated error variance.

M = 1
t·n ·

t

k=0

n

j=1

(xk[j] − yk[j])(xk[j] − yk[j])T (32)

where t is the total number of timesteps and n is the number
of agents in the scenario. The Entropy metric is given by:

e(μ) =
1
2
n log((2πe)d det(M)) (33)

where d is the dimension of the state of a single agent. In this
paper, we mainly discuss the 2D locations of agents. So, d = 2
in this paper.

For each scenario, a user study is performed. There
are 39 participants (51.28% female, 66.67% in the age
group of 20-30) in this study and participants are asked
to compare the movement states in the original video clips
with the movement states in the crowd simulation results
(Figure 5). These similarity scores are computed from the user
studies. A score of 1 indicates most dissimilar and a score
of 5 indicates most similar movement. Higher values indicate
greater similarity. We also calculate average spatial distance
between the simulated results and the ground truth over all the
timesteps and individuals. Tables IV and Figure 5 show that
the simulated moving trends of our model are closer to those
in the real-world videos than the results of other models. A
rational approach is to combine physical strength consumption
and panic to determine the movement of each individual.

2) Comparisons With Real-World Emergency Scenarios: In
this subsection, we compare the simulation results obtained
by different methods with real-world videos, particularly real
emergency incidents.

Fig. 5. Comparison of similarity scores for movement states (higher values
indicate greater similarity). We compare the movement states in the original
videos with those in crowd simulation results achieved by different algorithms.

Fig. 6. Crowd simulation results generated by different models in the
Square scenario at the 98th frame: (a) Real-world scenario, (b) Neto model,
(c) Neto-PS model, (d) Durupinar model, (e) Durupinar-PS model, and (f) our
model.

The Durupinar and Neto models don’t consider physical
strength consumption. The mechanism of physical strength
consumption in this paper is integrated into these two models,
which are denoted as Durupinar-PS and Neto-PS. In the
real-world Square scenario, we compare our simulation results
with the Durupinar, Durupinar-PS, Neto, and Neto-PS models
(Figure 6). We also compare our results in a real-world
emergency scenario, which is related to terrorist attacks on
Kenya’s shopping mall (Figure 7). More details can be seen
in the supplementary video. Figure 8 shows the average
speeds of all the individuals at different timesteps for these
different models. We find that the simulation results of the
Durupinar-PS and Neto-PS are closer to the movements
and behaviors in the real videos, than those of the original
Durupinar and Neto models. These comparisons validate that
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Fig. 7. Crowd simulation results by different models in the sce-
nario of terrorist attacks on Kenya’s shopping mall at the 214th frame:
(a) Real-world scenario, (b) Neto model, (c) Neto-PS model, (d) Durupinar
model, (e) Durupinar-PS model, and (f) our model.

our proposed mechanism of physical strength consumption
(physical strength consumption calculation and the effect of
physical strength consumption on emotion) can enhance the
performance of existing crowd simulation models that are only
based on emotion. Our model describes emotional changes in
a comprehensive manner. Based on the James-Lange theory,
we describe three stages individual emotions undergo (Section
3.3.2) and combine emotional contagion with the effect of
physical strength consumption on panic. The comparisons with
Durupinar-PS and Neto-PS models show that our model inte-
grating emotion and physical strength consumption is better
than other emotion-based crowd simulation models.

One piece of real-world video including both crowd and
vehicles is chosen to simulate by our method. In this real
scenario, we compare our simulation result with the Durupinar,
Durupinar-PS, Neto, and Neto-PS models. In this paper,
we mainly focus on emotions of crowds, especially panic
emotions in emergencies. In particular, the drivers can express
their panic through vehicles. Moreover, in emergencies, the
drivers may not follow the traffic rules. In emergency scenar-
ios, some behaviors of vehicles, such as sudden acceleration,
intuitively demonstrate the drivers’ panic. These behaviors can
also cause the surrounding pedestrians to be panicked and
thus act indirectly as emotional contagions. In common cases,
when pedestrians are walking in front of vehicles, vehicles
will slow down, change direction, or stop to avoid pedestrians.
Vehicles and surrounding pedestrians influence each other in
such traffic. Based on above analysis, in our model we treat
vehicles as one kind of special large-sized agents with full
physical strength and high moving speed. The radius of the
vehicles is set to 3. The comparisons show that our simulation
result conforms to the real-world video, and can enhance the

Fig. 8. The average speeds of all the individuals at different timesteps for
these different models in (a) the Square scenario and (b) the scenario of
terrorist attacks on Kenya’s shopping mall. The average speeds of our model
at different timesteps are closer to the real scene than those of other models.
The average speeds of the Neto-PS and Durupinar-PS models at different
timesteps are closer to the real-world scenarios, than those of the original
Neto and Durupinar models.

performance of existing crowd simulations under the complex
scenarios including both crowd and vehicles. More details can
be seen in the supplementary video.

