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Abstract
There is a well-known trade-off between computational efficiency and compu-
tational accuracy in the field of traffic simulation. In this article, we propose a
novel recurrent neural network based model with an integrated attention mech-
anism, called R-CTM, to simulate heterogeneous traffic flow with multiple types
of vehicles. It can effectively extract the traffic flow patterns of spatial and tem-
poral changes from training traffic data, which can be real-world traffic data or
synthetic traffic data via microscopic simulation models. Through experiments
and comparisons, we show that it can significantly outperform the state of the
art methods in terms of simulation accuracy. Besides accuracy, we also demon-
strate its scalability: its runtime consumption does not linearly increase with
respect to the spatial extent.
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1 INTRODUCTION

Dynamic traffic flow models are an important component of a variety of applications including games, urban plan-
ning/visualization, evacuation simulation, and autonomous driving.1 One of such applications is emergency evacuation
planning for severe disasters such as hurricanes, nuclear leaks, and so forth. In such scenarios, people in a certain area
need to be quickly and efficiently evacuated to one or more resettlement places by vehicles. An efficient and accurate
simulation model can provide a powerful tool in evaluating and optimizing evacuation planning by generating realistic
traffic flow on specific routes.

Over the years, many traffic simulation models have been developed. Microscopic models are mostly used to simu-
late the behavior of individual vehicles in the road network. However, the computational cost of microscopic methods
increases rapidly with the number of vehicles and the size of the road network, making them difficult to be scaled to
large-scale scenarios. On the other hand, macroscopic traffic models consider the traffic flow as compressible fluid and
evaluate the traffic states with the help of aggregated variables, for example, average speed, flow, and density. Often, they
design specific functions to describe the traffic flow and use data from real world for parameter calibration to achieve
accurate simulation results. However, macroscopic methods generally have high requirements for parameter tuning to
achieve accurate simulations. If the parameters are calibrated using data different from target simulation conditions, the
simulations by them may contain noticeable distortions or artifacts. However, in many real-world applications, such as
emergency evacuation planning, it is often impossible or even practically infeasible to collect such data in the same or

Comp Anim Virtual Worlds. 2022;e2091. wileyonlinelibrary.com/journal/cav © 2022 John Wiley & Sons, Ltd. 1 of 11
https://doi.org/10.1002/cav.2091

https://orcid.org/0000-0002-9033-7066
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcav.2091&domain=pdf&date_stamp=2022-06-07


2 of 11 LIU et al.

similar situations/environments in the real world for model calibration. Furthermore, such errors tend to accumulate
and increase in large-scale scenarios.

Traffic reconstruction methods based on computer graphics can reflect the traffic flow moving pattern. The trajectories
of vehicles in the traffic flow are reconstructed from traffic detector data in such methods. Sewall et al.2 proposed a method
to reconstruct and visualized continuous traffic flow from the spatio-temporal data provided by traffic sensors. Chao et al.3
synthesize new vehicle trajectories through a fusion of texture synthesis and traffic behavior rules, using a limited set of
vehicle trajectories as input samples. Such approaches can realistically reproduce the traffic flow in a real road network.
However, such methods recover the details of traffic flow changes from the a priori knowledge of detectors essentially. It
is not suitable for applications such as urban road planning and emergency evacuation, where such priori knowledge is
not available.

Neither microscopic models nor macroscopic models can effectively simulate large-scale heterogeneous traffic flow,
which often consists of mixed types of vehicles with different sizes and driving patterns. To tackle this challenge, in this
article, we propose a deep learning based macroscopic traffic simulation model for heterogeneous traffic flow that contains
mixed different types of vehicles. Our model, called R-CTM, is based on the concept of the cell transmission models
(CTM). Given an initial vehicle distribution and speed conditions, our model can accurately and efficiently simulate
large-scale heterogeneous traffic flow. It captures subtle nonlinear features from the data and further effectively integrates
spatial and temporal information so that the aforementioned limitations of both the microscopic and the macroscopic
methods can be alleviated or even avoided.

The main contributions of this article can be summarized below.

