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struments augmented onto the surgical field is sent to the operating room.
Results: The proposed framework is suitable to be integrated with laparoscopic as
well as robotic surgeries. It takes on average 1.56 s to send information from the
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network.
Conclusions: The work demonstrates a tele-mentoring framework that enables a
specialist surgeon to mentor an operating surgeon during a minimally invasive

surgery.

KEYWORDS
augmented reality, minimally invasive surgeries, tele-mentoring, telemedicine

1 | INTRODUCTION room setup of minimally invasive surgery (MIS), the surgeon oper-
ates on a patient using surgical instruments inserted through small
As surgery has evolved from open to minimally invasive, the incisions. These surgical instruments can either be manually oper-

framework of tele-mentoring technologies has largely remained the ated (such as laparoscopic instruments) or robotically actuated.

same.' 2 It still involves basic exchange of audio and annotated video
messages, and lacks augmentation of information pertaining to

surgical tool motion and tool-tissue interaction.** In an operating

Along with instruments, a scope (camera) is also inserted inside the
patient's body to visualise the interaction of surgical instruments'

tooltips with the tissue. In the case of manual MIS, the surgeon
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directly controls the movements of the tooltips, whereas in the case
of robotic MIS, the surgeon indirectly controls the movement of
robotically actuated tooltips via an interface on the console. In both
cases of MIS, the surgical field exhibits the complex interaction of
highly articulated surgical instrument tooltips with the tissue to be
operated. With the current existing tele-mentoring technologies, the
expert surgeon can assist the operating surgeon by providing guid-
ance information in the form of either markings or hand gestures.
However, this information is limited because of its two-dimensional
and static nature. As a result, it is difficult for the operating surgeon
to visualise, comprehend and perform the required surgical tooltip
movements. The notion of overlaying minimally invasive surgical
instruments motion onto the surgical field is advantageous in men-
toring scenarios. For example, augmented reality tele-mentoring
(ART) platform proposed by Vera et al.® showed faster skill acqui-
sition in laparoscopic suturing and knot-tying task. Preliminary
studies conducted by Jarc et al. (using the ghost tool platform with
da Vinci surgical system) demonstrated effectiveness for both
trainees and proctors during robot-assisted dry-lab training exer-
cises,” and robot-assisted tissue dissection and suturing tasks on a
live porcine model.2

919 and academia,® %2027 tele-mentoring solu-

In both industry
tions have been developed. These solutions facilitate transfer of in-
formation from a specialist surgeon to the operating surgeon via a
communication channel and enables tele-mentoring during different
types of surgeries. All these solutions include basic capabilities to
share the live video feed of the surgical view over a network, provide
verbal guidance and perform screen markings (2D screen annota-
tions).”?” Examples of these commercially available technologies
includes VISITOR1 from KARL STORZ’'? Connect™-Intuitive

12527 and RP Vantage from InTouch.*'” Some of these tele-

Surgica
mentoring technologies (e.g., research prototypes, such as STAR from
Purdue University?°22 and VIPAR from University of Alabama,?®2°
and commercial systems from HELPlightning® and Proximie'?) also
display augmented hands gestures of the remote surgeon. It uses
computer vision and image segmentation techniques to segment the
operator's hand (captured on a video through a web-camera) and
overlays it onto the surgical view. This allows the remote surgeon to
virtually put his/her hand in the surgical view and provide assistance
to point out different anatomical structures, incision positions and
surgical instrument placements. Augmented ghost tools have also
been proposed for robotic surgery.”® Though dynamic in nature, it
renders only the tooltips without complete body of the surgical in-
strument. Apart from visualisation, this also limits the realism of
augmented surgical tools' motion (as the constraints imposed by the
incision points and the tools' kinematic are not taken into consider-
ation). Second, the user interfaces are not applicable to laparoscopic
instruments used in manual MIS. The ART platform® requires a
similar surgical setup (with same configuration of incision points and
surgical instruments) at both the remote and local site, thus limiting
its application to laparoscopic simulated training scenarios only.
Although the aforementioned solutions are sufficient for open sur-

geries, and in some cases for MIS, a more sophisticated mechanism is
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required for MIS (either manual-laparoscopic or robotic), which in-
volves complex interaction between the highly articulated surgical
instrument tooltips and tissues in the surgical field. During MIS, by
just analysing the hand gestures or markings provided by remote
surgeon, it is difficult for the operating surgeon to visualise,
comprehend and perform the required tooltip movements. The pro-
posed tele-mentoring framework aims to overcome these limitations
of existing solutions®2” by transforming hand gestures of the remote
surgeon into virtual surgical instrument movements and super-
imposing them on the local surgeon's view of the surgical field.

