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Figure 1: The motion-captured trajectories of the thorax and wings of a flying butterfly. (A) The original captured butterfly
motion, (B) the butterfly motion processed by our method, and (C) visualization of the obtained butterfly flight motion.

ABSTRACT
Simulating realistic butterfly motion has been a widely-known chal-
lenging problem in computer animation. Arguably, one of its main
reasons is the difficulty of acquiring accurate flight motion of but-
terflies. In this paper we propose a practical yet effective, optical
marker-based approach to capture and process the detailed motion
of a flying butterfly. Specifically, we first capture the trajectories
of the wings and thorax of a flying butterfly using optical marker-
based motion tracking. After that, our method automatically fills
the positions of missing markers by exploiting the continuity and
relevance of neighboring frames, and improves the quality of the
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captured motion via noise filtering with optimized parameter set-
tings. Through comparisons with existing motion processing meth-
ods, we demonstrate the effectiveness of our approach to obtain
accurate flight motions of butterflies. Furthermore, we created and
will release a first-of-its-kind butterfly motion capture dataset to
research community.
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1 INTRODUCTION
Butterflies with peculiar and beautiful flight motion have been
simulated and used in a variety of applications including movies,
games, VR/AR, bionic robots, etc. Previously researchers have used
various experimental methods to capture butterfly motion. For
instance, researchers captured the aerodynamics of a flapping insect
through wind tunnels [Johansson and Henningsson 2021; Srygley
and Thomas 2002] or tracked the flight trajectories of a flying
butterfly using multiple cameras [Guo et al. 2018]. However, such
methods are either too expensive (e.g., using wind tunnels) or less
useful for graphics applications (e.g., the flight trajectories of a
butterfly alone are generally insufficient to create realistic butterfly
animations). Indeed, since butterflies with peculiar flight styles are
petite in size (far more tiny than bats [Hubel et al. 2009] or birds [Ju
et al. 2013]), it is particularly challenging to capture the detailed
dynamic motion of their body parts, i.e., wings and thorax, during
their flights.

Meanwhile, in computer graphics and animation applications,
motion capture has become a standard approach to acquire accu-
rate motion of humans as well as animals. As a result, there exist
many large-scale human motion capture datasets publicly avail-
able, which have significantly facilitated the booming of numerous
MoCap based research advances in recent years. Unfortunately,
due to the aforementioned challenge of acquiring detailed butterfly
motion, to the best of our knowledge, none of butterfly motion
datasets (including the motions of the wings and thorax) exists
these days, in particular, for graphics and animation applications.
The lack of any publicly available butterfly motion datasets not
only limits applying the simulation of butterflies to a variety of
entertainment and VR applications, but also hinders the advance of
butterfly motion related research in broad scientific communities.

Inspired by the above need, in this paper we propose a practical
method to capture motion of a flying butterfly with dynamic details,
including the motions of its wings and thorax, using optical marker
based motion tracking. We design a set of butterfly-specific motion
processing algorithms to automatically recover missing markers
and filter out noise from the captured butterfly motion data. Finally,
based on our method, we created a butterfly motion capture dataset
and will make it publicly available to the research community.
Figure 1 show examples of motion-captured trajectories of the
thorax and wings of a flying butterfly by our method.

The main contributions of this work can be summarized as fol-
lows:

• On top of existing optical marker-based motion tracking
technology, we design a practical method to capture and
process the detailed dynamic motion of a flying butterfly
including the motions of its wings and thorax, via a set of
butterfly-specific motion processing and filtering algorithms.

• We created a first-of-its-kind, butterflymotion capture dataset
of swallow-tail butterflies (Papilio polytes), and will make it
publicly available to the research community.

2 RELATEDWORK
In this section we only briefly review recent efforts that are related
to this work: flying insect motion acquisition, flying insect simula-
tion, and motion capture data processing. For general vision-based

motion capture technology, please refer to the well-known survey
by Moeslund and Granum [Moeslund and Granum 2001].

Simulation of flying insects and butterflies. Simulation of flying
insects including butterflies has caught increasing attention in re-
cent years. Due to the difficulty of acquiring ground-truth motion
of flying insects, researchers developed various empirical models
to simulate flying insects, including velocity field based methods
[Chen et al. 2019; Wang et al. 2014], and biologically inspired meth-
ods [Li et al. 2015; Wang et al. 2015]. Xiang et al. [Xiang et al.
2020] proposed a data-driven framework to simulating flying insect
swarms based on scarce public fruit fly’s motion data [Sinhuber
et al. 2019]. However, their method is focused on the generation of
flying trajectories of insect swarms, not dynamic motion of individ-
ual flying insects. Recently, Chen et al. [Chen et al. 2022] proposed
a heuristic model to simulate flying butterflies by introducing para-
metric maneuvering functions for dynamic motion control.