• To the best of our knowledge, our R-CTM model is the first deep learning based macroscopic traffic simulation model
based on the cell transmission framework.

• Our model significantly improves the simulation accuracy, compared to existing macroscopic methods and exist-
ing machine learning based methods with almost the same computational time. Moreover, the computational time
consumption of our model does not increase linearly with respect to the spatial extent.

• Different from existing macroscopic models that highly depend on parameter tuning, our model can simulate the same
road environment (i.e., number of lanes, speed limit, etc.) and traffic conditions (i.e., vehicle types, speed distribu-
tions, etc.) without the recalibration of the parameters, even when many factors including vehicle density and vehicle
proportions are changed.

2 RELATED WORK

We can roughly divide existing traffic simulation models into two categories:1 macroscopic models and microscopic
models. Among existing macroscopic traffic simulation models, the Lighthill–Whitham–Richards (LWR) model4,5 is
the most popular one, which models the motion of traffic flow in a hydrodynamic term. Based on the LWR model,
Daganzo6 proposed the CTM, which is a numerical method to solve differential equations of the LWR model. Based
on the above CTM framework, researchers have introduced various extensions to improve its applicability and accu-
racy. To produce platoon dispersion phenomena, LWR was extended to multi-class LWR,7 which introduces the notion
of classes defining heterogeneous driving on a freeway. This method roughly divides traffic flow into two categories:
passenger vehicles (PV) and heavy vehicles (HV). Compared with HV, PV has a shorter length and a faster speed.
Researchers have developed a few multi-class CTM models for simulating traffic flow with a certain percentage of
HVs on freeways.8-14 Also, to produce platoon dispersion in general topology, CTM was extended to a multi-class
CTM, known as M-CTM.15 Based on the reported results, M-CTM can produce platoon dispersion without compro-
mising the model’s computational complexity. Liu et al.13 modified the CTM model using methods from the lagged
CTM to reproduce the moving bottlenecks caused by buses within the CTM framework. Tiaprasert et al.16 pro-
posed FM-CTM, standing for the multi-class CTM with FIFO property, to improve the accuracy of the multi-class
CTM model.

In recent years, machine learning algorithms, especially deep learning algorithms, have made remarkable progress in
the field of spatio-temporal data mining.17 The neural networks algorithms that are widely used for spatio-temporal data
mining is the recurrent neural networks (RNNs).18 The RNN has been proved to be powerful for processing time-series
data and achieved great success in many applications, including speech recognition,19,20 natural language processing,21
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target tracking,22 and so forth. In transportation applications, deep learning has also increasingly demonstrated its
usefulness.

It is noteworthy that although our method is inspired by the CTM framework, our model should not be technically cat-
egorized as an extension of the CTM model. The main reason is that proposed model breaks the Courant–Friedrichs–Lewy
condition, by allowing the traffic to move through multiple cells during one time step.

3 METHODOLOGY

3.1 Pipeline

We divide the road into cells, following the traditional CTM approach. The length of each cell is taken as a fixed value l,
which is set to 50 m in practice. Because we simulate traffic in a freeway scenario, each cell is connected sequentially in
the spatial order. The number of the outflow vehicles in each cell is the number of the inflow vehicles in its next cell. There
are multiple types of vehicles driving on the road, denoted as v0, v1, … , vn. Each type of vehicle is of a certain length lvi ,
having a random speed that follows a Gaussian distribution.

For each cell s, we focus on the following variables that reflect its traffic state: the numbers of vehicles flows into and
out of cell s between time t − 1 and t for vehicle type v, denoted as Iv

t,s,O
v
t,s, respectively; the number of vehicle type v in

the cell s at time t, denoted as Nv
t,s. Further, we can write these variables as follows:

Xs,t = [I
v0
t,s,O

v0
t,s,N

v0
t,s, I

v1
t,s,O

v1
t,s,N

v1
t,s, …]T .

