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ABSTRACT
This paper presents a computational study to analyze and predict
turns (i.e., turn-taking and turn-keeping) in multiparty conver-
sations. Specifically, we use a high-fidelity hybrid data acquisi-
tion system to capture a large-scale set of multi-modal natural
conversational behaviors of interlocutors in three-party conversa-
tions, including gazes, head movements, body movements, speech,
etc. Based on the inter-pausal units (IPUs) extracted from the in-
house acquired dataset, we propose a transformer-based computa-
tional model to predict the turns based on the interlocutor states
(speaking/back-channeling/silence) and the gaze targets. Our model
can robustly achieve more than 80% accuracy, and the generalizabil-
ity of our model was extensively validated through cross-group ex-
periments. Also, we introduce a novel computational metric called
“relative engagement level" (REL) of IPUs, and further validate its
statistical significance between turn-keeping IPUs and turn-taking
IPUs, and between different conversational groups. Our experimen-
tal results also found that the patterns of the interlocutor states
can be used as a more effective cue than their gaze behaviors for
predicting turns in multiparty conversations.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; Empirical studies in HCI.
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1 INTRODUCTION
Multiparty conversation is a prevalent form of human communi-
cation in society, where participants naturally employ their voice,
gaze, and gestures to facilitate idea exchange and manage con-
versational flow. In recent years, understanding and modeling the
interactions and associations among multimodal communication
channels - facial expressions, gaze, hand gestures, and linguistic con-
tent - have garnered increasing research interest in various fields,
including communication, human-computer interaction, graphics,
robotics, and multimodal interaction communities [10, 19, 33].

Turn-taking and turn-keeping in multiparty conversations are
essential for effective communication among participants. By alter-
nating speaking roles and responding appropriately, participants
ensure equal opportunities to express their ideas and contribute
to discussion. Ineffective turn management can result in interrup-
tions, overlaps, and confusion, ultimately hindering conversation
progress and reducing its overall quality.

A primary challenge in modeling and predicting turns in mul-
tiparty conversations is that turn management relies not only on
linguistic content but also on non-verbal cues, such as gazes, head
movements, and other gestures. For example, previous research has
demonstrated a strong correlation between gazes and turn-taking
in multiparty conversations [7, 8, 26], with gaze directions often sig-
naling turn-yielding intentions or serving as a strategy to alleviate
cognitive demands during response formulation [26].

Previous studies on turn prediction in multiparty conversations
have relied on video recordings and manual annotations [13, 16,
17, 25], which inherently limits the accuracy of gesture signal data,
particularly in 2D recordings. Additionally, while previous research
has considered gaze transition patterns, none has explored the
timing of gaze transitions or interlocutor states (i.e., speaking/back-
channeling/silence) in multiparty conversations for turn prediction.

To address the above limitations of existing methods, we devel-
oped an in-house setup to capture large-scale, multi-modal con-
versational behaviors of interlocutors in multiparty conversations
using a combination of optical motion capture, eye trackers, and
high-definitionmicrophones. Our dataset, including simultaneously
recorded 3D head movements, 3D gazes, 3D body movements, 3D
hand movements, and speech, provides more accurate conversa-
tional gesture signals for turn prediction and analysis, compared
to conventional 2D video-based data. In this work, without loss of
generality, we specifically focus on three-party conversations.

Leveraging this dataset, we propose a transformer-based turn pre-
diction model. We adopt the inter-pausal unit (IPU) concept from
previous studies [27], representing utterances preceding longer
than 200 millisecond pauses, and extract all IPUs before turn-taking
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and turn-keeping occurrences in our dataset. Based on the extracted
interlocutor states (i.e., speaking, back-channeling, or silence) and
gaze targets of each frame in one IPU, we develop and train a
transformer-based model to predict turns for each IPU. Through ex-
tensive experiments, including cross-group validations, we demon-
strate that our model can robustly and measurably outperform a
Hidden Markov Models (HMM)-based baseline and previous related
work. Additionally, our ablation study reveals that the interlocutor
states with timing can be a more effective cue than gaze targets
with timing for the purpose of turn prediction in multi-party con-
versations.

