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A B S T R A C T

In the rapidly evolving landscape of medical imaging, the integration of artificial intelligence (AI) with clinical
expertise offers unprecedented opportunities to enhance diagnostic precision and accuracy. Yet, the "black box"
nature of AI models often limits their integration into clinical practice, where transparency and interpretability
are important. This paper presents a novel system leveraging the Large Multimodal Model (LMM) to bridge the
gap between AI predictions and the cognitive processes of radiologists. This system consists of two core modules,
Temporally Grounded Intention Detection (TGID) and Region Extraction (RE). The TGID module predicts the
radiologist’s intentions by analyzing eye gaze fixation heatmap videos and corresponding radiology reports.
Additionally, the RE module extracts regions of interest that align with these intentions, mirroring the radiol-
ogist’s diagnostic focus. This approach introduces a new task, radiologist intention detection, and is the first
application of Dense Video Captioning (DVC) in the medical domain. By making AI systems more interpretable
and aligned with radiologist’s cognitive processes, this proposed system aims to enhance trust, improve diag-
nostic accuracy, and support medical education. Additionally, it holds the potential for automated error
correction, guiding junior radiologists, and fostering more effective training and feedback mechanisms. This
work sets a precedent for future research in AI-driven healthcare, offering a pathway towards transparent,
trustworthy, and human-centered AI systems. We evaluated this model using NLG(Natural Language Genera-
tion), time-related, and vision-based metrics, demonstrating superior performance in generating temporally
grounded intentions on REFLACX and EGD-CXR datasets. This model also demonstrated strong predictive ac-
curacy in overlap scores for medical abnormalities and effective region extraction with high IoU(Intersection
over Union), especially in complex cases like cardiomegaly and edema. These results highlight the system’s
potential to enhance diagnostic accuracy and support continuous learning in radiology.

1. Introduction

In recent years, the integration of artificial intelligence (AI) into
medical imaging has led to significant advancements, offering the po-
tential to enhance diagnostic accuracy and streamline clinical workflows
[1,2]. However, alongside these developments, a critical challenge is to
ensure that AI systems are not only powerful in their predictive capa-
bilities but also transparent and interpretable [3-5]. In clinical practice,
interpretability is essential for building trust and enabling radiologists to
rely on AI in making high-stakes decisions [6–9]. Without this, the

adoption of AI systems in healthcare remains limited [10].
Radiologists, as expert interpreters of medical images, do not solely

rely on isolated image features or patterns detected by machines.
Instead, they bring to bear a combination of clinical knowledge, years of
experience, and an intuitive, intention-driven process for interpreting
complex medical data [11,12]. They focus on specific regions of an
image to investigate abnormalities, confirm suspicions, or rule out
certain conditions. This decision-making process is deeply rooted in
their reasoning and cognitive strategies, which are difficult to replicate
or explain through traditional AI models [12,13].
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Traditional AI systems, while effective at recognizing patterns, are
typically data-driven and lack insight into human cognitive processes
[14]. These systems generate predictions without providing an expla-
nation that aligns with how a radiologist might interpret the same image
[15]. This "black-box" nature of AI creates a significant disconnect be-
tween machine predictions and human understanding, resulting in
skepticism and eroding trust among medical professionals [16]. As a
result, even when AI systems produce accurate predictions, they are also
prone to errors such as false positives and false negatives. In particular,
false positive findings can waste a radiologist’s time if no explanation is
provided, further complicating reliance on AI for critical diagnostic
decisions.

For AI to be truly integrated into clinical practice, it must offer more
than just accurate predictions. It must provide transparency and
explainability in a way that corresponds to the radiologist’s thought
process and workflow [17]. Addressing this gap between AI outputs and
human cognitive processes is essential for fostering trust and ensuring
the successful adoption of AI in healthcare.

Eye gaze data provides a promising solution to this challenge. By
capturing where radiologists focus their attention when interpreting
chest X-ray (CXR) images [18-20]. It reveals the regions of interest that
radiologists prioritize during diagnosis, providing valuable insight into
their reasoning and intentions [21]. Leveraging this rich source of in-
formation, we propose a novel approach that uses eye gaze data to
enhance the interpretability of AI systems in medical imaging.

This paper introduces a novel system based on the Large Multimodal
Models ( LMM) designed to bridge this gap by aligning AI outputs with
the cognitive processes of radiologists and adding more explainability in
radiological diagnosis. The proposed system comprehends and predicts
the intentions of radiologists as they interpret medical images, effec-
tively creating a synergy between AI and human expertise. As shown in
Fig. 1, The system comprises two key modules: Temporally Grounded
Intention Detection (TGID) and Region Extraction (RE). The TGID
module analyzes fixation heatmap videos and corresponding radiology
reports to predict the intentions driving specific gaze patterns, providing
a temporal grounding for these intentions. The RE module utilizes these
predictions to extract relevant regions of interest, offering a visual
representation that mirrors the radiologist’s focus during the diagnostic
process.

The development of this system marks the introduction of a new task
within the medical domain—radiologist intention detection. To ensure
the practical relevance and accuracy of our approach, we have estab-
lished comprehensive evaluation strategies to assess the performance of
the system. Notably, this work represents the first attempt to apply
Dense Video Captioning (DVC) [22–26] to medical data, setting a pre-
cedent for future research in AI-driven healthcare.

The applications of this system extend far beyond simply enhancing
diagnostic tools. By making AI more interpretable and aligned with
human cognition, this approach can significantly improve trust among
medical professionals, thereby increasing the likelihood of AI adoption

in clinical settings. This, in turn, could lead to more efficient workflows
and better patient outcomes. The system also has substantial potential in
medical education, offering trainees deep insights into expert diagnostic
processes. It can help trainee radiologists understand how experienced
radiologists make decisions about multiple abnormalities and identify
the regions of interest corresponding to each intention mentioned in
radiology reports—essentially reverse engineering the radiologist’s in-
tentions. Moreover, it could serve as a vital component in automated
error correction systems [27], rectifying perceptual errors. The system
can be leveraged to guide trainees towards identifying the correct re-
gions of interest and to enhance training and feedback.

The key contributions of this paper include:

• Development of a novel system for comprehending the intentions of
radiologists alongside the corresponding regions of interest.

• Introduction of evaluation strategies for assessing the performance
and practical relevance of the proposed model.

• Pioneering a new task known as radiologist intention detection
within the medical domain.

• Application of DVC to medical data, representing the first such
attempt in this field.

