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Abstract—Since Facial Action Unit (AU) annotations require
domain expertise, common AU datasets only contain a limited
number of subjects. As a result, a crucial challenge for AU
detection is addressing identity overfitting. We find that AUs
and facial expressions are highly associated, and existing facial
expression datasets often contain a large number of identities.
In this paper, we aim to utilize the expression datasets without
AU labels to facilitate AU detection. Specifically, we develop
a novel AU detection framework aided by the Global-Local
facial Expressions Embedding, dubbed GLEE-Net. Our GLEE-
Net consists of three branches to extract identity-independent ex-
pression features for AU detection. We introduce a global branch
for modeling the overall facial expression while eliminating the
impacts of identities. We also design a local branch focusing
on specific local face regions. The combined output of global
and local branches is firstly pre-trained on an expression dataset
as an identity-independent expression embedding, and then
finetuned on AU datasets. Therefore, we significantly alleviate
the issue of limited identities. Furthermore, we introduce a 3D
global branch that extracts expression coefficients through 3D
face reconstruction to consolidate 2D AU descriptions. Finally,
a Transformer-based multi-label classifier is employed to fuse
all the representations for AU detection. Extensive experiments
demonstrate that our method significantly outperforms the state-
of-the-art on the widely-used DISFA, BP4D and BP4D+ datasets.

Index Terms—Action Units; facial expression; expression em-
bedding; deep learning;

I. INTRODUCTION

The facial expression analysis has been an important chal-
lenge. Recently, researchers make considerable efforts to ex-
pression representation [1], [59], expression categories [2],
[3], expression recognition [4]–[7], expression synthesis [8]–
[17], [55], and multimodal sentiment analysis [18]–[25]. As
a fundamental issue of these research topics, the detection of
facial action units has not been well studied.

Facial Action Units (AUs), coded by Facial Action Coding
System (FACS), are defined to describe the local movement
of facial expressions based on facial muscle groups [26]. For
instance, as shown in Fig. 1 , AU4 represents the movement
of lowering brow, which often occurs when expressing anger.
AU12 stands for the lip corner puller, which often appears
with a happy expression. Face AU detection has attracted
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Fig. 1. Examples of AUs. AUs refer to the local movements of expressions,
e.g. AU4 represents brow lowerer. AU6 represents cheek raiser. AU12 repre-
sents lip corner puller. AU15 represents lip corner depressor.

lots of research efforts due to its crucial applications in
emotion recognition [27], micro-expression detection [28],
face synthesis [29]–[31], and mental health diagnosis [32].

Since AU annotations require sophisticated expertise and
are time-consuming, the size of annotated AU datasets is
usually limited, especially in terms of identity variations, e.g.
less than 50. As a result, most AU detection methods overfit
to the training identities and do not generalize well to new
subjects. To alleviate the overfitting problem on the small AU
datasets, previous methods resort to various auxiliary informa-
tion as regularization, including facial landmarks [33]–[36],
unsupervised web images [37], emotion priors [38], textual
AU descriptions [39] and so on. However, these additional
constraints do not directly remove the interference of the
training identities from the extracted visual features, thus
limiting their performance.

Different from the previous works, we aim to make the
first attempt to employ an expression embedding extracted
from the in-the-wild expression dataset [40] without AU
labels. The embedding can provide a strong prior for AU
detection due to the two important properties: continuity
and identity-independence. First, the embedding provides a
continuous space for representing the fine-grained expressions.
It is beneficial for AU detection since AUs usually show
slight variations on the face. Second, the embedding is less
sensitive to identities because the semantic similar expressions
of different identities are analogous in the embedding space.
This important property can be used to alleviate the overfitting
problem in AU detection. Hence, our motivation is to leverage
a continuous expression embedding space to represent AUs for
accurate AU detection.

Driven by our motivation, we develop a novel AU detection
framework aided by the Global-Local facial Expression Em-
bedding, namely GLEE-Net. Our GLEE-Net consists of three
branches that extract identity-independent facial expression
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Fig. 2. T-SNE visualization of the distributions of some AU combinations in
the embedding space of our GLEE-Net. Left: the same AU combinations dis-
tribute closely in the expression embedding space. Right: similar expressions
in the expression embedding space often have similar AU labels and learning
expressions can facilitate AU detection.

features for AU detection. To comprehend the overall facial
expressions, we introduce a global branch that modeling the
expression information as the deviation from the identity
representation, which is inspired by DLN [59]. In this way,
our global branch would be less sensitive to the identity
information. However, such a structure lacks the perception
of details of local regions. To resolve it, we design a local
branch to focus on details of specific face regions.