We also introduce a novel computational measure called the
“Relative Engagement Level" (REL) to characterize each partici-
pant’s participation in an IPU. For example, we assign decreasing
involvement weights for speaking, back-channeling, and silence
(i.e., neither speaking nor back-channeling) when computing the
REL. Statistical analysis on our large-scale dataset indicates that
the REL differences between turn-taking IPUs and turn-speaking
IPUs for all interlocutors are statistically significant. Furthermore,
the statistical significance of REL differences persists across various
conversational groups. We contend that the REL measure intro-
duced in our study provides a novel quantitative lens to examine
turns in multi-party conversations.

The remainder of this paper is organized as follows. In Section
2, we provide a brief overview of previous works closely related to
our study. Subsequently, we detail our data acquisition process in
Section 3 and outline the extraction of interlocutor states and gaze
features from our dataset in Section 4. In Section 5, we describe the
REL measure and present our analysis results. We then discuss the
specifics of our transformer-based turn prediction model and an
HMM-based baseline model in Section 6, followed by the presen-
tation of turn prediction experimental results in Section 7. Finally,
we offer discussion points and future work remarks in Section 8.

2 RELATEDWORK
2.1 Gaze Behavior for Turn Regulation
Gaze behavior and turn-taking are critical aspects of human con-
versations and have been extensively studied in the field of commu-
nication research. Early studies [7, 8, 26], for example, have empiri-
cally demonstrated that gaze signals are employed to regulate and
monitor turn-taking. More recent research [12] has reported that
speakers tend to direct their gaze toward the next speaker more fre-
quently during turn-taking than turn-keeping, suggesting that gaze
signals play a vital role in facilitating smooth turn transitions and
maintaining communication flow in dynamic social contexts. Some
studies have even shown that gaze behavior is more important than
speech information for estimating turn-taking [5, 18, 23]. However,
it has been argued that gaze should be considered as a part of the in-
herently multi-modal interaction rather than a singular occurrence
[11].

In the context of multiparty conversations, researchers have
found that unaddressed participants use their gaze behaviors to
effectively manage and monitor the conversation [2, 24, 34], in-
cluding preventing simultaneous speech and resolving disputes
when two speakers vie for a turn [29, 35]. During multiparty con-
versations, even those not directly involved can comprehend each

participant’s intent and contribute to keeping the conversation on
track. However, individuals who are not fully focused on the con-
versation and act as bystanders may disrupt the conversation flow
by interrupting speakers [29].

2.2 Turn Prediction
According to the study by Aldeneh et al. [1], the decision to take
turns in a dialogue must involve some level of anticipation or pre-
diction. This prediction mechanism can explain the short average
pause or gap that typically occurs between turns taken by differ-
ent speakers in a conversation. Several studies have investigated
the use of verbal and non-verbal cues to predict turn-taking in
multi-party conversations. For example, researchers have utilized
speech features to develop prediction models. Aldeneh et al. [1]
perceive turn-taking in conversations as a problem of arranging
a sequence of actions and proposed a forecasting model that em-
ploys Long Short-Term Memory (LSTM) algorithms. The model
also takes into account speech characteristics such as loudness, in-
tensity, and zero-crossing rate. Researchers also trained the model
on the Switchboard dataset [9] and achieved an F1 score of 0.65 for
predicting turn-taking in a conversation.

Meanwhile, researchers have explored the use of gaze informa-
tion in the realm of automated turn-taking detection in multi-party
meetings. For example, Kawahara et al. [25] proposed a model that
uses participants’ gaze information, including the person being
gazed upon and the presence or absence of mutual gaze, along with
prosody to detect turn-taking in a three-person poster conversation.