The objective of this work is to develop a framework that
would facilitate tele-mentoring between an operating surgeon and a
remote surgeon for MISs. An architecture of the tele-mentoring
framework is proposed, and the hardware/software modules
required for implementation of the framework are described. The
framework is assessed for simulated laparoscopic and robotic sur-
gical scenarios. The work also analyzes plurality of parameters to
assess the functioning of the tele-mentoring framework over a local

area network.

2 | MATERIALS AND METHODS

2.1 | Architecture of the tele-mentoring framework
The architecture (Figure 1) of the tele-mentoring framework is
implemented as a distributed system with one setup inside the
operating room and another at the remote location. The subsequent
two sections describe each setup in detail.

2.1.1 | Operating room setup

The operating room setup of the proposed tele-mentoring framework
consists of an operating room workstation, visualisation screens, an
optical tracking system, tracking frames to be used with optical
tracking system, a scope system, an input device (mouse and
keyboard) and a network router (as illustrated in Figure 1). The
operating room workstation consists of six software modules (as
illustrated in Figure 2) interfacing with the hardware units, process-
ing the data and continuously communicating with each other. The

functionality of each module is described as follows:

(i) Core Processing Module: The core processing module acts as a
central core for processing data at the operating room work-
station. The module receives data from the graphical user
interface (GUI) module, video module, tracking module and
network module and sends data to the graphical rendering
module and network module.

(ii) Video Module: The video module receives video stream of the
surgical field from the scope system, processes it frame-by-
frame and sends the video frames to the core processing mod-

ule. A video frame at time instant ‘t’ is denoted by Fsyrgicaiview(t)-
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FIGURE 1 Architecture of the proposed
tele-mentoring system illustrating the flow of
information among the hardware components
physically located in the operating room and at
a remote location. GUI, graphical user interface

FIGURE 2 Schematic representation of the
flow and processing of information on the
software modules of the operating room
workstation. GUI, graphical user interface
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(iii) Tracking Module: Tracking frames (with unique arrangement of
retroreflective markers) are attached to the scope and tro-
cars. The optical tracking systems continuously sense the
poses (position and orientation) of the tracking frames and
send the tracking data stream to the tracking module. The
tracking module processes the stream and computes the pose
of the scope camera and the positions of the incision points

(shown in Figure 3A). The scope camera's pose at time instant

‘t" is represented by a 4 x 4 homogenous transformation
Mscopecamera(t). Whereas, the positions of the incision points
are stored in a tuple Pjcsions(t), Where each element repre-
sents an incision point Pjncisionslil(t) (where i = number of in-
cisions). Mscopecameralt) and  Pincisions(t) are measured with
respect to the coordinate system of the optical tracking sys-
tem inside the operating room and are fed to the core pro-

cessing module.
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FIGURE 3 Pictorial representation of (A) an incision point and pose of a scope camera frame and (B) instrument state

(iv)

(vi)

GUI Module: Graphical User Interface is used to alter the vis-
ualisation setting and to set the tracking parameters for the
tracking module. It allows the user to add/delete incision
points, set deflection angle for angulated scopes, toggle visu-
alisation of augmented instruments and display instruments
selected by remote surgeon and status of the operating room
workstation.