2. Related work

The integration of AI in medical imaging has garnered significant
attention in recent years, particularly in enhancing diagnostic accuracy
and facilitating clinical workflows [28–30]. Several studies have
explored AI applications in the interpretation of CXR images, focusing
on different aspects such as abnormality detection [31], lesion locali-
zation [32], and disease classification [33]. These efforts have demon-
strated the potential of AI to augment the capabilities of radiologists,
reduce workload, and improve diagnostic efficiency. However, chal-
lenges remain in aligning AI predictions with the cognitive processes of
human experts to ensure trust and interpretability in clinical practice.

a. Interpretability and trust in AI systems
The interpretability of AI models in medical imaging has garnered

significant attention, as it is essential for ensuring that healthcare
practitioners can trust and effectively utilize these systems in clinical
practice [6–9]. Given the high stakes involved in medical decisions,
understanding how AI systems arrive at their conclusions enhances
user confidence, facilitates collaboration, and ultimately improves
patient outcomes. Various approaches have been proposed to
enhance the transparency of model predictions [34–36]. Explainable
AI (XAI) techniques [37,38], including saliency maps [39],
Grad-CAM [40], and LIME [39], are widely utilized to illuminate the
features that influence model decisions. New methods such as
counterfactual explanations and causal reasoning have emerged to
provide actionable insights (Kim et al., 2022) [41]. Additionally,
Rudin et al. [42] advocate for inherently interpretable models, which

Fig. 1. Overview of our proposed system, comprising two key submodules: Temporally Grounded Intention Detection (TGID) and Region Extraction (RE). The system
processes eye gaze fixation video overlaid on CXR images alongside the corresponding radiology report, ultimately identifying the intended diagnosis and high-
lighting the associated Regions of Interest (ROI).
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eliminate the need for post-hoc explanations and foster greater user
trust.
Innovations in interpretability continue to evolve, with ap-

proaches such as prototype-based explanations [43] and enhanced
integrated gradients [44]. The adoption of Vision Transformers for
attention-based interpretability is also gaining traction [45,46].
Furthermore, SHAP-based approaches [47,48] provide valuable
case-specific insights, while self-supervised learning [49] and
Bayesian deep learning [50] further enhance interpretability by
improving model understanding. Multi-modal AI [51] and interac-
tive machine learning [52] are also pushing the boundaries of AI
interpretability, striving to align models more closely with clinical
reasoning and fostering greater trust in AI systems.
Despite these advancements, existing methods primarily focus on

elucidating the inner workings of AI models. However, they often fail
to align with the nuanced thought processes of radiologists, who
interpret medical images through a combination of clinical knowl-
edge and visual inspection. This disconnect between AI outputs and
human cognitive processes can hinder the successful integration of
AI into clinical workflows, where trust and reliability are critical.

b. Understanding radiologist’s cognitive processes and eye gaze:
Understanding the cognitive processes of radiologists during

image interpretation is crucial for developing AI systems that com-
plement human expertise [53]. Eye-tracking technology has been
extensively used to study radiologist’s gaze patterns to gain insights
into their diagnostic reasoning and decision-making strategies. Drew
et al. [54] demonstrated that radiologist’s eye movements reflect
their experience level, as expert radiologists tend to have more
focused and efficient gaze patterns when identifying abnormalities.
Similarly, [55] found that expert radiologists spend less time fixating
on non-diagnostic areas, suggesting a more refined search strategy
compared to novices.
Recent studies have explored the application of eye-tracking data

to develop models that mimic radiologist’s visual attention patterns.
For example, Peng et al. [56] used the eye gaze data to predict the
radiology report. Bertram et al. [57] also used eye-tracking data to
understand the diagnostic process of radiologists when interpreting
mammograms, finding that gaze patterns could be predictive of
diagnostic success, and highlighting the importance of aligning AI
systems with human visual strategies.

c. The role of eye gaze in enhancing AI interpretability:
The integration of eye-tracking data into AI models has been

shown to improve the interpretability and trustworthiness of these
systems [58]. By aligning AI predictions with the regions of interest
identified by radiologists’ gaze patterns, researchers aim to create
more intuitive and user-friendly diagnostic tools. Additionally, the
use of eye-tracking in high-stakes decision environments, such as
clinical settings, allows for a granular assessment of how Explainable
AI (XAI) influences physician decision-making. Recent studies have
demonstrated that eye-tracking can reveal how different types of XAI
explanations affect clinician behavior and attention, potentially
improving the interaction between human experts and AI [59]

d. Video-based analysis and dense video captioning (DVC):

Video-based analysis has emerged as a promising approach to
capturing the temporal dynamics of radiologist’s visual attention during
image interpretation. DVC has been employed in various domains to
generate temporally grounded descriptions of events in videos [22–26].
While DVC has not been extensively applied to medical imaging, its
potential to provide a temporal context for interpreting gaze patterns
and corresponding clinical intentions is significant. Our work represents
the first attempt to apply DVC to the medical domain, specifically in
understanding the temporally grounded intentions of radiologists dur-
ing CXR interpretation.

Our proposed system builds upon these foundational studies by
introducing a novel approach to understanding and modeling

radiologists’ intentions in CXR image analysis. TGID module and RE
modules are designed to predict radiologists’ cognitive processes and
highlight relevant regions of interest, thus bridging the gap between AI
predictions and human interpretation. This approach not only enhances
the interpretability of AI models but also provides a valuable tool for
error correction and medical education, particularly in guiding inexpe-
rienced practitioners.

3. Methodology

Our proposed system comprises two primary modules: 1) Temporally
Grounded Intention Detection (TGID) and 2) Region Extraction (RE).
The TGID module is based on the LMM which works on the multimodal
data. Illustrated in Fig. 2, the TGID module utilizes the fixation heatmap
video and the time steps embedded in the radiology report as inputs. It
then predicts the main intentions in the radiology report with the cor-
responding temporal grounding or time steps.

As shown in Fig. 3, The RE module utilizes the predicted time steps
(start and end times) and the identified intention to extract clips from
the input video, containing multiple frames. Subsequently, we compute
the mean of all images within the extracted clip to determine a repre-
sentative image for the region of interest associated with the intention.
It’s important to note that the RE module is a straightforward search
algorithm reliant on TGID predictions and is not the primary focus of our
contribution.

The TGID module serves as the core of our system by predicting
temporally grounded intentions. The intricate design of this module is
depicted in Fig. 2. As illustrated, the proposed architecture comprises
two integral components: the Video Backbone and the Language Back-
bone. We employed a Chexpert labeler [60] to condense the radiology
report into the main Chexpert labels [60]. We call these labels intentions
and for this study, we only focus on the seven intentions Cardiomegaly,
Edema, Atelectasis, Lung Opacity, Pleural Effusion, and Pneumothorax.
Chexpert-labeler produces the summarized radiology report as shown in
Fig. 2. To enhance the summarized report, we added the start and end
times, with the end time representing the video duration and the start
time set at 1.1 s. This choice is grounded in our observation that radi-
ologists typically commence speaking after 1.1 s upon viewing the
video, a value derived from the analysis of the EGD-CXR [61] and
REFLACX [62] datasets.

a. Video Backbone
The Video Backbone plays a pivotal role in extracting features

from the input video. It comprises a spatial encoder followed by a
temporal encoder, operating on a sequence of ’f’ frames. Utilizing a
pre-trained Resnet-101 [63] as the spatial encoder, we extract indi-
vidual frame features, considering the spatial characteristics of each
frame in the video. The input set consists of videos with dimensions ’f
× h× w× c,’where ’h,’ ’w,’ and ’c’ represent the height, width, and
number of channels of each frame. The spatial encoder processes
each frame independently, and we maintain the spatial backbone as
frozen to minimize computational costs and parameter count in the
overall model.
The spatial encoder generates a two-dimensional array, with the

first dimension representing the number of frames and the second
representing the embedding dimension. Although each video may
have a varying number of frames, we limit our consideration to the
features of the first 100 frames. To accommodate videos with fewer
than 100 frames, we pad the feature extraction output from Resnet
with zeros.
For the temporal encoder, we employ a trained CLIP ViT-L/14 [64,