Ishii et al. [17] demonstrated that a detailed analysis of gaze
transition patterns, such as changes in gaze targets and mutual
gazes, is more effective in predicting turn-taking than relying on
a single line of gaze. Their study used 12 gaze transition patterns
and achieved an F1 score of 0.76 for the prediction of turn changes.
Ishii et al. [13] also incorporated human gaze and respiratory be-
havior to predict turn changes and the next speaker in multi-party
conversations. They conducted experiments on a custom dataset
with four participants and used Sequential Minimal Optimization, a
variation of SVM models, to train the models. Their results showed
that the model based on the late fusion of eye gaze and respira-
tory behavior yielded an F1 score of 0.75 for the prediction of turn
changes. Additionally, they also proposed a model that utilizes the
head movements of both the speaker and listeners towards the end
of an utterance [14], achieving an accuracy of 75% for turn-taking
prediction using SVM models. Furthermore, Ishii et al. [16] investi-
gated the role of mouth-opening transition patterns in turn-taking
and trained SVM models to predict turn changes, reporting an F1
score of 0.80.

However, the above studies did not consider the timing of gaze
transitions in the utterance unit. Hessels [11] emphasized the im-
portance of considering the time-dependent nature of gaze during
social interactions. Specifically, Hessels suggested linking gaze pat-
terns to the evolving features of other interactional sub-states over
time, rather than relying solely on aggregated measures of gaze
that overlook such temporal dynamics.
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3 DATA ACQUISITION
To acquire a large-scale, multi-modal, three-party conversational
behavior dataset for this study, we specifically built an in-house,
hybrid data acquisition system through the combination of optical
motion capture, eye trackers, and HD microphones, as described
below. Figure 1 illustrate the schematic view of the data acquisition
setup. Note that the three interlocutors according to their locations
are labeled as P1, P2, and P3, respectively, as shown in Figure 1.
Also, Figure 2 shows a snapshot of our data acquisition process.

Motion Capture. A eight-cameras VICON optical motion cap-
ture system was set up in a controlled lab environment to capture
the motions of interlocutors. We asked each interlocutor to wear
a motion capture (mocap) suit attached with optical markers to
record their body motions, including head, hands, torso, and lower
body movements (see Figure 2). In addition, from the recorded
3D mocap data, we calculated the angles of all the joints for each
interlocutor using inverse kinematics.

Gaze and Audio. In our study, we equipped each participant
with an Ergoneers Dikablis Glass 3 eye tracker, chosen for its excep-
tional accuracy, wireless capabilities, and comprehensive software
for detailed analysis. To assess the impact of wearing the eye tracker
on participants’ natural conversational behavior, including gaze,
we gathered their feedback. The consensus among participants was
that the eye tracker had only minimal influence on their behavior.
It should be noted that the eye tracker used in our research closely
resembled conventional eyeglasses in terms of size and weight, en-
suring its unobtrusive nature during the experiments. In addition,
we provided each participant with a wireless microphone hooked
to their neckline to record audio. We employed the D-LAB software
to capture eye gaze and audio simultaneously.
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Figure 1: Schematic illustration of our hybrid data acquisition
setup

Capture Design.We recruited 21 volunteer participants from
a university campus for our data capture experiments. They were
randomly divided into seven groups (each group had three par-
ticipants). The 21 participants did not know each other prior to
our data acquisition experiment. Among them, 12 are male and 9
are female, with ages ranging from 20 to 30. The majority of them
(70%) have computer science majors. All of them are native English
speakers.

Figure 2: A snapshot of our three-party conversational mo-
tion data acquisition experiment.

For each group, we recorded 3-5 sessions of its three-party con-
versations. The lengths of the recorded data for the seven groups
are: 46’18" (46 minutes 18 seconds), 44’47", 46’17", 42’49", 46’31",
44’27", and 48’19", respectively. The total amount of recorded data
is 319 minutes 28 seconds.