Flying insect motion acquisition. Due to the well-recognized im-
portance of acquiring ground-truth motion data of flying insects,
researchers attempted various ways to record the motion of flying
insects. In the early days, sensor systems were used for acquiring
the motion of flying insects [Dickinson et al. 1999], but binding
insects with sensors is practically difficult and un-robust. In recent
years, markerless vision-based tracking methods have started to
be used for motion tracking of flying insects. For example, Fry et
al. [Fry et al. 2000] use pan-tilt multi-cameras to track a flying
honeybee’s 3D trajectories. Ristroph et al. [Ristroph et al. 2011] use
high-speed cameras to analyze the paddling mode of the forwarding
of a fruit fly. Similarly, Koehler et al. [Koehler et al. 2011] capture a
dragonfly’s motion through high-speed cameras and visualize the
flapped vortices based on the captured data. The above markerless
vision-based methods generally employ multiple cameras to track
the 3D trajectories of flying insects. However, due to the tiny size
of flying insects, it is non-trivial, without considerable efforts, to
acquire their detailed flight motion, beyond trajectory acquisition.

Researchers also exploited wind tunnels to record the aerody-
namics of flapping insects. To obtain the laminar flow around a
flapping butterfly, Srygley et al. [Srygley and Thomas 2002] blow
smog into a wind tunnel while using a high-speed camera to record
digital images. Johansson et al. [Johansson and Henningsson 2021]
use a similar method to record the take-off feature of a butterfly and
found that the cup-shape deformation of the wings promotes flight
effectiveness. Compared to markerless vision-based tracking, the
above wind tunnel-based methods in general can achieve accuracy,
but they are too expensive and thus practically infeasible for many
applications. Also, often it is difficult for them to capture the motion
of flying insects at a mid-term distance (for example, > 1 meter) due
to the space limitation.

As a trade-off between the above two methods, optical markers
have been explored for acquiring flying insect motion. For example,
Ju et al. [Ju et al. 2013] use markers to capture the wing flapping of
a bird in order to create its simulation model. Sridhar et al. [Srid-
har et al. 2016] elaborately place markers on the wings and thorax
of a monarch butterfly and then use a motion capture system to
track the movements of the markers. However, their work does
not provide any technical details on motion acquisition and pro-
cessing. In addition, somehow they only captured and studied 0.2
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second motion data of a flying butterfly, and their dataset has not
been released to the research community. Different from [Sridhar
et al. 2016], our method can robustly acquire, process, and produce
quality motion data of a flying butterfly with a longer duration and
thus is more practically effective. Also, based on our method, we
created and will release a first-of-its-kind butterfly motion capture
dataset that encloses the detailed dynamic motion of butterflies for
graphics and animation applications.

Motion capture data processing. Motion capture has been increas-
ingly used for acquiring high quality motion of humans and ani-
mals [Bodenheimer et al. 1997; Vlasic et al. 2007]. Here we review
some recent works on motion capture data denoising and missing
marker handling. Yu et al. [Yu et al. 2007] proposed algorithms to
handle missing or contaminated markers in complex mocap data
(e.g., multiple interacting articulated targets). Researchers also pro-
posed algorithms for motion capture data denoising [Holden 2018]
or for information extraction from sparse marker motion [Loper
et al. 2014]. By utilizing existing large-scale human motion cap-
ture datasets as the training data, Chen et al. [Chen et al. 2021]
developed a deep learning based method for handling noisy and
incomplete motion capture data.

3 OUR METHOD
Experimental setup. Our butterfly motion capture experiments

were conducted by using a motion capture system with Qualisys
cameras and a Qualisys Track Manager (QTM) software [Qualisys
2013] (refer to Figure 2(b)). Before the start of our experiments,
we tested the sensing distance between the cameras and optical
markers. We found that the acceptable distance is about 1.5 meter
when we use the selected markers (described below). Based on the
test result, we designed a cylinder-shaped capture volume with 1.0
meter radius and 1.0 meter height (shown in Figure 2(a)). Confined
by the limited capture volume, we only use 7 cameras to capture
butterfly motion. Furthermore, a green clothing is placed on the
floor to reduce the interference of background light, and a mask
is used to prevent the escaping of the butterflies inside. The used
Oqus 6+ cameras are capable of capturing motion at 1660 fps, with
a sensor resolution of 1536 × 992. In this work, we set the capture
frequency with 500 fps, which is two orders of magnitude higher
than the butterfly’ flapping frequency ( i.e., about 11 Hz).