65] transformer to produce contextualized embeddings, contributing
to the comprehensive feature representation of the input video.

b. Language backbone
Our language backbone [22] is built on the Large LanguageModel(

LLM) T5 [65], employing an encoder-decoder architecture. We
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initialized both the text encoder and decoder with the t5-base model,
which underwent pretraining on web text corpora with a denoising
loss.

c. Text and time tokenization
We utilize the SentencePiece tokenizer [27] with a vocabulary size

of V = 32,128. Our approach involves initial text tokenization, and
to augment this process, we incorporate two extra time tokens,
bringing the total to V + 2 tokens. Throughout the training, these
time tokens represent the initiation and conclusion times when the
radiologist begins and concludes the depiction of the radiology
report while examining the CXR image on the screen. The time
tokenization process adheres to the equation detailed below.

tt =
⃒⃒
⃒⃒(ts× N)

D

⃒⃒
⃒⃒ (1)

In Eq. 1, "tt" denotes the time token, "ts" represents the timestep
(indicating the start or end time step), "N" signifies the quantized bin
with a specified value of 100 (N = bins), and "D" corresponds to the
video duration.

d. Text encoder
It accepts a report sequence as input, where the report sequence

comprises ’r’ tokens denoted as ’y’ belonging to the set
y ∈ {1, ...,V + N}r . Here, ’v’ represents the vocabulary size of the
text, ’n’ is the size of time tokens (here n = 2), and ’r’ stands for the
total number of tokens in the report sequence. The text encoder in-
cludes an embedding layer responsible for independently embedding
each token, producing a semantic embedding of size ’rxd’. Subse-
quently, a transformer encoder calculates contextualized embed-
dings of size ’rxd’, with ’d’ representing the hidden dimension.

Fig. 2. TGID module overview: A Large Multimodal Model (LMM) that takes video features and summarized radiology reports with appended time tokens as input
and output the intention sequence with temporal grounding.

Fig. 3. Region Extraction (RE) module overview: The RE module utilizes the predicted time steps (start and end times) and the identified intention to extract clips
from the input video, containing multiple frames. Subsequently, we compute the mean of all images within the extracted clip to determine a representative image for
the region of interest associated with the intended purpose.
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e. Text decoder
Comprising a transformer decoder and an embedding layer, the

system generates an intention sequence with associated temporal
grounding, referred to as the intention sequence. Each abnormality k
is characterized by a text segment, a start time, and an end time. We
first construct for each event k a sequence by concatenating its start
time token t(startk), its end time token t(end), and its text tokens [zk1,
... , zklk ]. Finally, the event sequence is obtained by prepending and
appending a BOS and EOS tokens to indicate the start and the end of
the sequence, respectively, i.e. z = [BOS, tstart1 , tend1 , z11 , ... , z1l1 ,

tstart2 , ... ,EOS].
The transformer decoder, functioning causally, employs cross-

attention with the encoder output, formed by concatenating visual
and encoder transformer embeddings (x_t and y_t), along with all
tokens generated earlier. Simultaneously, it performs self-attention
across the entire set of previously generated tokens. The text
decoder produces the event sequence z by utilizing an embedding
decoder, which is applied on top of the transformer text decoder.
This decoder predicts the probability distribution over the joint vo-
cabulary of text and time tokens, enabling the model to anticipate the
subsequent token in the report sequence.

f. Pretraining & finetuning

We utilized the pre-trained model from vid2seq [22], specifically
trained on the ActivityNet Captions dataset [66], which comprises
approximately 20,000 untrimmed videos depicting diverse human ac-
tivities. Each video is accompanied by transcribed speech sentences and
timestamps, establishing a temporal connection to events. Given the
limited availability of fixation videos and corresponding transcriptions
in the medical domain, leveraging this pre-trained model enables our
system to understand long-term relationships among different speech
segments.

Subsequently, during the finetuning stage, the model is refined to
predict the intention sequence (intention + time interval) by consid-
ering both the summarized radiology report sequence obtained through
the CheXpert labeler and the visual sequence. The fine-tuning objective
is derived from the maximum likelihood objective, elaborated upon in
this context [22]. The primary goal of this TGID module is to understand
human cognition during decision-making in abnormal diagnosis. In
simpler terms, this module learns what radiologists focus on when
making decisions based on CXR images.

4. Datasets & experimentation

For this study, we selected the EGD-CXR [61] and REFLACX [62]
datasets due to the limited availability of eye-tracking datasets specif-
ically focused on radiology and medical imaging. At the time of our
research, these were the only two datasets that combined both
eye-tracking data and CXR images, making them essential resources for
our investigation into radiologist intention prediction. EGD-CXR dataset
comprises 1071 CXR images reviewed by a radiologist using an
eye-tracking system. Meanwhile, the REFLACX dataset encompasses
2344 cases with synchronized eye-tracking and transcription pairs, an-
notated by five radiologists. We utilized two different datasets recorded
by different radiologists with varying levels of experience. EGD-CXR is
recorded on a single experienced radiologist but the REFLACX is
recorded on the 5 different radiologists with varying levels of experi-
ence. We have trained and tested our model on EGD-CXR and REFLACX
respectively. A detailed description of the training and test datasets of
EGD-CXR and REFLACX is provided in Table 1.

a) Dataset preprocessing:

Our proposed system takes eye-gaze heatmap videos overlaid on the
corresponding CXR images as input. We created the eye gaze heatmap

videos by overlaying the eye gaze fixation heatmap on the original CXR
image. However, the eye gaze fixation heatmaps are created using the
fixation points provided in the eye gaze data and Gaussian intensity is
used to create the intensity around the fixation points using the
sigma= 150.We used the same procedure to create the heatmaps as used
in this work [61]. They have provided the code in their GitHub re-
pository to create the heatmaps using fixations points. A few instances of
the heatmap video from the REFLACX data are shown in Fig. 4. The
frame rate from these videos is 1. Input to the proposed system is the
radiology report and the eye gaze video overlaid on the image.

To train the TGIP module, we used processed eye gaze videos over-
laid on the CXR image and ground truth file which we created using the
radiologist transcription which is provided in each eye gaze dataset (
EGD-CXR and REFLACX).

In our preprocessing phase, we summarize the real radiology reports
to acquire both the ground truth and input report necessary for training
the TGID module. When condensing the radiology reports, we prioritize
essential abnormalities outlined in the CheXpert labeler. Our approach
of preprocessing aims to avoid converting the entire radiology report
into isolated labels. Instead, we focus on ensuring that the model grasps
the fundamental aspects of chest X-ray anatomy, including spatial re-
lations like "right" and "left" lungs. Radiology reports typically consist of
multiple sentences separated by periods. To address this structure, our
preprocessing methodology involves extracting each sentence. During
this extraction process, we meticulously scrutinize each sentence for
phrases corresponding to abnormalities in the CheXpert labeler. If a
match is found, we substitute the sentence with the relevant abnor-
mality; otherwise, it remains unchanged.