During the data acquisition process, three interlocutors in a
conversation were instructed to stay at fixed locations and form
an equilateral triangle with a distance of approximately 1 meter
from each other. Before recording each session, the participants
were asked to stay at their original locations as much as possible.
The spatial arrangement of interlocutors in our study is similar
to previous studies that investigated three-party conversations
[3, 6, 20–22]. Furthermore, our setup is comparable to the setup
in [31], which ensured that all five participants formed a regular
pentagon. The participants were allowed to discuss any topic of
interest during the data acquisition process. A clapperboard was
used to synchronize the start time of all different data. To this end,
all acquired data (i.e. 3D mocap, eye tracking data, and speech)
were temporally aligned and later down-sampled to 60 frames per
second.

4 DATA POST-PROCESSING AND FEATURES
EXTRACTION

In this section, we describe how we extract IPUs from the acquired
dataset (Section 4.1), and extract features to build turn prediction
models, including interlocutor states (Section 4.2) and gaze targets
(Section 4.3).

4.1 IPU Extraction
Following previous IPU-based studies [13, 15, 18, 28, 30], we also
extract Inter-Pausal Units (IPUs) [27] from our dataset as the utter-
ance unit of interest in our study. Specifically, in the data we first
identified any pauses lasting longer than 200 milliseconds, and then
assigned the utterance preceding each such pause as an IPU. Figure
3 illustrate examples of the IPU extraction process.
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Figure 3: Example illustration of IPU extraction and turn
events

Based on the extracted IPUs, we further categorized pauses into
two types: turn-taking pauses, which occur between two IPUs by
distinct speakers, and turn-keeping pauses, which occur for the
same speaker. To the end, we extracted a total of 7,080 IPUs from
the seven groups of three-party conversations. Among them, 5,975
IPUs occur before turn-taking pauses, and 1,105 IPUs occur before
turn-keeping pauses. Thus, in this work we call them turn-taking
IPUs and turn-keeping IPUs, respectively. The shortest IPU has 32
frames (i.e., 0.53 seconds), and the longest IPU has 1755 frames (i.e.,
29.25 seconds), and the average length of the IPUs is 201 frames (i.e.,
3.35 seconds). After the IPU extraction, we padded all the IPUs to the
maximum length (1,755 frames) for model training later. Note that
the IPUs do not temporally overlap since we discarded any over-
lapping speech segments. Table 1 provides a detailed breakdown
of the extracted IPUs by subjects, while Table 2 offers a detailed
analysis of the IPUs by groups.

Table 1: IPU distribution by subjects. The information in each
cell contains the total number of the specific type of IPUs
by the specific subject, with the average number of frames ±
the standard deviation in the parentheses.

Subject Turn-Taking Turn-Keeping Total

P1 1972
(183 ± 143)

355
(199 ± 165)

2327
(186 ± 146)

P2 2092
(198 ± 164)

513
(252 ± 206)

2605
(198 ± 164)

P3 1911
(201 ± 182)

237
(266 ± 217)

2148
(201 ± 179)

4.2 Interlocutor States
We extracted an interlocutor state feature vector from each IPU as
follows. First, the audio was transcribed into texts using Google
speech-to-text technology, followed by manual check and correc-
tions (if needed). Then, to identify the back-channeling utterances,
we employed the criteria defined in [25], which include “Yeah,"
“Um," “Cool," “Oh," “Okay," “Right," and “Uh", and flagged the corre-
sponding places in the transcriptions. To this end, for each frame
in one IPU, we created a 1 × 3 ternary-variables vector, called the
Interlocutor State Vector (ISV), to represent the states of the three
interlocutors in a conversation: the value of its i-th component (𝑖 is

Table 2: IPU distribution by groups. The information in each
cell contains the total number of the specific type of IPUs
by the specific subject, with the average number of frames ±
the standard deviation in the parentheses.