Network Module: The video frame of the surgical view, pose of
the scope camera and coordinates of the incisions points
together define the surgical state Ssyrgicaistate(t) = [Fsurgicaview(t),
Mscopecameralt), Pincisions(t)] at time instant ‘t. The surgical state
Ssurgicalstate(t) is sent by the core processing module to the
network module, which further passes it as a network data
stream to the remote location's workstation. The network
module also receives the poses of augmented tooltips Mrooftips(t)
and instrument state Snstrument(t) from the remote workstation.
Mroottips(t) is represented by a tuple [Mrooitipsi11(t), Moottips(2(t)]
corresponding to left and right tool motion. Mrogtipi(t) repre-
sents a coordinate frame in form of 4 x 4 homogenous trans-
formation matrix attached to the tooltip of the augmented
surgical instrument. The transformation of Mrooippi(t) causes
the augmented surgical instrument to move in the virtual space.
The instrument state Sjstrument(t) stores (a) surgical instrument
types used in the surgery, (b) labels of the incision point and (c)
mapping between surgical instrument type to an incision point
label and left- or right-hand interface to an incision point label
(as shown in Figure 3B). The mapping inside Sinstrument(t) data is
used by the graphical rendering module during rendering.
Graphical Rendering Module: The module renders the information
fetched from core processing module onto the visualisation
screen. The data comprising of Ssurgicaistate(t), Mroottips(t) and
Sinstument(t) is rendered in two windows displaying view of the
surgical setup (Figure 4A) and augmented view of the surgical
field (Figure 4B). The setup view renders pose of tracking
frames, pose of scope camera, location of the incision points
(along with labels), the frustum of the surgical view (along with
the updated surgical view frame) and pose of the augmented

tools selected. The augmented view displays the surgical view

Fsurgicaview(t) in the complete window along with augmented

tools when selected by the remote surgeon.

2.1.2 | Remote location setup

The remote location setup of the tele-mentoring framework consists
of a remote location workstation, visualisation screens, a user inter-
face, an input device (mouse and keyboard) and a network router (as
shown in Figure 1). The remote location workstation consists of five
software modules (as shown in Figure 5) interfacing with the hardware
units, processing the data and continuously communicating with each

other. The functionality of each module is described as follows:

(i) Core processing Module: The core processing module acts as a
central core for processing data at the remote location work-
station. The module receives data from the GUI module, user
interface module and network module and sends data to
graphical rendering module and network module.

(ii) User Interface Module: The module fetches the motion data
stream from the user interfaces, processes it and converts it into
the poses of augmented tooltips Mrootips(t). The transformation
of Mrooitips(t) causes the augmented surgical instrument to move
in the rendered view of the surgical setup (Figure 4A) and
augmented view of the surgical field (Figure 4B).

(iii) Graphical Rendering Module: Similar to the functionality of the
module in operating room, the module at remote location
fetches the information from core processing module and ren-
ders it on visualisation screen.

(iv) GUI Module: Graphical User Interface is used to establish a
connection with operating room workstation, alter the visual-
isation setting and set the instrument state. It allows the user to
connect to the operating room workstation by entering the IP
address, map virtual tools to incision points for left/right-hand
tool movements and display the status of the operating room
workstation.

(v) Network Module: The network module receives the network data

stream from the operating room workstation, processes it and
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FIGURE 4 Windows rendered by the graphical rendering module displaying (A) view of the surgical setup and (B) augmented view of the

surgical field

FIGURE 5 Schematic representation of the
flow and processing of information by the

software modules of the remote location 4
workstation. GUI, graphical user interface
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extracts Ssyrgicaistate(t) from it. In parallel, the module also sends
poses of augmented tooltips Mrooiips(t) and instrument state

Sinstrument(t) to the operating room workstation.

2.2 | Workflow of the tele-mentoring framework
Before the start of the surgery, the operating surgeon starts the
workstation located inside the operating room. The mentor surgeon
starts the remote location workstation. The mentor surgeon sends
request to connect to operating room workstation. The request is
then approved by the operating surgeon and connection is estab-
lished between operating room and remote location workstations.
The operating surgeon then sets the instrument state where

the list of surgical instruments to be used in the surgery is added
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to the operating room workstation. Second, the tracking frames can
be attached to the trocars (cannulas), registered with optical
tracking system and inserted inside the patient. In this work, we
used a tracking tool to select the incision points. For every trocar
inserted inside the patient, a label is assigned to the incision point
by the operating surgeon and the instrument state Sinstrument(t) is
updated on the operating room workstation. The instrument state
Sinstrument(t) is then shared by the operating room workstation with
the remote location workstation. Similarly, the operating surgeon
also sets the scope parameters, where a tracking frame is attached
to the scope, registered with the optical tracking system and
inserted inside the patient. The operating surgeon sets the scope
parameters comprising of scope's field of view, scope's angulation
and rigid transformation between pose of the scope camera and

the tracking frame attached to the scope. The scope parameters
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are also shared by the operating room workstation with the
remote location workstation.