We extract the timestamps for each abnormality or unchanged sen-
tence in the summarized report from the speech transcription associated
with the CXR image. The speech transcription provides word-level
timestamps. For each sentence in the actual report, we extract the
start and end timestamps from the transcription and apply them to the
corresponding sentence or label in the summarized report. This entire
process, including report summarization and timestamp extraction, is
detailed in Fig. 1 of the supplementary section. The dataset and code for
this preprocessing step are also available in our repository. This result-
ing file served as the ground truth during the model fine-tuning,
encompassing fixation heatmap videos and summarized radiology re-
ports featuring only start and end timestamps for the entire report as
input. This ensured a robust foundation for training. The core objective
of the TGIDmodule is to comprehend human cognition by predicting the
timestamps associated with each intention. It’s worth noting that our
focus does not extend to conducting dense video captioning in this
context.

It is important to recognize that there may be slight misalignment
between eye gaze fixations and speech transcriptions. According to the
REFLCAX dataset paper [62], the relationship between dictation and eye
gaze fixation shows minimal delay; however, a correlation exists be-
tween expert annotations, represented as ellipses, and gaze fixation
points [62]. This correlation suggests that eye gaze fixations can be
utilized to extract the localization of abnormalities. The presence of this
discernible signal in the data allows our model to derive valuable in-
sights, even amidst the noise introduced by any temporal misalignment.
To address the challenges associated with this misalignment, we inte-
grated the capabilities of the TGID module, which is based on Google’s
Vid2Seq model [22]. This model is specifically designed to handle in-
stances of misalignment, making it particularly suitable for our

Table 1
Overview of training and test data allocation from EGD-CXR and REFLACX
datasets.

Dataset Training set (~75%) Test set (~25%)

EGD-CXR 800 271
REFLACX 1772 572
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application. The Vid2Seq model excels in learning from noisy supervi-
sion and is adept at jointly modeling narrations and timestamps. The
original authors acknowledge that speech may not always accurately
reflect the content of the visual data; nevertheless, the model success-
fully extracts meaningful relationships between the transcriptions and
the visual data streams.

b) Experimentation

We used Python 3.8 for all the experiments. For training the machine
learning model, we have used Python packages like Pytorch 1.13.1,
Opencv-python 4.5.1.48, Numpy 1.22.4 Pandas 2.2.2, etc. For finetun-
ing, we fine-tuned the TGID module on both the datasets REFLACX and
EGD-CXR datasets separately. The model was trained on these datasets,
consisting of fixation heatmap videos, summarized radiology reports,
and temporally grounded intention sequences as ground truth. We
employed Adam as the optimizer, with a batch size of 8 for both vali-
dation and training. We used 8 NVIDIA GPUS for finetuning the model
on both the datasets. Notably, despite planning for 270 epochs of fine-
tuning, the model demonstrated effective learning within approximately
50 epochs.

5. Evaluation metrics

In evaluating the performance of our system, we employ both time-
based and vision-based metrics, specifically designed to assess how well
the model predicts the temporal groundings and spatial regions of in-
terest (ROI) for each intention (abnormality). These metrics ensure that
the system aligns with the diagnostic workflow of radiologists, providing
insights into both timing and visual accuracy.

a. Time-based metric for Intentions:
To evaluate how accurately the model predicts the time intervals

associated with each intention, we focus on measuring the overlap
between the true and predicted time intervals in the intention
sequence. Our goal is to assess how well the model temporally
grounds each intention using gaze data (fixation videos).
For each intention (abnormality), the model generates predictions

defining specific time intervals. We calculate the overlap between
the true and predicted intervals using the following formula:

Time Overlap score = Length of the Overlapping Interval
Length of the True Interval

(2)

In Eq. 2, the length of the Overlapping Interval is given by:

Lengthof theOverlapping Interval=max(0,min(B2,B1)−max(A2,A1))

The length of the True Interval is calculated as:

Length of the True Interval = B1−A1

Here, [A1, B1] represents the start and end times of the true in-
terval, and [A2, B2] represents the start and end times of the pre-
dicted interval.
The time-overlap score ranges from 0 to 1, where 0 signifies no

overlap between the true and predicted intervals. By multiplying this
score by 100, we obtain the percentage of overlap between these
intervals, providing a clear measure of how well the model aligns
with the true intervals.

b. Vision-Based metric for Intentions:

To evaluate the model’s spatial predictions, we use the Intersection
over Union (IoU) metric, which measures the overlap between the true
and predicted regions of interest for each intention. The IoU is a
commonly used segmentation metric, also known as the Jaccard Index,
and is calculated as follows:

IoU = Intersection( A ∩ B)
Union(A ∪ B) (3)

In Eq. 3, intersection (A∩B) consists of pixels that are common be-
tween the prediction mask and the ground truth mask, while the union
(A∪B) represents all pixels in either the prediction or ground truth mask.
The IoU provides a measure of how closely the predicted regions align
with the actual regions that the radiologist focused on during the
diagnostic process.

For each intention, we first use the predicted start and end time steps
to extract frames from the video. The mean image of these frames is then
computed, representing the overall intensity in the predicted region of
interest. Similarly, frames are extracted based on the ground truth time
steps, and their mean image is calculated. Finally, we compute the IoU
between the predicted and ground truth mean images, offering a
quantitative assessment of the model’s spatial alignment with the radi-
ologist’s actual focus areas.

These metrics together offer a comprehensive evaluation of both the
temporal and spatial aspects of the model’s predictions.

6. Results & discussion

We begin by visualizing how our system predicts intentions (ab-
normalities) and diagnoses to understand the final output of the system.

Fig. 4. Demonstration of Creating the eye gaze heatmap videos which contain the frames representing the overlaid eye gaze fixation heatmap on the actual
CXR image.
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Following this, we evaluate the system using various metrics. To assess
the proposed model’s text generation capabilities, we employ natural
language generation (NLG) metrics, comparing our results with state-of-
the-art methods. Additionally, we conduct a thorough evaluation of the
model’s performance using time-related and vision-based metrics.

a. Radiology report, CXR image, and intention visualization

Fig. 5 offers a demonstration of our system’s ability to accurately
predict radiologists’ intentions and highlight the corresponding ROI on
CXR images, effectively simulating the diagnostic focus during image
interpretation. The figure showcases two randomly selected images from
the test sets of the EGD-CXR and REFLACX datasets, providing visual
evidence of the system’s proficiency in identifying multiple ROIs asso-
ciated with a single abnormality. For instance, in the EGD-CXR example,
the radiologist’s report indicates the presence of effusion in both the left
and right lungs and our system successfully pinpoints the relevant areas
in both lungs on the CXR image. Similarly, in the REFLACX example, the
system not only contextualizes labels generated by CheXpert but also
identifies additional diagnostic features, highlighting its utility in
providing comprehensive visual explanations that extend beyond auto-
mated labels. This capability is particularly valuable for student radi-
ologists, as it aids in learning the basic anatomical structures and
understanding the subtleties of diagnostic reasoning. The visualizations
underscore the potential of our approach to enhance radiological
training and improve the interpretability of AI-assisted diagnosis in
clinical settings.