Group Turn-Taking Turn-Keeping Total

1 699
(171 ± 138)

232
(240 ± 183)

931
(188 ± 154)

2 617
(168 ± 131)

247
(191 ± 163)

864
(175 ± 141)

3 841
(190 ± 145)

112
(245 ± 195)

953
(196 ± 153)

4 1064
(208 ± 173)

137
(210 ± 179)

400
(208 ± 174)

5 655
(209 ± 192)

84
(265 ± 238)

739
(215 ± 198)

6 939
(190 ± 160)

158
(305 ± 248)

1097
(207 ± 180)

7 1160
(206 ± 178)

135
(249 ± 184)

1295
(211 ± 179)

from 1 to 3) indicates the i-th interlocutor is speaking (=2), back-
channeling (=1), or silence (neither speaking nor back-channeling)
(=0).

4.3 Gaze Targets
Inspired by previous studies [21], we also computed the Direction-
of-Focus (DFoc) of an interlocutor by combining the torso-head
direction and the gaze direction. Specifically, assuming we use
𝑅ℎ𝑖𝑝𝑠 , 𝑅𝑆 and 𝑅𝐻 to denote the 3D rotations of the hip, spine, and
head, respectively, and use𝐺ℎ ,𝑂𝑆 ,𝑂𝐻 , and𝑂𝐸 to denote the global
location of the hip and the offsets of the spine, head, and eyes,
respectively, we can use the following equation to compute DFoc.
Note that we eliminated outliers and interpolated gaps using shape-
preserving piece-wise cubic interpolations for all 𝑉𝐸 .

𝐷𝐹𝑜𝑐 = 𝐺ℎ𝑅ℎ𝑖𝑝𝑠𝑂𝑆𝑅𝑆𝑂𝐻𝑅𝐻𝑂𝐸𝑉𝐸 . (1)

Instead of directly using the above computed DFoc, we further
computed a high-level feature called Focus-of-Attention (FoA), which
indicates which of the other interlocutors an interlocutor is looking
at. To compute the FoA, a head-sphere is constructed to cover an
interlocutor’s head (refer to Figure 4), and then we check whether
the DFoc of the interlocutor intersects with the head-spheres of
other interlocutors. To this end, for each frame in one IPU, we
created a 1 × 3 ternary-variables vector, called the Gaze Target
Vector (GTV), to represent the FoAs of all the three interlocutors:
the value of its i-th component is the index of the interlocutor who
receives the attention of the i-th interlocutor at this specific frame.

5 RELATIVE ENGAGEMENT LEVEL
In this study, we introduce a novel computational measure, called
Relatively Engagement Level (REL), to quantitatively analyze turn-
taking and turn-keeping in multiparty conversations. Specifically,
we study how the REL of each interlocutor in IPUs is associated
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Figure 4: Visualization for the FoA computation process. The
computed DFoc is visualized as a blue line.

with turn-taking and turn-keeping. In the following, we describe
how we compute the REL for an IPU.

Assume an IPU 𝑈 𝑖 has a total of 𝑛 frames, and the interlocu-
tor state vector of the 𝑗-th frame is 𝑣 𝑗 (a 1 × 3 ternary-variables
vector, refer to Section 4.2), we can calculate the REL of the𝑚-th
interlocutor in𝑈 𝑖 , 𝑅𝐸𝐿(𝑈 𝑖

𝑚), using the following equation.

𝑅𝐸𝐿(𝑈 𝑖
𝑚) =

∑𝑛
𝑘=1 𝑣

𝑘
𝑚∑𝑛

𝑘=1
∑3
𝑚=1 𝑣

𝑘
𝑚

, (𝑚 = 1...3) (2)

where 𝑣𝑘𝑚 denote the𝑚-th component of 𝑣𝑘 , and it has three possi-
ble values: 2 for speaking, 1 for back-channeling, and 0 for silence
(neither speaking nor back-channeling). Conceptually, 𝑅𝐸𝐿(𝑈 𝑖

𝑚)
denotes the relative involvement extent of the𝑚-th interlocutor
during this specific IPU. Here we implicitly assume speaking repre-
sents a high level of conversational engagement, back-channeling
is a medium level of conversational engagement, and silence is a
low level of conversational engagement.