Markers selection and placement. Optical markers are covered
with a special material that is designed to efficiently reflect invisible
infrared light so that cameras can sense it. We tested four different
size of optical markers (Marker #1 to #4 shown in Figure 4). The
masses and dimensions of the four types of makers are summarized
in Table 1. To this end, the hemispherical marker #4 was chosen
for butterfly motion capture in this work since it has the smallest
dimension among the four options and thus has less impact on but-
terfly’s flight behavior. The butterfly used in our experiments was
hatched from chrysalis. The specimen is papilio polytes (swallow-
tail butterfly).

It was previously reported that the forewings play a key role in
butterfly flights, whereas the hindwings are less essential [Jantzen
and Eisner 2008]. Therefore, in order to capture the natural flight
motion of a butterfly with less evasive influence, we only place

Table 1: Features of four types of optical markers

Marker type Marker # Dimension
(mm)

Mass
(g)

% Butterfly mass
(0.35 g)

Spherical 1 15 2.122 606.3
2 4.5 0.076 21.7

Circular (flat) 3 6.5 0.010 2.9
Hemispherical 4 2.5 0.004 1.1

markers on the forewings and thorax of the butterfly. As shown in
Figure 3, a total of five markers are placed on the butterfly includ-
ing four on the forewings and one on the thorax. The markers are
symmetrically placed on both sides of the wings so that they sub-
stitute for each other when the marker on one side disappears from
the camera’s view during flapping. The markers on the forewings
denote the flapping motion of the butterfly, and the marker on
the thorax mainly provides information on the trajectory of the
butterfly body.

4 BUTTERFLY MOTION DATA PROCESSING
The butterflymotion data directly obtained from themotion capture
system is inevitably noisy and often incomplete (with missing mark-
ers). The average percentage of missing frames in each captured
session is 79.1%, which imposes a non-trivial technical challenge
for butterfly motion data processing and cleaning. To this end, we
design a set of butterfly-specific motion processing steps, includ-
ing missing marker handling, noisy trajectory smoothing, and key
parameters optimization, described below.

4.1 Missing Marker Handling
In our butterflymotion capture experiments, there are three possible
cases of missing markers: (i) the thorax marker is missing; (ii) the
marker on one of the wings is missing; and (iii) the markers on both
wings are missing. We describe how we handle the above three
cases below.

The thorax marker missing. Based on our experiments, we found
that the thorax marker was seldom missing. Then, even when
the thorax marker is missing, we directly fill the missing marker
through a cubic spline interpolation of the thorax markers at neigh-
boring frames.

Markers on both wings missing. If the markers on both wings
are missing in a frame, which rarely happened, we identify the
neighboring frames with wing markers and then perform a cubic
spline interpolation on them.

Markers on one of the wings missing. Compared to the above two
cases, the case where only the markers on one of the wings are
missing was observed more frequently in our data. To handle this
case, we design an effective algorithm to fill the missing marker,
described below.

First, for any frame we define a reference vertical plane, which
denotes the butterfly with a zero roll angle. As illustrated in Fig-
ure 5(a), r𝑡,∗ is the thorax marker at a frame and r𝑡,∗+𝑚 is the thorax
position at the (∗ +𝑚)-th frame.𝑚 is the step size. The butterfly’s
body direction can be approximately determined by (r𝑡,∗+𝑚 − r𝑡,∗).
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Figure 2: Experimental setup. (𝑎) Physical capture volume; (𝑏) Virtual capture volume and the cameras placement shown in
QTM software. The close up view of the sensed markers on the butterfly.

Figure 3: Markers are circled in red on the dorsal (𝑎) and
ventral (𝑏) side of the butterfly.

Figure 4: Four types of optical markers were considered for
our butterfly motion capture experiments. Marker #4 was
used in this work.

r𝑜 is an auxiliary point and can be calculated as follows:

r𝑜,∗ = r𝑡,∗ + j · ℎ, (1)

where j is a unit vector along the positive Y-axis in the 3D coordinate
system, and ℎ as a scalar value is experimentally set to 10. By using
the auxiliary point r𝑜 , we can construct the reference vertical plane
with a zero roll angle, and its normal is denoted as n𝑧𝑒𝑟𝑜 .

Furthermore, we also compute another plane, called as the actual-
posture-plane in this paper. As illustrated in Figure 5(b), r𝑙 and r𝑟
are the markers on the left and right wings, respectively. r𝑚𝑖𝑑 is
the mid point between r𝑙 and r𝑟 . n𝑎𝑐𝑡𝑢𝑎𝑙 denotes the normal of the

actual-posture-plane. To this end, a roll angle 𝜑 , between n𝑧𝑒𝑟𝑜 and
𝑛𝑎𝑐𝑡𝑢𝑎𝑙 , can be computed.