In order to alleviate the problem of limited identities in
AU datasets, different from existing methods with global
and local branches, we first pretrain the two branches on an
expression dataset [40] and then finetune them on the target
AU dataset. In this manner, our network has seen various
subjects’ expressions although their AU labels are not available
and moreover, acquires a compact expression embedding for
AU detection. In Figure 2, we sample some images from BP4D
and visualize their expression embeddings. As expected, the
same AU combinations and similar expressions from different
identities are close in our expression embedding space, thus
facilitating AU classification.

Furthermore, in contrast to existing methods that only rely
on auxiliary information of 2D images, we find that 3D
facial information also provides important expression clues.
Thus, we introduce a 3D global branch to obtain expression
coefficients, as 3D expression features, through 3D face re-
construction. To fully exploit all the representations from our
global-local branches, we design a Transformer-based multi-
label classifier. Benefiting from the powerful global attention
mechanism of Transformer [41], we can effectively fuse dif-
ferent representations and thus explore the correlations among
multiple AUs. With the co-occurrence relationships of AUs,
our network can predict AUs more accurately. Extensive ex-
periments demonstrate that our approach significantly achieves
superior performance on the widely-used DISFA, BP4D and
BP4D+ datasets.

In summary, the contributions of our work are three-fold:

• We propose a novel Global-Local facial Expression Em-
bedding Network (GLEE-Net) for AU detection, which
can leverage additional facial expression data (without
AU labels) to improve AU detection accuracy.

• We develop the global and local branches to extract the

compact expression embeddings from face regions while
paying attention to local facial details. To the best of our
knowledge, our work is the first attempt to utilize contin-
uous and compact expression features to represent AUs
effectively. It achieves appealing generalization capability
in addressing AU classification for unseen identities.

• We introduce a 3D global branch to extract expression
coefficients through 3D face reconstruction for AU de-
tection, and demonstrate that exploiting 3D face priors
can further improve 2D AU detection.

II. RELATED WORKS

A. AU Detection with Auxiliary Information

The widely used AU datasets only contain limited subjects
due to the difficulty of AU annotation, which is the main
cause of overfitting. To resolve it, some works recourse to the
various kinds of auxiliary information to enhance the model
generalization and facilitate AU detection.

Introducing extra information of facial landmarks is a com-
mon practice in AU detection. To effectively extract the local
features for AUs, JPML [33] utilized the landmarks to crop
the facial patches instead of uniformly distributed grids. EAC-
Net [34] also generated the spatial attention maps according
to the facial landmarks and applied them to the different levels
of networks. LP-Net [36] sent the detected facial landmarks
into the P-Net to learn the person-specific shape information.
JÂA-Net [35] proposed a multi-task framework combining
landmark detection and AU detection. Besides this, there exist
some other kinds of auxiliary information. Zhao et al. [37]
utilized the unlabelled large-scale web images and proposed a
weakly-supervised spectral embedding for AU detection. Cui
et al. [38] constructed an expression-AUs knowledge prior
based on the existing anatomic and psychological research and
introduced the expression recognition model for AU detection.
A series works [42]–[44] combined the tasks of AU detection
and discrete expression recognition. SEV-Net [39] introduced
the pre-trained word embedding to learn spatial attention maps
based on the textual descriptions of AU occurrences. Xiang et
al. [45] which introduced the temporal information, proposed
an elegant linear model to untangle facial actions from a mix-
ture of linearly-representable attributes. The aforementioned
methods all directly or indirectly introduce additional data for
producing extra regularization in AU detection. We propose
to utilize the expression embedding as auxiliary information,
which better improves the generalization capability of the AU
detection.

B. AU Detection with Global and Local Features

Due to the local definition of AUs, many methods attempt to
combine the full and regional facial features for AU detection.
These works can be classified into three categories: patch-
based, multi-task, and text-based methods.

Patch-based methods usually crop the full face into patches
according to the local definitions of AUs. DSIN [46] cropped
5 patches from a full face based on landmarks and fed them
with the full face into networks for learning the global and
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local features. ROI-Net [47] also designed a prior landmark
cropping rule to crop the inner feature maps. These methods
usually suffer from performance degradation in the wild due
to erroneous landmark estimation.