As mentioned in our data post-processing (Section 4), we cat-
egorized IPUs into turn-taking (TT) IPUs and turn-keeping (TK)
IPUs. For TT IPUs (or TK IPUs), we further categorized them by
subjects (P1, P2, and P3). To this end, we have six sub-categories
of IPUs: TT IPUs for 𝑃𝑖 (𝑖 = 1 to 3), TK IPUs for 𝑃𝑖 (𝑖 = 1 to 3). For
each sub-category, we compute the mean REL value and standard
deviations for all the IPUs in this sub-category. Finally, we visualize
these mean REL values and standard deviations in Figure 5.

As illustrated in Figure 5, for all the interlocutors, the average
REL values for TK are significantly higher than those for TT. This
implies that the speaker who holds the floor tends to have a higher
REL value before turn-keeping than before turn-taking. This trend is
observed consistently across all the interlocutors. Also, this suggests
that turn-taking is more likely to occur when listeners are more
actively involved with the conversation, such as interrupting the
speech or actively providing feedback through back-channeling,
which would decrease the REL value of the current speaker. Similar
patterns can also be observed in Figure 6, which shows that listening
interlocutors are more likely to speak before turn-taking.

We also performed an analysis of variance (ANOVA) to statisti-
cally compare different sub-categories of IPUs in terms of the REL
values. The results of single-variable ANOVA on the REL values of
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Figure 5: Plotting of the mean REL values and standard de-
viations of the six sub-categories of IPUs in our dataset. TT
denotes turn-taking, and TK denotes turn-keeping.

IPUs are presented in Table 3. As shown in Table 3, for all the inter-
locutors, the REL differences between turn-taking and turn-keeping
are statistically significant (that is, the 𝑝-values are well below 0.05).
Further, we also used single-variable ANOVA to analyze the REL
differences between different conversation groups. Recall that we
acquired data for seven distinct conversation groups. As shown
in Table 3, the REL differences between different conversational
groups are not statistically significant (actually, the 𝑝-values are
well above 0.05). This provides statistical evidence to support the
robustness and generalizability of our findings between different
groups of interlocutors. We believe that the REL measure can pro-
vide a new quantitative useful tool to look into turn management
in multi-party conversations.

Table 3: Results of single-variable ANOVA on the REL values
of IPUs between different conversation groups and between
turn taking/keeping.

Comparison between Subject P-value

Conversational Groups
P1 0.643
P2 0.614
P3 0.357

Turn Taking/Keeping
P1 0.00547 **
P2 0.00239 **
P3 0.0213 *

6 TURN PREDICTION MODELS
In this section, we describe the details of our transformer-based
turn prediction model (Section 6.1), which makes turn predictions
according to the IPU preceding the turn. We also compare our
model with a baseline model - a classical Hidden Markov Model
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Figure 6: Plotting of the percentages of interlocutors’ ISVs in
our dataset. TT denotes turn-taking, and TK denotes turn-
keeping.

(HMM) based turn prediction model. As such, we will also describe
the details of the baseline model (Section 6.2).

6.1 Transformer-based Turn Prediction
The architecture of the proposed turn prediction model, based on
the transformer framework [4], is illustrated in Figure 7. The model
takes both the ISVs and the GTVs of an IPU as input features (see
Section 4). We describe the details of its key modules below.

Our model includes an embedding layer to map discrete fea-
ture inputs to continuous representations. A positional embedding
layer with the same dimensions is used to incorporate positional
information into the model.

The Transformer Encoder consists of 2 Transformer Encoder Lay-
ers, each of which includes a self-attention module that performs
multi-head attention over the input sequence. Each Transformer
Encoder Layer also consists of a feed-forward neural network layer,
which applies a linear transformation followed by a non-linear acti-
vation function, and two normalization layers, which perform layer
normalization over the output of the self-attention and feed-forward
layers, respectively. Both the self-attention and feed-forward layers
in each Transformer Encoder Layer are followed by a dropout (set to
0.1), which is used to regularize the model and prevent over-fitting.
The output of the Transformer Encoder is then passed through a

fully-connected layer with weights and biases learned during train-
ing. The fully-connected layer maps the output of the Transformer
Encoder to determine whether the IPU results in turn-taking or
turn-keeping.