If the marker on one of the wings is missing, based on the hypoth-
esis that the bilateral wings of butterflies are symmetric [Dudley
2002], we can fill the missing wing marker with the marker on its
opposite wing, with the aid of both n𝑧𝑒𝑟𝑜 and n𝑎𝑐𝑡𝑢𝑎𝑙 . Without loss
of generality, we assume the marker on the left wing is missing.
The missing left wing marker (the red point in Figure 5(c)) at the
𝑖-th frame is calculated as follows:

r𝑙,𝑖 = r𝑟,𝑖 + 2 · 𝑑𝑖 ·
n𝑎𝑐𝑡𝑢𝑎𝑙,𝑖��n𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 �� , (2)

where 𝑑𝑖 is the distance between the right wing’s marker r𝑟,𝑖 and
the actual-posture-plane, and it is calculated as follows:

𝑑𝑖 =

(
r𝑟,𝑖 − r𝑡,𝑖

)
· n𝑎𝑐𝑡𝑢𝑎𝑙,𝑖��n𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 �� . (3)

However, because of the lack of the left wing marker, we cannot
directly compute n𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 , but it can be computed with the aid of
n𝑧𝑒𝑟𝑜,𝑖 , as follows:

n𝑎𝑐𝑡𝑢𝑎𝑙 = n𝑧𝑒𝑟𝑜,𝑖 · ©­«
cos𝜑𝑖 − sin𝜑𝑖 0
sin𝜑𝑖 cos𝜑𝑖 0
0 0 1

ª®¬ , (4)

where 𝜑𝑖 is obtained through a cubic spline interpolation of the 𝜑∗
of fully captured, neighboring frames (refer to Figure 5(b)).

Note the step size𝑚 is a key parameter in our missing marker
handling step. We will optimize its value, described in Section 4.3.

4.2 Noisy Trajectory Smoothing
Besides the aforementioned missing marker issue, the original but-
terfly mocap data are often noisy. This is largely due to the fast
flapping motion of butterflies. To this end, in this work we adopt the
Savitzky-Golay (S-G) filter [Schafer 2011] to denoise the captured
butterfly motion data. The core idea of the S-G filter is to perform
a fitting with a polynomial order, 𝑘 , on multiple continuous frames
within a sliding window, 𝑛, so as to obtain smoothed results but
not disturb the motion tendency. The fidelity of the smoothed mo-
tion largely depends on the selection of its key parameters 𝑘 and 𝑛.
However, there do not exist standard ways or guidelines to specify
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Figure 5: Illustration of the auto-filling process for the missing left wing marker. (a) The reference vertical plane (its normal
denoted by n𝑧𝑒𝑟𝑜,∗) of the butterfly’s body with a zero roll angle 𝜑 at any frame. (b) The roll angle 𝜑∗ between the actual-posture-
plane (its normal denoted by n𝑎𝑐𝑡𝑢𝑎𝑙,∗) and the reference vertical plane (its normal denoted by n𝑧𝑒𝑟𝑜,∗). (c) The missing left wing
marker (red point) at the 𝑖-th frame can be filled with the aid of n𝑧𝑒𝑟𝑜 , n𝑎𝑐𝑡𝑢𝑎𝑙 , and 𝜑𝑖 . 𝜑𝑖 is computed through a cubic spline
interpolation of the 𝜑∗ of fully captured, neighboring frames (refer to (b)).

the optimal values for 𝑘 and 𝑛 in the S-G filter. As described in
Section 4.3, we optimize the values of the key parameters 𝑘 and
𝑛 in the S-G filter, besides the𝑚 parameter in the above missing
marker handling step.

4.3 Key Parameters Optimization
As mentioned above, there are three key parameters (that is, the
step size𝑚, the polynomial order 𝑘 , and the sliding window size 𝑛)
in our butterfly motion processing steps. Empirically choosing their
values may lead to less accurate butterfly motion. In this section,
we introduce a method to automatically optimize the values of the
three key parameters.

Specifically, we employ a genetic algorithm (GA) to find the
optimal values for𝑚, 𝑛, and 𝑘 . We first select a portion of the fully
captured butterfly motion data (that is, the used butterfly motion
was fully captured, without missing markers) as the ground-truth
data in our optimization process. Also, we need to introduce ametric
to evaluate the accuracy achieved by combinations of different
parameter values.