Our model can be conceptually regarded as a state machine. Each cell has a corresponding state vector hs
t to represent its

current state. It should be noted that the state vector here does not have any actual physical meaning compared to X . It is
an intermediate variable that contains key information within the model. It is calculated based on Xs,t, hi

t−1, i ∈s ∪ {s}.
s denotes the neighborhood of the cell s, as shown in Figure 1, it includes all nodes within the maximum distance that
can be traveled from or to cell s with the max speed vmax in a single time step Δt. The simulation steps of our model can
be described formally as follows:

𝒽 = [hi
t−1,∀i ∈s ∪ {s}],

hs
t =(Xs,t,𝒽),

̂Xs,t+1 =  (hs
t).

In the above equations,(⋅) is a state estimation function, and  (⋅) is a prediction function, which is explained in
detail later, and ̂Xs,t+1 is the predicted value of the input at time step t + 1.

Before the simulation starts, the initialization at the first k steps is created in advance. In other words, the first k input
variables need to be set according to the preset vehicle distribution, which is called preset inputs in this work. Starting from
time step k + 1, the predicted value at each time step is used as the input of the next time step. In emergency evacuation
applications, all preset inputs can be set to 0, which indicates that evacuation starts in an empty road. In this work, k is
empirically set to 4.

Our model is trained using a simulated dataset. Deep learning models often require a large amount, evenly distributed
dataset for training. Practically, traffic flow data acquired from real world are often too small to train deep learning models,
besides their uneven distribution. Therefore, we generate our training traffic dataset through microscopic simulation
models as the alternative. In order to ensure the accuracy of the obtained simulations, we train the microscopic simulation

F I G U R E 1 The white cell is the current cell, the blue ones are its neighboring cells, and the green ones are the irrelevant cells. The
states of the cells of interest (white and blue) are the input to the state estimation function.
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model using data generated under the same road network conditions (e.g., the number of lanes, speed limit, etc.) and
traffic flow conditions (e.g., size, speed distribution, etc.). It should be noted that our trained model does not need to be
retrained for different vehicle densities, vehicle type ratios, road lengths, and so forth.

3.2 Model details

As mentioned above, there are two main parts in our model. One is the state estimation function(⋅), and the other is
the prediction function  (⋅). Next, we describe the computational process for both of them in detail.

The state estimation function is designed to compute the current cell state. In our model, the traffic state estimation
function gives the state of the current cell based on the current cell’s state and the states of the surrounding cells at the
previous time step. It consists of two main components: a multiple attention module for processing spatial information,
and an LSTM module for processing temporal information.

The computing process of the state estimation function is illustrated in Figure 2. The superscript of the letters in
the figure represents the cell number, the subscript indicates time stamp, and h and c denote the hidden state and
the cell state in LSTM, respectively. The model collects the hidden states of a few cells associated with the current
cell at the previous time step and processes the collected hidden states into spatial information through a multi-head
attention layer.

After that, the spatial information first goes through two gate structures to control both the hidden state and the cell
state of the current cell, and then enters into a conventional LSTM cell for further calculation. The above procedure can
be formalized as follows:

hs
sp = ATTENTION(… , hs−1

t−1 , h
s+1
t−1 , …),

̂hs
t−1 = hs

t−1◦𝜎g(Wsf hs
sp + bsf ),

ĉs
t−1 = cs

t−1◦𝜎g(Wsihs
sp + bsi),

hs
t , c

s
t = LSTM( ̂hs

t−1, ĉ
s
t−1, x

s
t ).

Next, we explain the structure of the attention layer in detail. The purpose of the attention mechanism is to reasonably
distribute the weights of different inputs. In our model, the multiple attention layers need to assign weights to spatially
relevant cells’ states. As mentioned previously, each cell is relevant with those cells (including itself) within l distance in
both the forward and backward directions. l is calculated as l = Vmax × Δt, where Vmax is the maximum speed, and Δt is
the length of a time step.

We added learnable parameters to act as the spatial information of upstream or downstream cells of the
boundary cells, since the boundary cells have no upstream or downstream cells. The detail is illustrated in

F I G U R E 2 The estimation function structure of our R-CTM model
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F I G U R E 3 The spatial relationship of parameters

Figure 3. These parameters play an important role to the accuracy of our model, as shown in the supplemental
materials.