a. Natural language generation metrics

The model predicts text containing various intentions along with
their corresponding time steps. Ultimately, we are using the Large
Language model as an engine in the TGID module and the final output is
in the form of text. It is always good to evaluate the generated text using
NLG metrics. NLG metrics serve as a valuable tool in gauging the
model’s text generation proficiency. While NLG metrics may not be the

optimal measure for evaluating predicted time steps for each intention,
they provide a holistic indication that the model is generating mean-
ingful output. Table 2 displays n-gram Blue scores and CIDEr scores [67]
for various state-of-the-art methods, indicating that our model excels in
generating intentions with accurate temporal grounding compared to
the state-of-the-art DVC model PDVC [23]. We trained and tested the
TGID module on the REFLACX and EGD-CXR datasets respectively.
Table 2 shows the NLGmetrics on the test set of EGD-CXR and REFLACX.
As shown in Table 2, our proposed TGID module outperforms the
state-of-the-art model in both the datasets EGD-CXR and REFLACX.
TGID has a better CIDEr score on REFLACX compared to the EGD-CXR
due to the larger size of the REFLACX dataset. This shows that the
TGID model generalizes better when the dataset is large.

b. Evaluation of temporal groundings using time-based metric for
intentions

We conducted a comprehensive evaluation of the TGID module’s
overall performance in predicting time steps for all abnormalities. Fig. 6
illustrates a violin plot showing the distribution of time-overlap scores
for the predicted time steps of all intentions in the intention sequence for
the EGD-CXR and REFLACX datasets separately. This visualization
highlights the distribution of time-overlap scores for each disease,
showcasing the TGID module’s capability to accurately predict time
steps and its ability to capture human cognitive processes.

Fig. 6(a) focuses on the time-overlap scores for the REFLACX dataset,
which consists of eye gaze data recorded from multiple radiologists with
varying levels of experience. The time-overlap scores for the REFLACX
dataset are generally noisier compared to the EGD-CXR dataset due to
this variation in experience, yet the model effectively handles this noise
and still achieves strong predictions of time steps. A notable observation
is the decreased time-overlap score for cardiomegaly in the REFLACX
dataset. This is likely because different radiologists diagnose car-
diomegaly using different visual cues where some may focus on the
heart, while others may also consider the area around the lungs. As a
result, this makes it challenging for the model to consistently identify the

Fig. 5. The intentions of radiologists and their corresponding regions of interest are illustrated. This figure depicts the specific areas within the image that radi-
ologists focus on for each diagnosis mentioned in the report. One sample from both datasets is presented here.
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Table 2
Comparison to the SoTA for Intention temporal grounding on two datasets ( REFLACX and EGD-CXR) recorded on different radiologists of varying experience. V/F/O
refers to visual/flow/object features.

Method Dataset Backbone Blue-1 Blue-2 Blue-3 Blue-4 CIDEr

PDVC[23] EGD-CXR V (CLIP) 0.19 0.17 0.12 0.10 1.7
PDVC[23] REFLACX V (CLIP) 0.20 0.19 0.14 0.13 1.9
TGID (Our) EGD-CXR ResNet¡101 0.44 0.44 0.43 0.43 3.5
TGID(Our) REFLACX ResNet¡101 0.46 0.47 0.45 0.43 3.9

Fig. 6. This figure illustrates the comprehensive performance of the TGID module across all predicted time steps in the intention sequence. It provides violin plots
representing the distribution of time-overlap scores for different intentions ( abnormalities). It consists of two subfigures: Subfigure- A represents the TGID module’s
performance on the EGD-CXR dataset and Subfigure- B represents the TGID module’s performance on the REFLACX dataset.
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correct region for cardiomegaly in the REFLACX dataset.
Table 3 presents the mean and median overlap scores for various

intentions across the EGD-CXR and REFLACX datasets, along with 95%
confidence intervals (CI) based on 1000 bootstrapped samples. These
scores assess the model’s accuracy in predicting temporal intervals
associated with each disease, revealing performance variations influ-
enced by dataset characteristics and intention types.

As shown in Table 3, the model’s performance differs across in-
tentions and datasets, with inter-observer variability among radiologists
playing a significant role. A key factor contributing to this variability is
the difference in radiologists’ expertise levels [68]. For intentions such
as cardiomegaly, edema, effusion, and pneumothorax, overlap scores
drop significantly in the REFLACX dataset compared to EGD-CXR, likely
due to noise introduced by differences in radiologist expertise. Effusion
and pneumothorax, in particular, show consistently lower overlap scores
across both datasets compared to other intentions due to their subtle,
position-dependent presentations and overlap with other lung abnor-
malities. In contrast, pneumonia, evaluated only in EGD-CXR (due to its
absence in REFLACX), demonstrates strong and consistent performance.
Atelectasis remains stable across datasets, performing slightly better in
REFLACX, while lung opacity is detected well in both datasets, partic-
ularly in REFLACX, likely due to its distinct appearance on imaging.

Table 3 further emphasizes that although the model performed well
overall, accuracy is influenced by the dataset. Inter-observer variability,
especially in REFLACX, contributes to discrepancies in temporal pre-
dictions. The model tends to perform better on datasets with more
consistent diagnostic criteria and minimum inter-observer variability,
such as EGD-CXR, highlighting the importance of considering both
dataset characteristics and radiologist variability when evaluating
model performance.

One challenge in evaluating the model’s time-related predictions is
that radiologists often use a non-linear approach when interpreting CXR,
freely navigating the image rather than following a strict pattern. As a
result, the TGID module may inaccurately predict the exact time step for
a disease, leading to a 0 overlap score, even though the predicted region
might still be correct. This discrepancy arises because radiologists may
revisit the same area, as reflected in the time intervals of the ground
truth. We explore this issue with an example in the next section on
vision-related metrics.

While time-related metrics provide a general assessment of how well
the model predicts timesteps compared to the ground truth, they do not
fully capture the alignment of the predicted region with the ground
truth. To offer a more detailed evaluation of the predicted regions, we

will focus on visual metrics in the following section.

c. Evaluation of extracted ROI using Vision-Based metric for Intentions

As previously noted, relying solely on time-related metrics may not
be the most accurate approach for assessing the model’s ability to
highlight the region of interest for the missing diagnosis. To address this,
we employ a segmentation metric known as Intersection over Union
(IoU) to calculate the overlap between the true and predicted regions.

In Fig. 7, we present a comprehensive distribution of the IoU scores
for the entire diagnosis in our proposed system. It has two subfigures,
Figs. 7(a) and 7(b). Fig. 7(a) represents the IoU scores for the REFLACX
data and Fig. 7(b) shows the IoU scores of the EGD-CXR dataset. In the
case of EGD-CXR, The IoU scores for all diseases showcase an almost
symmetrical distribution around the mean, with closely aligned mean
and median values for each disease. A comparison between Fig. 6(a),
illustrating the distribution of overlap scores for each disease, and Fig. 7
(a), which depicts the IoU score for each, reveals slight differences in
distribution patterns. For instance, in the case of Edema, overlap scores
may occasionally be zero, yet the model accurately predicts the correct
region of interest. This divergence from the distribution pattern of IoU
scores, which does not include zero for Edema, suggests that the pre-
dicted region of interest consistently corresponds to the ground truth.
The same pattern holds for Pneumonia as well. This observation un-
derscores the model’s ability to effectively learn abnormal regions
associated with each disease. The occurrence of zero overlap scores can
be attributed to the radiologist’s tendency to employ a more efficient,
free, and global search, rather than following a preconceived orderly
pattern when scanning the CXR image [69]. As we can also see the IoU
scores of the REFLACX dataset are a little noisy and follow the multi-
modal distribution. It is due to the previously defined fact that the
REFLACX dataset consists of the data of multiple varying experienced
radiologists which makes the learning a little noisy.