Once the instrument state and scope parameters have been set,
the operating surgeon observes the operating field on the visual-
isation screen and starts performing the surgery. The mentor also
observes the surgery as it is performed by the operating surgeon on
the visualisation screen of the remote location workstation. During
the surgery if mentoring is required, the operating surgeon requests
for mentoring. When the mentoring request is received by the
mentor, the mentor checks if mapping is required (i.e., (i) surgical
instrument type to an incision point label and (ii) left or right user
interface to an incision point label) and updates the instrument state.
The mentor interacts with the user interface which in turn updates
the tooltip poses of the rendered augmented tools on both work-
stations. This motion of the augmented surgical instruments over the
surgical field provides mentoring in the form of visual cues to the
operating surgeon. When the surgery is completed, both the oper-
ating room and remote location workstations are stopped, and

connection is released.

2.3 | Implementation details of the tele-mentoring
framework

The framework was implemented in C++. The graphical rendering was
performed using VTK?® whereas the GUI was implemented using Qt.2?
The threaded implementation of the modules was performed using
Boost.3° Interfacing with user interfaces (connected to remote loca-
tion workstation) was achieved using openHaptics®! and 3DXWare3?
(version 10.7.1) libraries. At the operating room's workstation, an
Real-Time Messaging Protocol (RTMP) server was used to transfer
surgical view video frames Fsygicaiview(t), Whereas Qt sockets were
used to transfer poses of the scope camera Mscopecameralt) and posi-
tions of incision points Pjncisions(t). At the remote location workstation,
Qt sockets were used for sending the poses of augmented tooltips
Moottips(t) and instrument state Synstrument(t). FFMPEG®® was used for
video encoding/decoding. NatNet SDK®* allowed the streaming of
motion capture data from a tracking server Motive.*®

The workstations at the operating room and the remote location
were realised on a standard PC (Intel 2.4 GHz Processor and 64 GB
RAM) with an integrated graphics processing unit (Intel UHD
Graphics 630 GPU). The optical tracking system used in the operating
room was implemented on V120: Trio OptiTrack motion capture
system by NaturalPoint, Inc.3¢ The tracking data was processed by

5 which ran on the

OptiTrack's software platform called Motive,®
operating room workstation. To fetch surgical instrument tooltip
motion data stream from the remote user, two user interfaces were
used: (a) Touch™ device by 3D Systems to simulate motion of ro-
botic tooltips with 6 degrees-of-freedom and (b) SpaceMouse® by
3DConnexion to simulate motion of laparoscopic tooltips with 4
degrees-of-freedom. For communication between the workstations
over a local area network, a mobile network router (Nighthawk M1

by NETGAR) was used.
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3 | RESULTS

3.1 | Assessment of tele-mentoring framework on a
simulated surgical setup

The implemented tele-mentoring framework (architecture depicted
in Figure 1) was tested on a surgical phantom for a minimally
invasive manual surgery (Figure 6) as well as robotic surgery
(Figure 7). The hemispherical surgical phantom with five incision
points simulated pneumoperitoneum during surgery and a silica gel
structure inside the phantom mimic the surgical field when
observed using a scope.

In manual surgical setup (Figure 6A), Karl Storz's camera head
(Image 1 HD), light source (Model # 201331 20) and video processor
(Model #222010 20) were used. The surgical instruments comprised
of angulated laparoscope (30-degree, 8 mm, Karl Storz) and laparo-
scopic instruments (Richard Wolf Laparoscopic Needle Holder) as
shown in Figure 6B. An adaptor (Magewell USB Capture HDMI 4K
Plus) converted the serial digital interface video output from the
video processor to a USB-C port of the operating room workstation.
At the remote location workstation, SpaceMouse® devices
(3DConnexion) were used as the user-interface to control virtual
models of EndoWrist instrument tooltips (Figure 6C).