The attention mechanism used in this work is computed as follows:

eij = LeakyReLU(Wa[hi, hj]),

𝛼ij = softmax(eij) =
exp(eij)

∑
j∈i exp(eij)

,

h′i = 𝜎(
∑

j∈i

𝛼ijhj).

Here h′i represents the result of one head in the multi-head attention layer.
By concatenating the results of all the heads, we obtain the aforementioned spatial information as follows:

hsp = CONCAT(h′i , h
′′
i , …).

The prediction function does not have a complex structure as the state estimation function. We first use a fully connected
layer to predict the number of vehicles that leave the current cell s at the next time step based on the current state hs

t , that
is,

Os,t+1 = FC(hs
t).

Here FC denotes the fully connected layer, which is a linear function with parameters, Os,t+1 is a vector containing the
number of outflows for all vehicle types, that is, Os,t+1 = [O

v0
s,t+1,O

v0
s,t+1, …]. Since each cell is sequentially connected, every

cell’s outflows go to the next cell. So we can easily obtain the input at the next time step through a simple transformation
as follows:

Is,t+1 = Os−1,t+1,

Ns,t+1 = Ns,t + is,t+1 − Os,t+1.

The number of inflow vehicles in the first cell I0,t+1 takes the ground-truth value, which is also the variable to control
the flow of traffic on the road during simulations.

The loss function designed in our model needs to be accurate not only on the output flow of a cell but also on the
number of vehicles in it. In the following formula, 𝛼 and 𝛽 are the hyperparameters that need to be calibrated.

L = 𝛼Loss(Ot,Ôt) + 𝛽Loss(Nt, ̂Nt).

During the training process, model parameters are optimized by the Adam23 to find the parameters with the minimal loss
on the training dataset. In our experiments, the loss function used in our work is the absolute error as follows:

Loss(y, ŷ) = ||y − ŷ||22.
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4 EXPERIMENTS AND COMPARISONS

To keep the text brief, we attach the dataset, training, implementation details, and a ablation study in the supplementary
material.

4.1 Quantitative metrics

We compare the simulation capabilities of different methods using the following two quantitative metrics: the first,
called cell_error, which is the same as RMSE in Reference 16. It is the root mean square error between the num-
ber of vehicles predicted within a single cell ̂Nv

s and the data obtained through SUMO simulation Nv
s , which is

computed as:

cell errorpv =

√
∑T

t
∑I

s( ̂N
pv
t,s − Npv

t,s )2

T ⋅ I
,

cell error = cell errorpv + cell errorhv.

The other, called seg_error, is the error between the number of vehicles predicted
∑

s
̂Nv

t,s and the ground-truth value
obtained through SUMO simulation

∑
s Nv

t,s over the entire road, which is computed as:

seg errorpv =

√
∑T

t (
∑

s
̂Npv

t,s −
∑

s Npv
t,s )2

T
,

seg error = seg errorpv + seg errorhv.

In the above equations, I and T are the total numbers of the observed cells and time steps, respectively. The errors
within a single cell can directly show the accuracy of the model. And, the errors on the whole road can show how the
errors are accumulated in the simulation space. In this way, we can quantitatively compare the simulation qualities of
different models with error diagrams and space-time heat maps.

4.2 Comparison with existing methods

To evaluate the effectiveness of our model, we compare our model with several state of the art methods, including a con-
ventional CTM with mixed vehicle types, FM-CTM,16 a modified multilayer perceptron model (MLP),24 LSTM model,25

and the social-LSTM model22 on the aforementioned synthetic dataset and the real-world dataset.

4.2.1 Comparison on the synthetic data

We compare the simulation results by different methods with the synthetic data (as the ground-truth). As we can see
from Figure 4, the MLP and LSTM methods fail to capture the nonlinear characteristics of the data and cannot fit the
overall trend of traffic flow during a long simulation. This shows that macroscopic traffic data generally contain complex
nonlinear characteristics.

Table 1 shows the simulation errors by the FM-CTM, social-LSTM, and our model (R-CTM). As shown in this table,
considering that the maximum number of vehicles in a single cell is around 20, all of the three models achieve relatively
high accuracies at the individual cell level. In contrast, at the segment level, our R-CTM model achieves significantly
smaller errors than both the FM-CTM and the social-LSTM models.