Table V shows the values of entropy metric and spatial
distance for the above three scenarios. Comparing with the
Durupinar, Durupinar-PS, Neto, Neto-PS models, our model
can generated more similar simulation results with real-world
scenarios.

We also take two real emergency incidents as examples to
verify our proposed crowd simulation method. Our crowd sim-
ulation results of the scene after the mobile phone explosion
on the subway in the Shanghai Metro Line 8 are presented
in Figures 10a and 10b. Crowd simulation by our model
of the shooting at the British Parliament building on March
22, 2017 is presented in Figures 10c and 10d. We show the
spread of panic in both scenarios. The color of the cylinders
represents the emotional intensity of the individuals. These two
real-world videos have poor quality. Even using manual meth-
ods, it is still difficult to track the positions of people in each
frame accurately. Due to these objective limitations, we cannot
measure the similarity between the simulated trajectories and
the ground truth for these scenes in a direct way. Therefore,
we use the dominant path and entropy metric to quantitively
evaluate our simulation results. The dominant path is defined
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Fig. 9. Crowd simulation results by different models in the scenario including
both crowd and vehicles at the 88th frame: (a) Real-world scenario, (b) Neto
model, (c) Neto-PS model, (d) Durupinar model, (e) Durupinar-PS model,
and (f) our model.

TABLE V

ENTROPY METRIC AND SPATIAL DISTANCE FOR DIFFERENT

SIMULATION ALGORITHMS ON SCENARIOS OF SQUARE, CROWD
AND VEHICLES, AND TERRORIST ATTACKS ON SHOPPING MALL.

A LOWER VALUE IMPLIES HIGHER SIMILARITY WITH

RESPECT TO THE REAL-WORLD DATA

based on collectiveness of crowd movements and it can be
treated as the movement trend of the crowd [70], [71]. We also
calculate the spatial distance between the simulated trajectories
and the ground truth for the scenarios. From Table VI and
Figure 11, we can see that both the overall moving trend and
the process of emotional contagion are similar to what is found
in the recorded real-world crowd video clips.

TABLE VI

ENTROPY METRIC AND SPATIAL DISTANCE FOR DIFFERENT SIMULATION
ALGORITHMS ON SCENARIOS OF PHONE EXPLOSION AND

SHOOTING AT BRITISH PARLIAMENT

Fig. 10. Comparisons between real-world videos and simulation results by
our approach. (a) The mobile phone explosion incident on the subway in the
Shanghai Metro Line 8; (c) the shooting incident at the British Parliament
building on March 22, 2017; (b,d) our corresponding simulation results.

Fig. 11. Comparison of similarity scores for movement states and the process
of emotional contagion (higher values indicate greater similarity). A user study
is performed and participants are asked to compare the movement states and
processes of emotional contagion in the original videos with those in crowd
simulation results achieved by different algorithms.

3) Comparisons in Virtual Scenarios: In the virtual sce-
nario, we compare our simulation results with those of the
Durupinar et al. [7], Neto et al. [44], and Ours-Neto models.
The parameter values we used are described in Table III. In
Figure 12a (the simulation result by the Durupinar model),
the speeds of individuals are variable and their locations
are scattered. Because of different thresholds and personality
mechanisms, the Durupinar model can simulate heterogeneous
crowd behaviors. However, there are too many individuals
who are not affected by the panicked crowd and this result
is unreasonable. In Figure 12b, individuals move much slower
than the individuals in the simulation results by other models.
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Fig. 12. Crowd simulation results by different models in the virtual scenario
at the 1000th frame: (a) Durupinar model, (b) Neto model, (c) Ours-Neto
model, and (d) our model.

Fig. 13. Crowd simulation results at a subway station: (a) the higher level
of the subway station, (b) the lower level of the subway station. After the
hazard occurs, the emotional contagion in our model begins to work. Although
the direct impact of the hazard is limited, the hazardous area grows through
emotional contagion among individuals and the number of individuals who
run away from the hazard increases.