Additionally, we include a table presenting the mean andmedian IoU
scores for each disease, offering insight into the TGID module’s overall
performance. We also calculate the 95% confidence interval using the
bootstrap method for the mean-IoU score. The number of bootstrap
samples is set to 1000. Table 4 showcases the module’s effectiveness in
identifying regions associated with different abnormalities for the EGD-
CXR and REFLACX datasets.

Cardiomegaly, edema, and lung opacity show consistently strong IoU
scores across both datasets, indicating the model’s ability to reliably
identify these intentions despite inter-observer variability. In contrast to
the significant performance differences observed in overlap time scores,
IoU performance remains stable. This suggests that while the model may
struggle with pinpointing the exact timeframes for these intentions due
to the non-linear diagnostic approach of radiologists, it still accurately
identifies the relevant anatomical regions.

Pleural effusion and pneumothorax, despite showing lower perfor-
mance in overlap time scores, also have relatively moderate IoU scores.
This highlights that the model can detect the general region affected by
these intentions, though variability in radiologist interpretation and the
subtler presentation of these abnormalities make precise temporal
detection difficult. Pneumonia, evaluated only in the EGD-CXR dataset,
and atelectasis show stable IoU performance, with atelectasis perform-
ing better in REFLACX, possibly due to clearer imaging intentions.

The overall findings emphasize that IoU scores demonstrate the
model’s ability to locate the affected regions consistently, even when
temporal prediction struggles due to radiologists’ variability in how they
interpret and navigate images.

A. Impact of Varying Radiologist Experience in REFLACX Dataset
The REFLACX dataset includes eye gaze data recorded on multiple

radiologists, each potentially bringing different interpretations and
visual search patterns in the data, a phenomenon known as inter-
observer variability [62]. This variability in radiologists’ visual

Table 3
Comparison of mean and median overlap scores of each intention ( Abnormality
or Label) for EGD-CXR and REFLCAX datasets, along with 95% confidence in-
tervals (CI).

Disease Mean-Overlap
score ( EGD-
CXR)
With [95% CI
(Upper,
Lower)]

Median-
Overlap
score (
EGD-CXR)

Mean-
Overlap
score (
REFLCAX)
With [95%
CI (Upper,
Lower)]

Median-
Overlap
score (
REFLCAX)

Cardiomegaly 0.74(0.67,0.82) 0.81 0.39
(0.28,0.52)

0.32

Edema 0.68(0.57,0.78) 0.85 0.51
(0.42,0.59)

0.55

Pneumonia 0.79(0.67,0.91) 0.91 _ _
Atelectasis 0.48(0.36,0.61) 0.52 0.60

(0.54,0.66)
0.69

Effusion 0.44(0.35,0.52) 0.37 0.37
(0.33,0.41)

0.29

Pneumothorax 0.63(0.46,0.78) 0.72 0.40
(0.35,0.44)

0.27

Lung Opacity 0.57(0.45,0.68) 0.65 0.63
(0.56,0.69)

0.73
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search patterns can lead to inconsistencies in the ground truth labels,
making it difficult for the model to learn and generalize effectively.
As shown in Table 4, Our proposed system shows a better IoU for
most of the intentions in comparison to the EGD-CXR which shows
the noise-resilient nature of our proposed system. The TGID module
of our proposed system can deal with the noise introduced due to
inter-observer variability. The lower median IoU scores were
observed for Lung Opavity and Pleural Effusion in the REFLACX
dataset compared to the EGD-CXR dataset. This could be attributed
to the inconsistent localization of intentions or inter-observer vari-
ability, which introduces noise and reduces the model’s performance
for these two abnormalities.

B. Discussion on Mean vs. Median IoU

The differences between the mean and median IoU values provide

insights into the distribution and variability of the model’s performance.
The mean IoU represents the average performance across all cases but
can be skewed by extreme values (either very high or very low IoU
scores). In contrast, the median IoU represents the middle value when all
cases are ordered, providing a better measure of the typical case
performance.

For instance, in the case of pneumothorax, the mean IoU in the EGD-
CXR dataset (0.51) is significantly higher than the median (0.30),
indicating that there are a few cases with relatively high IoU scores that
raise the average, while the majority of cases have lower scores. This
discrepancy suggests that the model struggles with consistent perfor-
mance across all pneumothorax cases, potentially due to the small and
sharply defined nature of the pneumothorax regions.

Conversely, intentions like Edema and Lung Opacity have mean and
median IoUs that are quite close, suggesting a more uniform

Fig. 7. This figure illustrates the comprehensive performance of our proposed system across all predicted (ROI))regions of interest in the intention sequence. It
provides a holistic view of the TGID module’s effectiveness in identifying the region of interest for each intention(abnormality) in the report. It consists of two
subfigures: Subfigure- A represents the system’s performance on the EGD-CXR dataset and Subfigure- B represents the TGID system’s performance on the
REFLACX dataset.
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performance across different cases. This implies that the model has a
relatively steady ability to detect these intentions, likely due to their
more diffuse or consistently presented nature in the datasets.

D. Visual comparison: Predicted vs. ground truth intention regions

Fig. 8 presents a comparative analysis of the predicted and ground
truth regions of interest for various intentions (abnormalities). As pre-
viously described, the TGIDmodule predicts the time intervals (start and
end) for each intention. Subsequently, the Region Extraction (RE)
module utilizes these time intervals to extract frames from the fixation
video. It then calculates a mean frame by consolidating multiple frames

into a single image that accurately represents the region of interest for
each specific intention. The results for five intentions are displayed,
demonstrating the model’s effectiveness in predicting abnormality re-
gions. Notably, our proposed system can identify multiple regions
associated with a specific abnormality mentioned by the radiologist in
their report. For example, in the case of lung opacity, our model accu-
rately predicts the opacity in both lung bases.

7. Conclusion

Our work presents a pioneer approach to aligning AI outputs with
radiologist’s cognitive processes through the innovative use of LMM. By
integrating TGID and RE, the proposed system effectively bridges the
gap between human cognition and AI interpretation in medical imaging.
The detailed evaluation, leveraging both natural language generation
metrics and vision-based metrics, underscores the system’s robust per-
formance in predicting temporal intentions and accurately identifying
regions of interest. Despite challenges arising from dataset variability
and radiologist experience, our approach demonstrates significant im-
provements in diagnostic accuracy and interpretability. This advance-
ment holds promise for enhancing radiological practice, supporting
ongoing learning, and fostering more effective communication between
experienced radiologists and trainees. In future work, we want to extend
our system for the CT and MRI scans since they are quite complex and it
will be very useful to reverse engineer the complex cognitive processes
of radiologists on the CT and MRI.
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Table 4
This table provides the mean and median Intersection over Union (IoU) scores
for the predicted regions of interest corresponding to each intention(abnor-
mality). It offers a comprehensive numerical assessment of the performance of
the TGID module for individual abnormalities.