Linear

Input 
Embedding

Positional
Encoding

Multi-Head
Attention

Add & Norm

2x

Feed
Forward

Add & NormInput Linear

Sigmoid

Output
Probabilities

Figure 7: The architecture of the transformer-based turn
prediction model

6.2 HMM-based Baseline
We also developed a Hidden Markov Model (HMM) based model as
the baseline to compare it with our transformer-based turn predic-
tion model. The HMM model [32] is widely known for its ability to
model time series data. The baseline model consists of ten hidden
states. To ensure a comprehensive analysis of state transitions, we
employed the ergodic topology (EG) for the HMM model, which
is fully connected, less restrictive, and capable of learning a vast
set of state transitions from data. The probability density function
for observation was modeled using a mixture of Gaussians. We
utilized standard Baum-Welch re-estimation and Viterbi algorithms
for training the parameters of the HMM and inferring the optimal
sequence of hidden states. For the training process, we empirically
set the maximum number of iterations to 100.

7 RESULTS AND EVALUATIONS
To evaluate the effectiveness of our model, we randomly divided our
dataset into two sets: 90% for training and 10% for testing. Then, we
applied the training set with 9-fold cross-validation and calculated
the accuracy, recall, and F-measure of the test set to assess its
performance. Additionally, we performed a cross-group validation,
separating seven different groups of conversational behaviors into
a 5-1-1 format, using five groups for training, one for validation,
and one for testing. Through the cross-group validation, we are able
to accurately estimate the model’s generalizability and robustness.
Moreover, this helps to ensure that our trained model is not biased
toward a particular subset of the data.

Table 4 presents the quantitative comparison results of our
transformer-based model, a baseline model, and a recent related
work [17]. Note that while the work in [17] used different datasets,
our setups and labeling methods are generally similar to those in
[17]. The key distinction lies in our utilization of 3D features in
the datasets. In contrast, the work in [17] used 2D features. As
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shown in this table, our transformer-based approach can signifi-
cantly outperform both the HMM-based baseline model, and the
previous work by Ishii et al. [17], achieving precision 0.812, recall
rate 0.845, and F-measure 0.805. As shown in Table 5, the obtained
p-values: 1.859e-06, 1.163e-4, and 1.099e-4, indicate strong statisti-
cal significance of the transformer model over the baseline model
in all metrics evaluated.

Table 4: Quantitative comparison results of turn prediction
by three different methods: our transformer-based model,
the HMM-based baseline model, and the previous work by
Ishii et al. [17].

Metrics
Model Precision Recall F-Measure

Ishii et al. [17] 0.763 0.775 0.769
Baseline Model 0.778 0.794 0.785

Transformer-based Model 0.812 0.845 0.805

Table 5: Two-sample t-test results, comparing the baseline
and transformer-based model.

Model Tested
against baseline

Metric t p

Transformer Encoder
Precision 6.5513 1.859e-6 **
Recall 9.8427 1.163e-4 **
F1 5.1142 1.099e-4 **

7.1 Cross-group Validation
Table 6 shows the quantitative results of cross-group validation
using our model. The results were obtained using the 5-1-1 format
and each of the seven conversational groups in our data was used
as a test set. Since the data capture participants in different con-
versational groups did not overlap, the participants in each test set
were not observed or included in the training or validation sets.
The results in Table 6 demonstrate the robustness of our model, and
it can be effectively generalized to new multiparty conversations
by novel subjects, compared to the results presented in Table 4.