The robotic surgical setup of our tele-mentoring framework was
tested on Da Vinci Xi surgical robot-Intuitive Surgical Inc.
(Figure 7A). The output video stream from the vision cart was con-
nected to the operating room workstation of the tele-mentoring
framework using an adaptor (Magewell USB Capture HDMI 4K
Plus). The augmented view from the operating room workstation of
the tele-mentoring framework was rendered in tile-pro on the sur-
geon's console mode side-by-side with the view from the scope
(Figure 7B). The surgical instruments comprised of 30-degree angu-
lated scope and EndoWrist instruments (470006 large needle
drivers) as shown in Figure 7C. At the remote location workstation of
the tele-mentoring framework, Touch™ devices (3D Systems) were
used as user-interface to control virtual models of EndoWrist in-
strument (Figure 7D).

The view of the surgical setup (schematically depicted in
Figure 4A) is shown for manual and robotic surgery in Figure 8A,B.
Similarly, the augmented view (schematically depicted in Figure 4B)
for manual and robotic surgery is shown in Figures 6A and 7B,
respectively. The motion of the virtual tools performed by the oper-
ator at the remote location workstation was observed by the operator

inside the operating room workstation on the augmented view.

3.2 | Evaluation of the tele-mentoring framework
over local area network

To evaluate the performance of the implemented tele-mentoring
framework, the system was tested for different time periods (vary-
ing for 8, 10 and 12 min) multiple times (three trials per time period).

The clocks on the remote and operating room workstations were
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FIGURE 6 Tele-mentoring framework tested for a minimally invasive manual (laparoscopic) surgical setup. (A) Setup of the tele-mentoring
framework at the operation room; (B) Surgical phantom used to mimic incisions and surgical field; (C) Setup of the tele-mentoring framework

at the remote location

synchronised from a common server (windows time service). The
data sent and received over the network at both ends was logged and
processed to evaluate the functioning of the tele-mentoring frame-
work over the network.

The surgical state Ssyrgicaistate(t), comprising of incision points
Pincisions(t), scope pose Mscopecameralt) and surgical view Fsyrgicaview(t)
was sent over the network from the operating room to the remote
location workstation. In the current implementation of the tele-
mentoring framework, the position of the incision points Pj.cisions(t)
was marked using a tracking tool. The position remained stationary
during the study (as the surgical phantom was not moved). The pose
of the scope's camera Mscopecameralt) Was continuously sent over the
network from the operating room to the remote location. Figure 9
presents Mscopecameralt) decomposed into position (translations along
X, Y and Z axis) and orientation (rotations along X, Y and Z axis)

measured with respect to optical tracking system.

An average delay of 1.560 + 0.426 s was observed while
transferring Ssurgicaistate(t) from the operating room to the remote
location workstation. The delay was computed by taking difference
of the logged timestamps for the received and send Ssyrgicaistate(t)
at the remote and operating room workstations, respectively.
Figure 10A illustrates the variation in delays between the same
surgical state Ssrgicaistate(t) S€nt and received for one such trial. To
correlate Fsyrgicalview(t) at sender and receiver ends, a timestamp
was written on the image of the surgical view frame Fsyrgicaiviewl(t)
at the sender's end and extracted at receiver's end. No drop of
Ssurgicaistate(t) packets was observed.

Before sending the Fsyrgicaiview(t) Over the network, the video
stream is encoded by the network module in the operating room
workstation and then decoded by the network module of the remote
location workstation. The video image quality metrics were used to

compare the quality of sent frames before encoding and received
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FIGURE 8 View of the surgical setup schematically depicted in Figure 4A for (A) manual surgical setup (Figure 6) and (B) robotic surgical

setup (Figure 7)

frames after decoding.3”*® The computed values of the video image
quality metrics were the average mean square error (MSE) of 31.28,
the average peak signal-to-noise ratio of 33.18 and the average
structural similarity index measure of 98.24% (shown in Figure 10B).
The heat map presented in Figure 11 shows the relative values with
respect to each other for the MSE of the surgical view frames
received and sent.