Figure 5 shows the number of vehicles on the road in the simulation results by different methods, compared to the
ground truth. As we can see from this figure, the social-LSTM model can accurately predict the traffic flow variation
pattern in low density scenarios, but the error is more noticeable in high density scenarios. The simulation results by the
FM-CTM model are roughly similar to the ground truth that was generated by the SUMO microscopic model. But we
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F I G U R E 4 (a) The results of the MLP and LSTM models tested on synthetic traffic data with 30% HVs. (b) The results of FM-CTM,
social-LSTM, and R-CTM models under the same conditions

T A B L E 1 Test errors on the synthetic data

Cell error Seg error

HVs ratio R-CTM FM-CTM Social-LSTM R-CTM FM-CTM social-LSTM

5% 1.70 1.91 1.96 6.93 26.89 17.63

10% 1.68 1.92 2.01 7.02 27.44 20.45

15% 1.71 2.0 2.00 7.99 26.51 21.37

20% 1.72 2.01 2.03 9.64 26.74 25.22

25% 1.69 2.06 1.99 11.09 26.53 24.41

30% 1.75 2.1 1.98 11.85 25.67 23.93

F I G U R E 5 Comparisons between the simulated results by three different models and the SUMO simulation results for the case
containing (a) 5%, (b) 15%, and (c) 30% HVs in the traffic flow, respectively

can also observe noticeable errors at certain places. Finally, the simulation results by our R-CTM model can accurately
approximate the ground truth in all the scenarios. Numerically, the cell error of our R-CTM model is 15% smaller than
both the FM-CTM model and the social-LSTM model. At the segment level, the error by our R-CTM model is smaller
than 50% of those by the FM-CTM and the social-LSTM models. This suggests that our R-CTM model can significantly
improve the accuracy of simulations, and produce more realistic simulation results.

Figure 6 shows the simulation error for different vehicle types when there is 30% HVs in the traffic flow. It can
be seen that the error of FM-CTM mainly originates from the difference in the number of HVs. The error of the
social-LSTM model, on the other hand, is independent of the vehicle type, and it increases when the vehicle density is
increased.
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F I G U R E 6 (a) The number of HVs over time and (b) the number of PVs. Both figures are for the case where there is 30% HVs in the
traffic flow.

F I G U R E 7 The top-left panel shows the ground truth and the bottom-left panel shows the result by our R-CTM model. The top-right
panel shows the results by the FM-CTM model after parameter calibration on different datasets, and the bottom-right panel shows the result
by the FM-CTM model after parameter calibration on the same dataset.

Discussion. FM-CTM is less effective in simulating HV traffic flow probably because HV vehicles are longer and
have a larger variation of speeds, and thus the traffic flow shows more nonlinearity when it contains more HVs. This
is consistent with our real-life observation: large vehicles often move at slower speeds, which often may cause conges-
tion on the road. The R-CTM model can more accurately simulate the variation of such large vehicles in the mixed
traffic flow.

The social-LSTM model shows less accuracy when the traffic densities of both types of vehicles increase. This indi-
cates there is a difference in traffic flow pattern between low density cases and high density cases. our R-CTM model is
more accurate because the multi-headed attention layer in our model can provide enough nonlinearity to well represent
different variations under low or high traffic conditions.

Moreover, the empirically designed segmentation functions in traditional CTM model could distort simulation results.
As shown in Figure 7, right top, there are some distortions in the FM-CTM simulation result. This is due to the vehicle
congestion caused by setting the maximum throughput of any cell in the segmentation function. When we do parameter
calibration specifically for this scenario, the maximum limit of flow is increased from 0.62 to 0.68 (per lane per second),
and the congestion can be avoided (Figure 7, right bottom). This shows that the traditional CTM simulation models are
limited by the embedded segmentation limitation. Because of this, the simulation scenarios that it can simulate are also
limited. When the simulation condition changes significantly, the result by the FM-CTM model is likely to have distor-
tion unless some critical parameters are carefully calibrated, such as in Reference 16, where parameters are calibrated
separately for each cell. However, this is almost impossible or technically infeasible in practical simulation applications.
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T A B L E 2 Runtime statistics (in seconds) of different methods on the same road with different lengths