An error 𝜖 is defined between the ground-truth data and the
filled (processed) data by our method that uses specific values for
the three key parameters, and it is calculated as follows:

𝜖𝑖 =
∑︁

∗∈{𝑙,𝑟 }

��r𝑤∗,𝑖 − r̂𝑤∗,𝑖
�� , (5)

where r̂𝑤∗,𝑖 denotes the processed marker r𝑤∗ at the 𝑖-th frame by
our method. r𝑤𝑙

and r𝑤𝑟
denote the markers on the left and right

wings, respectively.
Then, an objective function 𝑞 based on 𝜖 is further defined to

calculate the fitness value, which is computed as follows:

𝑞 = 1/
(
1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑖

)
, (6)

where 𝑁 is the total number of frames in the used ground-truth
data.

Figure 6: The change of the fitness value 𝑞 over iterations in
our parameters optimization process.

In the GA algorithm, the fitness value 𝑞 measures the quality
of different combinations. Specifically, we use 20 individuals per
generation. The reproduction parameters used are a 2% mutation
probability and a 92% crossover probability. Each optimization is
designed to iterate for 100 generations. Then, the optimal values of
the three parameters are iterated with the goal of improving 𝑞. We
plot the change of 𝑞 over iterations in Figure 6. As shown in this
figure, 𝑞 achieves the highest value 0.307 with 65 iterations when
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the optimal values of the key parameters are:𝑚 = 8, 𝑛 = 19, and 𝑘 =
13.

5 RESULTS AND COMPARISONS
We used the obtained butterfly motion data to drive a virtual butter-
flymodel to generate animations, meanwhile we draw the trajectory
of the virtual markers on the butterfly model (shown in Figure 1(c)).
For more butterfly animations driven by our captured motion data,
please refer to the supplemental video.

Figure 7: Comparisons between our method and existing
methods. The wiped data (green dashed) denotes a randomly
selected portion of the ground-truth data that is intentionally
removed for this comparison purpose.

5.1 Comparisons
To evaluate the effectiveness of our butterfly motion processing
method (Section 4), we also compared our methodwith two existing,
well-known motion interpolation/processing methods: (i) the cubic
spline interpolation that is considered as one of the most practical
and widely used interpolation methods in mocap tasks [Liu and
McMillan 2006], and (ii) the XGBoost method that is one of popular
boosting tree algorithms for data fitting with small datasets [Lisca
et al. 2021; Wang et al. 2020]. To perform this comparison, we
selected some fully captured butterfly motion data in our dataset
(in other words, the selected butterfly motion data do not need
any motion post-processing) and then randomly removed some
portions of the left wing marker data. Then, we applied the three
methods (cubic spline interpolation, XGBoost, and our approach)
to fill the positions of the missing left wing marker in our selected
data.

Qualitative comparison. We conducted a qualitative comparison
among the three methods. Figure 7 shows the visualization of exam-
ple results by the three methods. As clearly shown in this figure, our

method can fill significantly more accurate butterfly motion than
the other two methods (cubic spline interpolation, and XGBoost).
Arguably, the main reason is that, our motion processing method is
specifically designed for butterfly motion and takes full advantage
of the spatial characteristics of butterfly flights; therefore, it has
significant advantages over the other two methods.

Quantitative comparison. We also used the error metric 𝜖 (de-
fined in Equation 5) to quantitatively compare our butterfly motion
processing method with the aforementioned two methods. The
average errors achieved by the three methods on our data are: 18.04
mm (cubic spline interpolation), 37.95 mm (XGBoost), and 4.11 mm
(our method). From the above comparison of the average errors,
our motion processing method specifically designed for butterfly
motion processing has significant edges over both the classical
cubic spline interpolation method and the XGBoost method.

6 BUTTERFLY MOTION DATASET
In this work, based on our proposed butterfly motion capure ap-
proach, we created a first-of-its-kind butterfly motion dataset, and
plan tomake it publicly available (https://github.com/ButterflyDataset/
butterflymotiondatasets.git) to the research community after this
publication. In this section we briefly describe this unique butterfly
motion dataset.

Our butterfly motion dataset contains 18 flights from 5 different
butterflies. Table 2 summarizes main flight characteristics (includ-
ing flapping frequency/amplitude, undulation frequency/amplitude,
and velocity) of 6 selected butterfly flight motions, as well as the
statistics of all the flight motions in our dataset.

Based on the acquired butterfly motion data, we found that the
frequencies of the undulating motion of the butterfly body are
consistent with the flapping frequencies, suggesting that the wing
motion and the body motion are closely coupled to each other.
The butterfly body is pulled up during the wing down-stroke and
undulates with a phase offset with wing motion.