When the virtual instruments were selected by the operator at
the remote location workstation, tooltip poses Mrqortips(t) Were sent

over the network from the operating room to the remote location

workstation. Figure 12 shows Mroiips(t) for the movements of the
left and right augmented tools. An average delay of 0.089 + 0.017 s
was observed while transferring Mrooitips(t) from the remote location
to the operating room workstation. The delay was computed by
taking difference of the logged timestamps for the received and send
Mroottips(t) at the operating room and remote workstations, respec-
tively It was observed that the packets sent from the remote location
workstation were received in batches at the operating room work-
station (shown in Figure 12). Due to this behaviour, a buffer was

required to consume the packets at a uniform rate. Whenever there
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is an update in the instrument state S stument(t), it is sent asynchro-
nously over the network between the operating room and the remote

location workstations.

4 | DISCUSSION

The proposed tele-mentoring framework facilitates communication
between an operating surgeon and a mentor surgeon via displaying
motion of augmented surgical instruments during a minimally inva-
sive manual surgery (Figure 6) and robotic surgery (Figure 7). With

dynamic virtual surgical instruments overlaid on the surgical field, the

mentor surgeon is able to guide an operating surgeon with surgical
tool motion required during the particular surgical step. While the
previous studies®® laid the foundation of using augmented tool
motion for mentoring during the MIS, this work presents a frame-
work that enables its usage over a network and in an operating room
settings.

The information pertaining to the surgical field is transferred
over the network from the operating room to the remote location
with an average delay of 1.560 + 0.426 s. At the remote location, the
mentor surgeon performs the motion of augmented tools, which is
sent to the operating room at an average delay of 0.089 + 0.017 s
(which is within the limit of 0.20 s recommended by Xu et al.*%). This
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delay is acceptable, when the surgical field to be operated is stable.
The recommendation provided by SAGES requires a latency of less
than 0.45 s for live tele-mentoring.“° Low latency is crucial especially
during live surgery to ensure the remote surgeon is aware of the
operating field and can mentor back as complications evolve intra-
operatively. Also, the tissue motion induced by breathing or beating
heart would require Fsyrgicaiview(t) received at the remote location to
be synchronised with Mrooitips(t) and sent back to the operating room
to be visualised on a separate visualisation screen. As a result, the
proposed framework is suitable only for simulated training scenarios
and surgeries, where the operating field is stable.

The setup of the implemented tele-mentoring framework has
certain limitations. First, the setup was only tested on a local area
network instead of using it on the Internet. To test the setup on the
Internet, it would require the RTMP server to be hosted on a cloud
hosting service and access to network ports by the service pro-
viders. This may affect the delays in transferring the information.
An alternative method is to use low latency live streaming protocols
(such as WebRTC*?) to overcome the delays and dependencies on
service providers. This could be achieved by changing the
networking modules without affecting the remaining modules of the
system. Second in the setup, the incision points were tracked and
located only once during the start of the experiments. This is
acceptable in case of robot-assisted MIS as the remote centre of
motion is maintained at the incision point (Figure 7). The incision
points marked at the beginning of the robotic surgery using the
optical tracking system remain stationary. However, in case of
laparoscopic surgery (Figure 6), the incision points need to be
tracked continuously by the optical tracking system. This limitation
can be overcome by tracking frames that are attached to the tro-
cars. The optical tracking system continuously tracks these frames
and triangulates the positions of the incision points during the
surgery (as depicted in Figures 1 and 3A).

In a MIS operating room setting (where an experienced surgeon
is mentoring a novice surgeon), the experienced surgeon frequently
takes control to demonstrate a complex surgical step to the novice
surgeon. In this scenario, the novice surgeon either steps down from
the console (in the case of robotic surgery) or handover the control of
instruments (in the case of manual laparoscopic surgery) and ob-
serves the procedure on a secondary screen. This switching between
surgeons during the procedure is inevitable as there is no other way
to demonstrate the exact movements of the tooltips required to
interact with the tissue. This generates a need of a technology that
can allow the experienced surgeon to virtually demonstrate the exact
tool-tissue interactions required during MIS procedure while the
novice surgeon is still in control of surgical instruments.*?

An MIS usually has a high complication rates unless the pro-
cedure is performed by a specialised surgeon experienced in the
field.**** To gain experience in the usage of new surgical instruments
or new surgical techniques for MIS, the surgeon has to go through a
learning curve.*>*” This requires the local surgeon to travel and get
trained or to invite a specialist surgeon to the hospital as a mentor.