Disease Mean-IoU (
EGD-CXR)
With [95% CI
(Upper, Lower)]

Median-
IoU (
EGD-
CXR)

Mean-IoU (
REFLCAX)
With [95%
CI (Upper,
Lower)]

Median-
IoU (
REFLCAX)

Cardiomegaly 0.58(0.53,0.62) 0.60 0.56
(0.50,0.61)

0.61

Edema 0.63(0.59,0.67) 0.65 0.63
(0.60,0.67)

0.66

Pneumonia 0.59(0.50,0.67) 0.60 _ _
Atelectasis 0.53(0.49,0.58) 0.51 0.60

(0.57,0.62)
0.61

Pleural
Effusion

0.51(0.48,0.54) 0.51 0.49
(0.47,0.50)

0.48

Pneumothorax 0.51(0.45,0.57) 0.30 0.45
(0.44,0.47)

0.46

Lung Opacity 0.59(0.54,0.63) 0.63 0.61
(0.59,0.64)

0.61

Fig. 8. Visual comparison of predicted and ground truth ROI for different intentions. The first row features the original CXR image, the second row displays the
ground truth image highlighting the intention region, and the third row presents the predicted intention region generated by the TGID module.

A. Awasthi et al. Computational�and�Structural�Biotechnology�Journal�24��������711–723�

721�



Houston, under the mentorship of Dr. Hien Van Nguyen, Associate
Professor at the same institution. Dr. Zhigang Deng, Moores Professor of
Computer Science, and Dr. Ngan Le, Assistant Professor of Computer
Science & Computer Engineering at the University of Arkansas, offered
valuable technical expertise. Clinical insights were provided by Dr.
Carol C. Wu, Professor of Thoracic Imaging at The University of Texas
MD Anderson Cancer Center, and Dr. Rishi Agrawal, Associate Professor
in the same department, ensuring the clinical relevance and applica-
bility of the study.

CRediT authorship contribution statement

Hien Van Nguyen: Writing – review & editing, Writing – original
draft, Supervision, Resources, Project administration, Funding acquisi-
tion. Rishi Agrawal: Supervision. Carol wu: Supervision. Ngan Le:
Supervision. zhigang Deng: Supervision. Awasthi Akash: Writing –
review & editing, Writing – original draft, Visualization, Validation,
Software, Resources, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization.

Declaration of Competing Interest

All authors declare that there are no conflicts of interest related to
this work.

Acknowledgement

This work was supported in part by the National Institutes of Health
under Grant 1R01CA277739. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the
National Institutes of Health. We would also like to acknowledge
Brandon Chang, a senior undergraduate student in Computer Science
from our lab, for his assistance in proofreading our manuscript and
providing valuable feedback, especially as a native English speaker.

Declarations

During the preparation of this work, the author(s) used GPT-4 to
correct the grammar of the text. After using this tool/service, the author
(s) reviewed and edited the content as needed and take(s) full re-
sponsibility for the content of the publication.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.csbj.2024.11.012.

References

[1] Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, et al.
Artificial intelligence and machine learning for medical imaging: a technology
review. Phys Med 2021;83:242–56.

[2] Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial
intelligence in cardiovascular imaging. Nat Rev Cardiol 2021;18(8):600–9.

[3] Hasani N, Morris MA, Rahmim A, Summers RM, Jones E, Siegel E, et al.
Trustworthy artificial intelligence in medical imaging. PET Clin 2022;17(1):1–12.

[4] Reyes M, Meier R, Pereira S, Silva CA, Dahlweid FM, Tengg-Kobligk HV, et al. On
the interpretability of artificial intelligence in radiology: challenges and
opportunities. Radio: Artif Intell 2020;2(3):e190043.

[5] Champendal M, Müller H, Prior JO, Dos Reis CS. A scoping review of
interpretability and explainability concerning artificial intelligence methods in
medical imaging. Eur J Radiol 2023;169:111159.

[6] Najjar R. Redefining radiology: a review of artificial intelligence integration in
medical imaging. Diagnostics 2023;13(17):2760.

[7] Sadeghi Z, Alizadehsani R, CIFCI MA, Kausar S, Rehman R, Mahanta P, et al.
A review of explainable artificial intelligence in healthcare. Comput Electr Eng
2024;118:109370.

[8] Chen H, Gomez C, Huang CM, Unberath M. Explainable medical imaging AI needs
human-centered design: guidelines and evidence from a systematic review. NPJ
Digit Med 2022;5(1):156.

[9] Nasarian E, Alizadehsani R, Acharya UR, Tsui KL. Designing interpretable ML
system to enhance trust in healthcare: a systematic review to proposed responsible
clinician-AI-collaboration framework. Inf Fusion 2024:102412.

[10] Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L. Interpretability of
machine learning-based prediction models in healthcare. Wiley Interdiscip Rev
Data Min Knowl Discov 2020;10(5):e1379.

[11] Alexander RG, Waite S, Macknik SL, Martinez-Conde S. What do radiologists look
for? Advances and limitations of perceptual learning in radiologic search. J Vis
2020;20(10):17. 17.

[12] Carrigan AJ, Curby KM, Moerel D, Rich AN. Exploring the effect of context and
expertise on attention: is attention shifted by information in medical images?
Atten, Percept, Psychophys 2019;81:1283–96.

[13] Jussupow E, Spohrer K, Heinzl A. Radiologists’ usage of diagnostic AI systems: the
role of diagnostic self-efficacy for sensemaking from confirmation and
disconfirmation. Bus Inf Syst Eng 2022;64(3):293–309.

[14] Savage, N., 2022. Breaking into the black box of artificial intelligence.
[15] Von Eschenbach WJ. Transparency and the black box problem: Why we do not

trust AI. Philos Technol 2021;34(4):1607–22.
[16] Kreps S, George J, Lushenko P, Rao A. Exploring the artificial intelligence “Trust

paradox”: evidence from a survey experiment in the United States. Plos One 2023;
18(7):e0288109.

[17] Cai CJ, Winter S, Steiner D, Wilcox L, Terry M. Hello AI": uncovering the
onboarding needs of medical practitioners for human-AI collaborative decision-
making. Proc ACM Hum-Comput Interact 2019;3(CSCW):1–24.

[18] RadioTransformer: A. Cascaded Global-Focal Transformer for Visual
Attention–guided Disease Classification.

[19] Nodine CF, Mello-Thoms C, Weinstein SP, Kundel HL, Conant EF, Heller-Savoy RE,
et al. Blinded review of retrospectively visible unreported breast cancers: an eye-
position analysis. Radiology 2001;221(1):122–9.

[20] Mello-Thoms C, Hardesty L, Sumkin J, Ganott M, Hakim C, Britton C, et al. Effects
of lesion conspicuity on visual search in mammogram reading1. Acad Radiol 2005;
12(7):830–40.

[21] Neves J, Hsieh C, Nobre IB, Sousa SC, Ouyang C, Maciel A, et al. Shedding light on
ai in radiology: a systematic review and taxonomy of eye gaze-driven
interpretability in deep learning. Eur J Radiol 2024:111341.