To facilitate the model with local features, multi-task meth-
ods combined AU detection with landmark detection [35],
[48] or landmark-based attention map prediction [49]. In this
way, models can extract global features from full faces and
also focus on local details from the landmarks for better AU
detection. However, these methods ignored that landmarks also
contain rich identity information [50] which may aggravate
the identity overfitting. SEV-Net [39] proposed to utilize the
textual descriptions of local details to generate a regional
attention map. In this way, it highlighted the local parts of the
global features. However, it required the extra annotations for
the descriptions. In addition, the global features of the previous
works did not take the removal of the identity disturbance into
account.

Different from the above works, our carefully-designed
global branch is dedicated to eliminating identity disturbance,
and our cropped patches for the local branch are based on
positioned face patches instead of landmarks.

C. Expression Representations

The action units reflect the facial expression information and
the model perception of the expression plays a crucial role
in AU detection. The expression representation can be used
to evaluate the expression perception capability of model. A
common practice to represent expression is mapping the face
images into a low-dimensional manifold, which describes the
expressions without disturbance of identity, pose or illumina-
tion. Early works utilized the hidden features of the last or
penultimate layer of the model trained in discrete expression
classification tasks [4], [6], [51] as the expression representa-
tion, in which the extracted expression information reflects
more information of the limited expression categories but
neglect the complicated and fine-grained facial expressions.

Different from them, a compact and continuous embedding
for representing facial expressions was proposed by Vemu-
lapalli and Agarwala [40]. It constructed a large-scale facial
dataset annotated with expression similarity in a triplet way.
Through a large number of triplet comparisons, the trained
expression embedding can perceive slight expression changes.

To further reduce the identity influence, Zhang et al. [59]
developed a Deviation Learning Network (DLN) with a two-
branch structure to achieve more compact and smooth expres-
sion embedding. Taha et al. [52] proposed a generic multi-
modal mesh surface representation that incorporates both 2D
and 3D information. The extensive experiments proved that
the representation can facilitate AU detection and expression
recognition. 3D Morphable Model (3DMM) [53], [54] has
been proposed to fit identities and expression parameters
from a single face image. Expressions are represented as
the coefficients of predefined blendshapes in 3DMM. The
estimated expression coefficients are then used for talking

head synthesis [9], [55], expression transfer [56], [57] or face
manipulation [58].

III. METHOD

The architecture of the proposed GLEE-Net is shown in
Figure 3, which takes an image as input and outputs a binary
vector to indicate the occurrence of each AU. The whole
framework consists of a global branch, a local branch, a
3D global branch and a Transformer classifier. The global
branch extracts the full face feature to model the full face
expression while the local branch focuses on detailed local
information. The two branches are pretrained on the FEC
expression dataset [40] and then finetuned on the AU dataset
to alleviate the issue of limited identities. To further en-
rich 2D facial representations, the 3D global branch extracts
the expression coefficients through 3D face reconstruction.
Finally, the Transformer classifier carries out the final AU
detection from the combined features of three branches with
the powerful attention mechanism.

A. Global Branch

Inspired by DLN [59], the global branch models the ex-
pression feature vector Vexp as the deviation from the identity
vector Vid. Specifically, the global branch consists of two
siamese models, i.e., the face model and the identity model.
The identity model and the face model are initialized with the
pretrained FaceNet [60] for a face recognition task [61]. Then,
we freeze the identity model and train the face model to learn
the expression deviation. The extracted full face expression
feature vector Vexp is obtained by:

Vexp = Vface − Vid. (1)

At the beginning of training the expression embedding, the
Identity model and the Face model share the same initialization
model parameters, but the setting of batchnorm parameters in
the Face model is randomly initialized. The distinguishable
batchnorm parameters between the Identity model and the
Face model ensure that Vexp is not a zero vector at the
beginning of the training, which guarantees valid gradient
propagation in training. On the other hand, as the training
progresses, the parameters of the Face model will increasingly
diverge from the Identity model to represent identity-invariant
facial expressions with the deviation vectors Vexp. In other
words, Vexp will be valued to represent facial expression
by comparing the outputs of the frozen Identity model and
trainable Face model. The Face model is updated to satisfy
the labels of triplet facial expressions, which makes Vexp away
from zero.

The deviation model of the global branch benefits from an
effective feature initialization that can alleviate the disturbance
of expression-irrelevant information, such as identity, pose, etc.
After a linear layer for dimension reduction, we obtain Gexp

as the global expression feature vector.
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Fig. 3. Pipeline of our proposed AU detection framework GLEE-Net. The global and local branches extract the full and partial facial information and are
pretrained on the FEC dataset to provide an effective expression prior knowledge for AU detection. To further enhance the expression representation, we
exploit the expression coefficients from a 3D global branch. The Transformer classifier models the diverse correlations between AUs and then predicts AUs.