Road length 2000 m 1750 m 1500 m 1250 m 1000 m 750 m 500 m

Our model 2.73 2.69 2.7 2.72 2.61 2.61 2.66

Social-LSTM 2.01 1.99 1.97 2.03 1.89 1.85 1.81

FM-CTM 2.81 2.15 1.81 1.50 1.18 0.93 0.61

SUMO 1041.2 900.6 791.2 630.1 533.4 370.2 277.8

T A B L E 3 Test errors on the real-world dataset

Cell error Seg error

Dataset R-CTM FM-CTM R-CTM FM-CTM

I80-1 2.72 2.66 11.04 14.20

I80-2 3.52 5.44 13.83 35.70

I80-3 4.97 5.32 22.90 31.35

By contrast, our R-CTM model does not require special parameter calibrations. Specifically, as long as the number
of lanes is consistent and the vehicle driving characteristics are similar to those in the training dataset, our model can
perform accurate simulations, without causing distortions.

Both our R-CTM model and the social-LSTM model require more computational resources than traditional CTM
models. With the parallel computing support of many deep learning frameworks, our model can be executed in parallel.
Table 2 shows the runtime consumptions (in seconds) of the R-CTM, social-LSTM, and the FM-CTM models running on
a computer with GTX1060 GPU. The simulation scenario is a six-lane road with a variable length of one hour. We can see
that despite our R-CTM model takes a longer time than both the social-LSTM and the FM-CTM models, but it is at least
two orders of magnitudes faster than the SUMO microscopic simulation method. More importantly, the scalability of the
R-CTM model is good: its runtime consumption does not increase linearly with respect to the spatial extent. In contrast,
we can observe an approximately linear relation between the time consumption of the FM-CTM model and the length of
the simulated road.

4.2.2 Comparison on the real-world dataset

We also validated our model on the real-world dataset. Because the amount of the real-world dataset is too small to
support the training of our R-CTM model, we used SUMO to generate synthetic data for training, based on the obtained
distribution of vehicle speeds and the ratios of different vehicle types in the real-world dataset. Finally, we tested the
trained R-CTM model on a test set of the real-world dataset. Table 3 shows the test errors by different methods. We can
see that although the R-CTM model was trained on synthetic data, it still can achieve a better performance than FM-CTM
at both cell level and segment level in most cases.

5 CONCLUSION

In this article, we present a data-driven macroscopic traffic simulation model, called R-CTM. Its key idea is to replace
empirically designed functions in traditional CTM methods with a neural network model. Based on the vanilla LSTM
model, we specifically design two key components: additional parameters and a multi-headed attention layer. The
multi-headed attention layer can effectively handle the spatial influence on the current cell and significantly improve the
model’s accuracy. Adding additional parameters at the beginning and the end of the road can effectively reduce errors at
both ends of the road and also improve the accuracy. Through comprehensive comparisons with state of the art methods
on both a synthetic traffic dataset and a real-world traffic dataset, we demonstrate that our R-CTM model can accurately
simulate multi-class vehicles’ flow patterns on a long road.
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Our R-CTM model provides a new perspective of rethinking CTM models. Specifically, it does not rely on empirically
designed functions to describe the features and phenomena of traffic but automatically learns them in a data-driven fash-
ion. As the future work we plan to explore how data-driven models can reliably reproduce the features and phenomena
of traffic flow on complex road networks, such as traffic junctions, ramps, and so forth.

It is important to note that our approach still has some limitations. Our proposed method breaks the
Courant–Friedrichs–Lewy condition, by allowing the traffic to move through multiple cells during one time step, which
is why it is not mathematically guaranteed that the number of traffic flows in the road is consistent. Second, due to the
limitations of the machine learning model, the simulation for scenarios with differences from the training data requires
retraining, such as inconsistent number of lanes or inconsistent vehicle travel speeds.
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