As a result, it imposes a burden in terms of time (scheduling patients

w‘?_Wl LEY 11 of 14

<8

only when the specialist surgeon is available) and logistics (such as
travel, stay and cost-per-day). A tele-mentoring technology for MIS
could address the associated problems as both the operating and
specialist surgeons need not to be present in the same place. It is also
worth noting that in developing economies and small countries, a
regional shortage of a surgical sub-speciality may arise within a
country due to uncontrollable geo-political factors.*® An imbalance of
surgeons' inflow and outflow may affect surgical services.*”>° In such
cases, tele-mentoring technology for MIS could facilitate surgical
knowledge transfer across geographical boundaries.”?

For surgical tele-mentoring, there are several conceptual
frameworks and learning theories.’?°% Integration of the proposed
technology in a structured surgical tele-mentoring curriculum would
require engagements on four fronts.>>#>% First, as a prerequisite,
the mentor apart from having surgical and educational expertise,
needs to be trained on using the interfaces of the proposed tele-
mentoring framework provided at the remote location. On other
hand, the mentee should be able to understand the augmented sur-
gical tool motions visualised on the operating field and replicate it.
Second, as the proposed tele-mentoring framework is introduced as a
new teaching modality, it should be tailored to suit the surgical
setting. It would also require simulation based training and orienta-
tion of the proposed tele-mentoring framework. Third, as part of a
curriculum, the curriculum components should focus on the tech-
nology including communication and troubleshooting. The mentor-
mentee need to have a structured method of communication. For
example, if a tool motion is demonstrated by the mentor along with
audio cues, as reciprocal the mentee should move the tools and stop
when needed. In addition to a standardised lexicon, protocols would
be required to troubleshoot in case of obstacles to ensure smooth
communication. Finally, on assessment methods fronts, apart from
traditional methods (360-degree feedback and video based review),
the proposed telemedicine technology can log and assess the way
mentor wanted to move the tool and the way mentee moved it.

The future work for further improving the tele-mentoring
framework will be geared towards three main aspects. First, the
tele-mentoring framework tracks the scope poses and incision points
and uses the information to generate a virtual 3D environment of the

surgical field. However, in certain MISs, such as NOTES®7>8

or single
incision surgery with actuated scopes and instruments,>”° the cur-
rent tracking setup is not sufficient due to occlusion causes in the line
of sight of the optical tracking system. Additional tracking mecha-
nisms,%! such as electromagnetic tracking systems (e.g., Patriot™ by

6263 or mechanical arms with inbuilt

Polhemus), ultrasonic sensors
gimbal mechanism®* need to be integrated with the tele-mentoring
framework. This will assist to track (a) poses of the camera and (b)
positions of the incision points or even the poses from where in-
struments exist flexible endo-luminal cannulas inside the patient's
body. Second, the current implementation facilitates transfer of
surgical field and augmented data in the form of visual cues. Another
aspect, which is as crucial as visual cues, is the exchange of audio
between the operating and mentoring surgeons.>*%> The future

iteration of the tele-mentoring framework will need to have audio
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and visual cues transferred over the network in synchronisation. This

could be achieved by using audio codecs such as advanced audio
coding with RTMP server. Another option is to replace RTMP with
webRTC, which internally uses Secure Real-time Transport Proto-
col.®® The protocol adds sequence numbers/time stamps/unique
stream IDs, which is used to ensure synchronisation between audio
and video streams. We also plan to optimise the network components
and test it across multiple networks. Finally, clinical studies will be
required to assess the knowledge transferred using the tele-
mentoring framework, especially with respect to the motion of
augmented surgical tools, and its applicability in different surgical

sub-specialities.> 47

5 | CONCLUSION

The developed framework for tele-mentoring shares information of a
MIS environment inside an operating room with a remote location
over the network. At the remote location, the remote surgeon
comprehends this information and mentors the operating surgeon by
providing visual cues over the network. These visual cues comprise of
motion of augmented instruments overlaid on the surgical field. The
cues assist an operating surgeon to perform the manipulation of

surgical instruments required during the MIS.
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