B. Local Branch

Different from DLN, we introduce a local branch to facil-
itate the global branch with more detailed local information,
which is also beneficial for AU detection due to the local
nature of AUs. First, we crop the image into 16 parts for local
part extraction. Since the expression dataset contains a large
number of in-the-wild images, it is hard to locate specific face
regions accurately. Therefore, we choose to crop the image
according to the whole image area instead of facial landmarks.
Specifically, we crop three-quarters of the image from left,
right, top and bottom and call them L34, R34, T34 and B34
respectively. Similarly, we crop half from the left, right, top
and bottom as L12, R12, T12 and B12 respectively. We also
crop the image from two directions simultaneously to construct
eight local parts as TL34, TR34, TL12, TR12, BL34, BR34,
BL12 and BR12 respectively. Figure 4 shows some examples
of our cropping strategy. We can observe that different parts
focus on different face regions (e.g., T12 focuses on eyebrows
and eyes).

After obtaining the local parts of a face, we resize them to
96× 96 and feed them into a group of local feature extractors
separately. The structure of the local feature extractor is
illustrated in Figure 3. To assign the importance weight for
different local parts, there exist some common strategies, such
as VLAD [62], VLAAD [63] and self-attention [64]. Among
these strategies, we choose to use self-attention because it is
easy to implement and has excellent performance. Specifically,
after four 3 × 3 convolutional layers, a self-attention module
is employed to strengthen the importance of crucial local
positions on a face.

Afterwards, the feature maps are resized through average
pooling. We concatenate the local features of the 16 face

L34

BL34

T12

BR12

Fig. 4. Illustration of cropped facial parts. Four of the 16 specific parts used
in our method are shown (L34, BL34, T12 and BR12).

regions and resize the final local expression feature Lexp to
16 by MLP layers. We obtain the final expression embedding
Eexp by adding Lexp and the global expression feature Gexp.
Eexp has the comprehensive expression representation capa-
bility from the global-local 2D face regions.

C. 3D Global Branch

To further enrich the expression embedding, the 3D global
branch estimates the expression coefficients from a 3DMM.
The 3D expression coefficients also reflect the AU movement
information and our work is the first to introduce it as another
input feature for AU detection.

Given the face shape coefficients fs ∈ RNs and the
expression coefficients fexp ∈ RNe , the parametric 3D mesh
M(s, e) is represented as:

M(s, e) = M0 +

Ns∑
i=1

Si · (fs)i +
Ne∑
j=1

Ej · (fexp)j , (2)

where M0 is the mean face mesh, and {Si}Ns
i=1 and {Ei}Ne

i=1

are the linear shape and expression bases, respectively. We
take M0 and {Si}Ns

i=1 with Ns = 60 from LSFM [54] and
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normalize them into the range of [−3, 3]. We sculpt Ne = 51
blendshapes on LSFM as {Ei}Ne

i=1.
To reconstruct fexp from the input image, we perform

3DMM fitting by minimizing the energy function:

L3D =

Nl∑
i=1

D(pi, P (M(fs, fexp)i, ξ)

+ λe ∥fexp∥22 + λs ∥fs∥22 ,

(3)

where Nl = 68 is the number of facial landmarks, pi is the
pixel coordinate of the detected i-th landmark, and M(s, e)i
is the 3D vertex of the i-th landmark on mesh M . P is the
perspective projection matrix [65] that projects a 3D vertex
into its homogeneous pixel coordinate according to the head
pose ξ. The first term D(·, ·) measures the distance between
a detected image landmark and its corresponding projected
mesh landmark. Since the contour landmark (e.g., lip contours)
distributions of the image detector and 3D mesh notation are
not perfectly aligned, for non-endpoint landmarks, we define
the point-to-curve pixel distance between the projected 3D
landmark point and the detected 2D face contour curve. The
second and third regularization terms with weights λe = 10−4

and λs = 10−4 respectively. We employ the Levenberg-
Marquard (LM) algorithm [66] to solve the best fexp and fs.

After optimization, the estimated expression coefficients
fexp are concatenated with the global-local expression em-
bedding Eexp for AU classification. fexp is not applied in
the pretraining process of expression embedding because the
quality of in-the-wild FEC [40] images is often worse than that
of AU detection images and may lead to estimation errors in
3D reconstruction.