Table 6: Quantitative cross-group validation results by our
model

Metrics
Test Group Precision Recall F-Measure

1 0.804 0.816 0.784
2 0.777 0.778 0.734
3 0.825 0.874 0.837
4 0.841 0.883 0.848
5 0.845 0.864 0.853
6 0.830 0.863 0.827
7 0.859 0.883 0.868

7.2 Ablation Study
We also conducted an ablation study to compare our model’s per-
formance given different combinations of input features.

As shown in Table 7, our model, which utilizes both ISV (Inter-
locutor State Vector) and GTV (Gaze Transition Vector) as input
features, achieves the highest performance across all metrics: Pre-
cision is 0.812, recall rate is 0.845, and F-measure is 0.805. Results
from our ablation study suggest that although both ISV and GTV
contribute significantly to the turn prediction model, ISV (i.e., when
interlocutors are speaking, back-channeling, or silent) proves to
be a more effective cue than GTV (i.e., when interlocutors look at
other interlocutors) for our turn prediction model.

Many previous studies have emphasized the importance of gaze
transition patterns in turn prediction, which our findings corrobo-
rate. However, our research is the first to experimentally highlight
the critical role of interlocutor states in turn prediction for multi-
party conversations.

Table 7: Ablations study results by our model with different
combinations of input features. Here ISV refers to the In-
terlocutor State Vector, and GTV refers to the Gaze Target
Vector (see their definitions in Section 4).

Metrics
Features Precision Recall F-Measure

ISV + GTV 0.812 0.845 0.805
ISV 0.806 0.842 0.800
GTV 0.703 0.838 0.765

8 DISCUSSION AND CONCLUSION
In this paper, we introduce an innovative IPU-basedmethod for turn
analysis and prediction in multi-party conversations, specifically
focusing on three-party interactions. Our approach is unique in
that it eschews the less accurate, manually annotated 2D video data
utilized in previous studies, opting instead for a large-scale, multi-
modal (mainly 3D) dataset of multiparty conversational behaviors.
This dataset accurately captures simultaneous 3D conversational
gesture signals from all participants, including 3D gazes, 3D head
movements, 3D body movements, and speech. The high precision of
our large-scale 3D dataset allows us to examine turns in multi-party
conversations at an unparalleled level of accuracy.

Capitalizing on our large-scale, multi-modal dataset, we propose
a new metric called the Relative Engagement Level (REL) to quan-
tify the relative involvement effort of each participant within an
IPU. We discovered that the REL differences between turn-taking
and turn-keeping IPUs are statistically significant, and this distinc-
tion persists across different conversational groups. These results
offer initial evidence that the REL metric could serve as a novel,
quantitative lens through which to investigate turns in multi-party
conversations.

Employing both the interlocutor state vector and the gaze target
vector extracted from the IPUs (categorized into turn-taking IPUs
and turn-keeping IPUs), we further devised a transformer-based
turn prediction model. This model achieves a performance greater
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than 80% in all three evaluation metrics (precision, recall, and F
measure) and outperforms the baseline model based on the Hidden
Markov Model (HMM) and a related previous study. Furthermore,
our results of cross-group validation underscore the robustness and
generalizability of our approach.

Our ablation study reveals that the interlocutor state vector con-
tributes more significantly to our turn prediction model than the
gaze target vector. While many prior studies have emphasized the
importance of gaze patterns for turn prediction in multi-party con-
versations, our research is the first, to the best of our knowledge, to
identify and experimentally validate the critical role of interlocutor
states in IPUs for turn prediction.

Despite the promising results of our current approach, there are
some limitations. First, our method does not incorporate linguis-
tic analysis or individual word features, which could potentially
enhance the performance of our model. Second, while we have
explicitly included verbal back-channeling into our features, we do
not consider nonverbal cues like head nodding or shaking. More-
over, given that our turn prediction model is based on IPUs, its
application is restricted to offline scenarios. In the future, we plan
to refine our turn prediction model by integrating additional fea-
tures and leveraging large language models. Lastly, we intend to
investigate patterns and relationships not only within groups or
sequences, but also across different modalities, as a part of our
ongoing research.
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