Our quantitative analysis on the butterfly motion further reveals
the following findings:

• The flapping wing frequencies of butterflies remain fairly
confined between 8 and 12 Hz.

• The amplitudes of wing flapping vary significantly with the
average = 154°.

• The undulation frequencies of the butterfly body are similar
to the flapping frequencies of butterfly wings.

• The average amplitude of body undulations is 2.82𝑚𝑚.
• The average flight speed of butterflies is 1.20𝑚/𝑠 .

Butterfly trajectories and velocities. Figure 8(a) shows the thorax
trajectory of a butterfly during four flapping cycles with a left
turn and horizontal flight motion. The velocity components of
the thorax marker are shown in Figure 8(b). The vertical velocity
component 𝑣𝑦 shows prominent oscillations, compared to other
velocity components.

Figure 9(a) shows a trajectory of the butterfly body and its undu-
lation. Figure 9(b) shows the body oscillations that are calculated
by subtracting the mean vertical positions from the original data.
In this way, users can extract flight characteristics from multiple
butterfly flight trajectories.

https://github.com/ButterflyDataset/butterflymotiondatasets.git
https://github.com/ButterflyDataset/butterflymotiondatasets.git


A Practical Method for Butterfly Motion Capture MIG ’22, November 3–5, 2022, Guanajuato, Mexico

Figure 8: (a) XYZ positions of the thorax marker over time during a butterfly flight. (b) The velocity components of the thorax
marker. The velocity magnitude, 𝑣 , and its average 𝑣 are also plotted.

Figure 9: Butterfly body undulation as a function of time. (a) Vertical positions of the butterfly body and its mean trend; (𝑏)
butterfly body oscillations around the mean trend, calculated by subtracting the mean trend of the vertical positions from the
original data.

Table 2: Means and standard deviations of some main characteristics of 6 selected butterfly flight motions in our dataset, as
well as the statistics of all the butterfly flight motions in our dataset (bottom row)

Flight Length Flapping Frequency Flapping Amplitude Undulation Frequency Undulation Amplitude Velocity
# [s] [Hz] [°] [Hz] [mm] [m/s]
2 0.49 10.24 187.95 10.15 3.13 1.16
5 0.47 10.74 148.28 10.74 2.79 1.13
7 0.48 10.35 151.01 10.25 2.79 1.21
11 0.63 11.05 134.25 11.05 2.59 1.09
12 0.45 11.12 170.77 11.16 2.91 1.41
15 0.34 8.72 133.91 8.75 2.73 1.17

Total 0.48 ± 0.09 10.37 ± 0.88 154.36 ± 21.30 10.35 ± 0.88 2.82 ± 0.18 1.20 ± 0.11

Flapping angles. We found that the flapping angles of the but-
terfly exhibit an approximately sinusoidal behavior. An example of
flapping angle traces is shown in Figure 10(a). The flapping angle
𝛽 does not go to zero in all our butterfly motion data, suggesting
that the butterfly wings do not touch each other during flights. The
average amplitude of the flapping motion is about 148°.

Body angles. Body angles are computed at each time. The pitch
angle of the butterfly body, 𝜃 , which is the angle between the thorax
and the horizontal plane, varies between −19.1° and 32.7°. The pitch
angles of the butterfly body show a periodic oscillation similar to
the flapping angles, 𝛽 , but with a small phase difference. Other
Euler angles of the butterfly body in four flapping cycles are also
shown in Figure 10(b).
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Figure 10: (a) The butterfly flapping angles 𝛽 over cycles; (b) The yaw angles𝜓 , pitch angles 𝜃 , and roll angles 𝜑 of the butterfly.

Figure 11: Results of the Fast Fourier Transform performed on flapping angles and body undulations (a), and the Euler angles
of the butterfly body (b).

Frequencies. Dominant frequencies of the wing angles, body an-
gles, and body undulations are obtained through Fast Fourier Trans-
form (FFT). Figure 11 shows FFT analysis results of the wing angles,
body angles, and body undulations. Interestingly, from our FFT anal-
ysis, we found that the flapping angles and the body undulations
show the same dominant frequency at 𝑓 = 10.74 Hz (Figure 11(a)).