The reason is that the emotion calculated by the Neto model is
much smaller. Moreover, the individual movement is too regu-
lar, which is unsuitable for emergency situations. In Figure 12c
(simulation result by our model with the same emotional
contagion method as the Neto model) and Figure 12d (our
simulation result), most of the individuals are affected by the
hazard and run away from it. Because of physical strength
consumption and personality factors, the speeds of individuals
in our simulation result are more variable than those shown
in the Ours-Neto model. Therefore, the simulation result by
our model is more suitable for emergency situations than other
models.

B. Application of Our Model in Various Virtual Scenarios

Our model can be applied in different virtual scenarios.
Subway stations and crosswalks are crowded and the prob-
ability of hazard occurrence in these scenarios is very high.

Fig. 14. Crowd simulation result at a crosswalk. At the lower left corner,
a car explodes. Then individuals run away from the hazard.

Fig. 15. Panic heat maps of the virtual scene: (a) heat map at the 13th frame,
(b) heat map at the 29th frame, (c) heat map at the 57th frame, (d) heat map
at the 120th frame. The red area is more panicked than the green area in the
heat map. The deeper the color, the more panicked the area.

Fig. 16. The heat maps of panic at the 185th frame of the crosswalk scenario:
(a) heat map of the crowd simulation generated by our model and (b) heat
map of the crowd simulation generated using the Durupinar model. The red
area is more panicked than the green area in the heat map. The deeper the
color, the more panicked the area. We highlight the same area of the two
simulation results. The individuals in our model simulation result are more
panicked than the individuals in the Durupinar model simulation results.

We simulate a hazard occurring in these scenarios and three
examples are shown. Figure 13(a) shows crowd simulation at
the higher level of the subway station. Figure 13(b) shows
crowd simulation at the lower level of the subway station.
Figure 14 shows crowd simulation at a crosswalk. We show
each step of the process: hazard occurring, individuals running
away from the hazard, emotional contagion spreading, and
moving speed attenuating. More details can be seen in the
supplementary video. Our simulation results provide informa-
tion about decision-making to deal with emergency situations.

The heat maps of panic in the virtual scene are presented
in Figure 15. Although the direct impact of the hazard is
limited, the panic area grows through the emotional contagion
mechanism in our model. When individuals are far from the
hazard, panic attenuates. As accidents may happen randomly
in public places, we can take preventive action in advance and
reduce loss by accurately predicting the panic area.
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The panic heat maps generated from crowd simulations
in the crosswalk scenario by our model and those generated
using the Durupinar model are presented in Figure 16. The
individuals in the simulation results by our model are more
panicked than those in the Durupinar model simulation results.
The intensity of the panic calculated by the Durupinar model
is lower than that calculated by our model. The reason is
that our model considers not only emotional contagion among
individuals, but also the impact of physical strength consump-
tion on panic levels. Our model represents a comprehensive
description of individual panic levels and is more conducive
to the spread of panic than the Durupinar model. Therefore,
the simulation results by our model are more reasonable for
emergency situations.

V. CONCLUSION AND LIMITATIONS

In contrast to traditional emotion-based crowd simulation
models, we integrate physical strength consumption into our
model. We not only present a panic level calculation, but
also delineate the effect of physical strength consumption
on panic. Finally, both physical strength consumption and
panic determine the movement of each individual. Our pro-
posed model is verified by simulations, and it is compared
with real-world videos and previous approaches. Results have
shown that our proposed model can reliably generate realistic
group behaviors. It can also predict the changes of physical
strength consumption and panic of a crowd in an emergency
situation.

However, our model has several limitations. Although our
model can generate realistic crowd movements, the panic
levels and physical strength consumption of the crowd in
an emergency scene cannot be obtained directly. Our model
can only infer them during the simulation. Thus, the initial
state of our model is difficult to determine and it is usually
time consuming to do so. In the future, we plan to setup
some special crowd scenarios artificially. In these scenarios,
people will be required to wear accurate sensors to collect their
oxygen consumption, heart rate, and so on directly. Through
measurement and calculation, we can get more real and
reliable values of emotion and physical strength consumption
during the crowd movement. Although the size of crowd will
not be very large in such an experimental scenario, it can
still provide data support and objective principles for crowd
simulation. Based on these ground truth samples, we can
extend them to a larger crowd simulation scene. Furthermore,
at present, our model mainly focuses on emergency scenarios.
In the future, we want to extend our model to a variety
of general situations. We also plan to develop a coupled
framework for crowd and traffic flow to generate realistic
mixed traffic simulations and model the influence of these two
flows on each other.
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