[22] Yang A, Nagrani A, Seo PH, Miech A, Pont-Tuset J, Laptev I, et al. Vid2seq: large-
scale pretraining of a visual language model for dense video captioning. In
Proceedings of. IEEE/CVF Conf Comput Vis Pattern Recognit 2023:10714–26.

[23] Wang T, Zhang R, Lu Z, Zheng F, Cheng R, Luo P. End-to-end dense video
captioning with parallel decoding. Proc IEEE/CVF Int Conf Comput Vis 2021:
6847–57.

[24] Chen W. TopicDVC: Dense Video Captioning with Topic Guidance. In 2024. IEEE
10th International Conference on Edge Computing and Scalable Cloud (EdgeCom).
IEEE; 2024. p. 82–7.

[25] Shoman M, Wang D, Aboah A, Abdel-Aty M. Enhancing traffic safety with parallel
dense video captioning for end-to-end event analysis. In Proceedings of. IEEE/CVF
Conf Comput Vis Pattern Recognit 2024:7125–33.

[26] Wei Y, Yuan S, Chen M, Shen X, Wang L, Shen L, et al. MPP-net: multi-perspective
perception network for dense video captioning. Neurocomputing 2023;552:
126523.

[27] Awasthi, A. , Le, N. , Deng, Z. , Wu, C.C. , Van Nguyen, H. , 2024. Enhancing
Radiological Diagnosis: A Collaborative Approach Integrating AI and Human
Expertise for Visual Miss Correction. arXiv preprint arXiv:2406.19686.

[28] Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology:
a survey of innovations and applications. Bioengineering 2023;10(12):1435.

[29] Van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJ. How
does artificial intelligence in radiology improve efficiency and health outcomes?
Pediatr Radiol 2022:1–7.

[30] Sarwar S, Dent A, Faust K, Richer M, Djuric U, Van Ommeren R, et al. Physician
perspectives on integration of artificial intelligence into diagnostic pathology. NPJ
Digit Med 2019;2(1):28.

[31] Islam, M.T. , Aowal, M.A. , Minhaz, A.T. , Ashraf, K. , 2017. Abnormality detection
and localization in chest x-rays using deep convolutional neural networks. arXiv
preprint arXiv:1705.09850.

[32] Chen B, Li J, Lu G, Zhang D. Lesion location attention guided network for multi-
label thoracic disease classification in chest X-rays. IEEE J Biomed Health Inform
2019;24(7):2016–27.

[33] Wang, H. and Xia, Y. , 2018. Chestnet: A deep neural network for classification of
thoracic diseases on chest radiography. arXiv preprint arXiv:1807.03058.

[34] Reyes M, Meier R, Pereira S, Silva CA, Dahlweid FM, Tengg-Kobligk HV, et al. On
the interpretability of artificial intelligence in radiology: challenges and
opportunities. Radio: Artif Intell 2020;2(3):e190043.

[35] Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P. Transparency of deep neural
networks for medical image analysis: a review of interpretability methods. Comput
Biol Med 2022;140:105111.

[36] Huff DT, Weisman AJ, Jeraj R. Interpretation and visualization techniques for deep
learning models in medical imaging. Phys Med Biol 2021;66(4):04TR01.

[37] Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to
explainable artificial intelligence in health care. Lancet Digit Health 2021;3(11):
e745–50.

[38] Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): towards
medical AI. IEEE Trans Neural Netw Learn Syst 2020;32(11):4793–813.

[39] Bhattacharya, A., 2022. Applied Machine Learning Explainability Techniques:
Make ML models explainable and trustworthy for practical applications using
LIME, SHAP, and more. Packt Publishing Ltd.

A. Awasthi et al. Computational�and�Structural�Biotechnology�Journal�24��������711–723�

722�

https://doi.org/10.1016/j.csbj.2024.11.012
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref1
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref1
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref1
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref2
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref2
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref3
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref3
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref4
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref4
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref4
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref5
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref5
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref5
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref6
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref6
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref7
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref7
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref7
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref8
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref8
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref8
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref9
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref9
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref9
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref10
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref10
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref10
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref11
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref11
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref11
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref12
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref12
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref12
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref13
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref13
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref13
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref14
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref14
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref15
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref15
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref15
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref16
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref16
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref16
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref17
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref17
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref17
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref18
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref18
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref18
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref19
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref19
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref19
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref20
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref20
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref20
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref21
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref21
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref21
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref22
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref22
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref22
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref23
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref23
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref23
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref24
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref24
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref24
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref25
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref25
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref26
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref26
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref26
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref27
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref27
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref27
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref28
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref28
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref28
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref29
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref29
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref29
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref30
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref30
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref30
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref31
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref31
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref32
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref32
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref32
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref33
http://refhub.elsevier.com/S2001-0370(24)00383-0/sbref33


[40] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual
explanations from deep networks via gradient-based localization. Proc IEEE Int
Conf Comput Vis 2017:618–26.

[41] Kim B, Khanna R, Koyejo O. Examples are not enough, learn to criticize! criticism
for interpretability. Adv Neural Inf Process Syst 2022;35:2288–300.

[42] Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C. Interpretable machine
learning: Fundamental principles and 10 grand challenges. Stat Surv 2022;16:
1–85.

[43] Chen Y, Li Z, Hu B. Prototype-based interpretability in AI for medical imaging. Med
Image Anal 2021;70:101993.

[44] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. Proc 39th
Int Conf Mach Learn 2022;119:3319–28.

[45] Dosovitskiy, A. , Beyer, L. , Kolesnikov, A. , Weissenborn, D. , Zhai, X. , Unterthiner,
T. et al. (2020). An image is worth 16×16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929.

[46] Zhao X, Liu Y, Li M. Visualizing transformers for medical image analysis. IEEE
Trans Med Imaging 2023;42(2):438–50.

[47] Lundberg SM, Erion GG, Lee S-I. Consistent individualized feature attribution for
tree ensembles. Nat Mach Intell 2020;2(1):56–67.

[48] Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H. Fooling LIME and SHAP:
adversarial attacks on post hoc explanation methods. Proc 39th Int Conf Mach
Learn 2021;119:10128–38.

[49] He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual
representation learning. Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR)
2022:9729–38.

[50] Huang Y, Peng J, Zhang Z. Bayesian deep learning for uncertainty estimation in
medical imaging. IEEE Trans Med Imaging 2021;40(12):3665–75.

[51] Li Z, Wang C, Han Z, Wang S, Zhang Y. Multi-modal learning for AI-driven medical
image analysis: a survey. Med Image Anal 2023;82:102647.

[52] Holzinger A, Carrington A, Müller H. Measuring the quality of explanations: the
system causability scale (SCS) for assessing explainable AI. Artif Intell 2022;299:
103525.

[53] Jalote-Parmar A, Badke-Schaub P, Ali W, Samset E. Cognitive processes as
integrative component for developing expert decision-making systems: a workflow
centered framework. J Biomed Inform 2010;43(1):60–74.
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