Similarly, we found that the pitch angles of the butterfly body have
a similar frequency (11.10Hz) as that of the flapping motion. In
contrast, the yaw and roll angles of the butterfly body show peaks
at 2.22 Hz and 4.16 Hz, respectively. The pitch angles, unlike other
angles, have two peaks within a stroke as shown in Figure 11(b)
consistent with the observation in Figure 10(b).
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7 DISCUSSION AND CONCLUSION
In this paper we present a practical method for butterfly motion
capture, based on an off-the-shelf optical motion capture system.
Due to the fast flapping of butterflies, the directly captured butter-
fly motion data often contain missing markers or errors. To this
end, we propose a series of butterfly-specific motion processing
steps including missing marker handling and trajectory smoothing,
with GA-optimized key parameters. Through comparisons with
existing motion interpolation methods including cubic spline in-
terpolation and XGBoost algorithms, we demonstrate our method
can produce more accurate butterfly motions. Besides swallow-tail
butterfly (Papilio polytes) in this paper, the proposed approach can
be used to capture motions of other butterfly species. In addition,
we will publicly release the captured butterfly flight motion dataset
(containing 18 flights from 5 different butterflies) to the research
community.

Although in this work we demonstrate the effectiveness of our
current approach through various comparisons and analysis, our
method still has several limitations, described below.

• Limited by the sensing capability of the used optical motion
capture system, the volume for butterfly motion capture
is confined in a cylinder-shape space, where the radius is
about 1.0 meter and height is about 1.0 meter. Therefore, the
maximum duration of captured butterfly flight motions is
limited to 0.63 second, which is still longer than the butterfly
duration reported by previous methods [Sridhar et al. 2016].

• In this work, we treat the bilateral wings flapping of the
butterfly with synchronous frequencies[Dudley 2002]. How-
ever, due to the complex aerodynamics and wing structure
of the butterfly, the butterfly wings’ deformation may not
be absolutely symmetric. In the future, we plan to conduct
more experiments to capture the butterfly wings’ motion
with respect to deformation influence.

ACKNOWLEDGMENTS
Qiang Chen was supported in part by the China NSFC (Grant No.
62262024), Scientific Research Project of Education Department of
Jiangxi Province (Grant Nos. GJJ210511, GJJ207109). Yuming Fang
was supported in part by China NSFC (Grant No. 62132006) and
Shenzhen Municipal Science and Technology Innovation Council
(Grant No. 2021Szvup051). Zhigang Deng was in part supported by
US NSF IIS-2005430.

REFERENCES
Bobby Bodenheimer, Chuck Rose, Seth Rosenthal, and John Pella. 1997. The process of

motion capture: Dealing with the data. In Computer Animation and Simulation’97.
Springer, 3–18.

Kang Chen, Yupan Wang, Song-Hai Zhang, Sen-Zhe Xu, Weidong Zhang, and Shi-Min
Hu. 2021. MoCap-Solver: A neural solver for optical motion capture data. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1–11.

Qiang Chen, Tingsong Lu, Yang Tong, Guoliang Luo, Xiaogang Jin, and Zhigang Deng.
2022. A Practical Model for Realistic Butterfly Flight Simulation. ACM Transactions
on Graphics (TOG) 41, 3 (2022), 1–12.

Qiang Chen, Guoliang Luo, Yang Tong, Xiaogang Jin, and Zhigang Deng. 2019. Shape-
constrained flying insects animation. Computer Animation and Virtual Worlds 30,
3-4 (2019), e1902.

Michael H Dickinson, Fritz-Olaf Lehmann, and Sanjay P Sane. 1999. Wing rotation
and the aerodynamic basis of insect flight. Science 284, 5422 (1999), 1954–1960.

Robert Dudley. 2002. The biomechanics of insect flight: form, function, evolution. Prince-
ton University Press.

SN Fry, M Bichsel, P Müller, and D Robert. 2000. Tracking of flying insects using
pan-tilt cameras. Journal of Neuroscience Methods 101, 1 (2000), 59–67.

Yang-yang Guo, Dong-jian He, and Cong Liu. 2018. Target tracking and 3D trajectory
acquisition of cabbage butterfly (P. rapae) based on the KCF-BS algorithm. Scientific
Reports 8, 1 (2018), 1–13.

Daniel Holden. 2018. Robust solving of optical motion capture data by denoising. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 1–12.

Tatjana Y Hubel, Nickolay I Hristov, Sharon M Swartz, and Kenneth S Breuer. 2009.
Time-resolved wake structure and kinematics of bat flight. Experiments in Fluids 5,
46 (2009), 933–943.

Benjamin Jantzen and Thomas Eisner. 2008. Hindwings are unnecessary for flight but
essential for execution of normal evasive flight in Lepidoptera. Proceedings of the
National Academy of Sciences 105, 43 (2008), 16636–16640.

LC Johansson and P Henningsson. 2021. Butterflies fly using efficient propulsive clap
mechanism owing to flexible wings. Journal of the Royal Society Interface 18, 174
(2021), 20200854.

Eunjung Ju, Jungdam Won, Jehee Lee, Byungkuk Choi, Junyong Noh, and Min Gyu
Choi. 2013. Data-driven control of flapping flight. ACM Transactions on Graphics
(TOG) 32, 5 (2013), 1–12.

Christopher Koehler, Thomas Wischgoll, Haibo Dong, and Zachary Gaston. 2011.
Vortex visualization in ultra low Reynolds number insect flight. IEEE transactions
on visualization and computer graphics 17, 12 (2011), 2071–2079.

Weizi Li, David Wolinski, Julien Pettré, and Ming C. Lin. 2015. Biologically-inspired
visual simulation of insect swarms. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 425–434.

Gheorghe Lisca, Cristian Prodaniuc, Thomas Grauschopf, and Cristian Axenie. 2021.
Less Is More: Learning Insights From a Single Motion Sensor for Accurate and
Explainable Soccer Goalkeeper Kinematics. IEEE Sensors Journal 21, 18 (2021),
20375–20387.

Guodong Liu and LeonardMcMillan. 2006. Segment-based humanmotion compression.
In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation. 127–135.

Matthew Loper, Naureen Mahmood, and Michael J Black. 2014. MoSh: Motion and
shape capture from sparse markers. ACM Transactions on Graphics (ToG) 33, 6
(2014), 1–13.

Thomas B Moeslund and Erik Granum. 2001. A survey of computer vision-based
human motion capture. Computer vision and image understanding 81, 3 (2001),
231–268.

AB Qualisys. 2013. Packhusgatan 6, 411 13 Gothenburg. Sweden, Qualisys Track
Manager Manual (2013).

Leif Ristroph, Attila J Bergou, John Guckenheimer, Z Jane Wang, and Itai Cohen. 2011.
Paddling mode of forward flight in insects. Physical review letters 106, 17 (2011),
178103.

Ronald W. Schafer. 2011. What Is a Savitzky-Golay Filter? IEEE Signal Processing
Magazine 28, 4 (2011), 111–117.

Michael Sinhuber, Kasper Van Der Vaart, Rui Ni, James G Puckett, Douglas H Kelley,
and Nicholas T Ouellette. 2019. Three-dimensional time-resolved trajectories from
laboratory insect swarms. Scientific data 6, 1 (2019), 1–8.

Madhu Sridhar, Chang-Kwon Kang, and D Brian Landrum. 2016. Instantaneous lift
and motion characteristics of butterflies in free flight. In 46th AIAA Fluid Dynamics
Conference. 3252.

RB Srygley and ALR Thomas. 2002. Unconventional lift-generating mechanisms in
free-flying butterflies. Nature 420, 6916 (2002), 660–664.

Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell, Markus Gross,
Wojciech Matusik, and Jovan Popović. 2007. Practical motion capture in everyday
surroundings. ACM transactions on graphics (TOG) 26, 3 (2007), 35–es.

Chao Wang, Peter P. K. Chan, Ben M. F. Lam, Sizhong Wang, Janet H. Zhang, Zoe Y. S.
Chan, Rosa H. M. Chan, Kevin K. W. Ho, and Roy T. H. Cheung. 2020. Real-Time
Estimation of Knee Adduction Moment for Gait Retraining in Patients With Knee
Osteoarthritis. IEEE Transactions on Neural Systems and Rehabilitation Engineering
28, 4 (2020), 888–894.

Xinjie Wang, Xiaogang Jin, Zhigang Deng, and Linling Zhou. 2014. Inherent noise-
aware insect swarm simulation. In Computer Graphics Forum, Vol. 33. Wiley Online
Library, 51–62.

Xinjie Wang, Jiaping Ren, Xiaogang Jin, and Dinesh Manocha. 2015. BSwarm:
biologically-plausible dynamics model of insect swarms. In Proceedings of the 14th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 111–118.

Wei Xiang, Xinran Yao, HeWang, and Xiaogang Jin. 2020. FASTSWARM: A data-driven
framework for real-time flying insect swarm simulation. Computer Animation and
Virtual Worlds 31, 4-5 (2020), e1957.

Qian Yu, Qing Li, and Zhigang Deng. 2007. Online motion capture marker labeling
for multiple interacting articulated targets. In Computer Graphics Forum, Vol. 26.
Wiley Online Library, 477–483.


	Abstract
	1 Introduction
	2 Related Work
	3 Our Method
	4 Butterfly Motion Data Processing
	4.1 Missing Marker Handling
	4.2 Noisy Trajectory Smoothing
	4.3 Key Parameters Optimization

	5 Results and Comparisons
	5.1 Comparisons

	6 Butterfly Motion Dataset
	7 Discussion and Conclusion
	Acknowledgments
	References