D. Transformer Classifier

We notice that the correlation among multiple AUs provides
additional constraints and thus facilitates AU predictions.
Therefore, rather than a conventional multi-class classifier,
we model the correlation among AUs by Transformer en-
coders [41]. In this way, the prediction of the occurrence
of each AU takes into account the correlations of all the
other AUs. As shown in Figure 3, the parallel MLP layers
first extract multi-view information related to AUs from the
joint expression representation Fexp. Then, three Transformer
encoders take the extracted multi-view AU features as an input
sequence. Based on the multi-head attention mechanism, the
Transformer encoders can fully exploit the latent correlations
among AUs. Finally, the enhanced features are passed through
independent FC layers as initial predictions and a joint FC
layer is employed to fuse the initial predictions to achieve a
more accurate final prediction.

E. Network Training

Pretraining for Expression Embedding: The global and lo-
cal branches are pretrained on the expression dataset FEC [40]
with a triplet loss to obtain a compact expression embedding
Eexp as an auxiliary task. This is different from DLN since it

only focuses on the global face. FEC is a large-scale in-the-
wild expression dataset that contains 500,203 triplets annotated
by human perception of expression.

We also utilize the hard sample mining strategy from [67]
which introduces a hierarchical labeling approach to find the
more valuable triplets. Because of the pyramid structure of the
hierarchical annotation design, we can automatically generate
more triplet results by chain comparisons.

One triplet consists of one Anchor (A), Positive (P) and
Negative (N). A and P have more similar expressions than N.
Following such annotation, we use the triplet loss to pretrain
the two branches as follows:

Ltri = max(0, ∥EA
exp − EP

exp∥22 − ∥EA
exp − EN

exp∥22 +m)

+ max(0, ∥EA
exp − EP

exp∥22 − ∥EP
exp − EN

exp∥22 +m),
(4)

where E
(.)
exp represents the corresponding expression em-

bedding after normalization, and m is the margin. Due to
a large number of expression comparisons from different
identities in FEC, the extracted expression embeddings can
be identity-independent and continuous. Also, the expression
representation can be more robust with the local branch since
the cropped parts provide rich detailed local information. The
expression embedding is of great value for the generalization
of AU detection.
Training for AU Detection: Aided by the effective expression
embeddings, we finetune the whole network for the AU
detection task. Specifically, we employ the weighted cross
entropy loss to train our AU classifiers, defined by:

LAU = − 1

Na

Na∑
i=1

1

ri
[gi log pi + (1− gi) log(1− pi)], (5)

where Na is the number of AUs, gi is the ground-truth binary
label of the i-th AU, pi is the predicted value, and ri is
the prior occurrence ratio of the i-th AU in the training set
to balance the weight of different AUs. The loss is applied
on both the initial predictions before joint FC and the final
predictions. In the inference stage, the i-th AU is determined
as presence if pi > 0.5.

IV. EXPERIMENT

A. Datasets

We evaluate our method on three widely-used AU detection
datasets: BP4D [77], DISFA [78], and BP4D+ [79]. We divide
the training and validation set based on the subject-exclusive
rule, which means the identities in validation set cannot appear
in the training set. The following experiments report all the
available AUs in these datasets. Currently, there is no dataset
that provides annotations for all AUs defined in the FACS.
Besides, the dataset division in all the following experiments
is based on identity information to ensure that the training set
and testing set do not have images of the same identity.

BP4D is composed of about 140,000 frames from 328 video
clips. Each video shows the spontaneous reactions of a subject
when he is doing a specific task. The subjects contain 23
females and 18 males. The annotation of each frame includes
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TABLE I
COMPARISONS OF OUR METHOD AND THE STATE-OF-THE-ART METHODS ON BP4D IN TERMS OF F1 SCORES (%). THE BEST RESULTS ARE SHOWN IN

BOLD, AND THE SECOND BEST ARE IN BRACKETS.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
LSVM [68] 23.2 22.8 23.1 27.2 47.1 77.2 63.7 64.3 18.4 33.0 19.4 20.7 35.3
JPML [33] 32.6 25.6 37.4 42.3 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9
DRML [69] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
EAC-Net [34] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
DSIN [46] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9
ARL [70] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1
SRERL [71] 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
LP-Net [36] 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
UGN-B [72] 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3
JÂA-Net [35] 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4
MHSA-FFN [49] 51.7 49.3 61.0 77.8 79.5 82.9 86.3 [67.6] 51.9 63.0 43.7 [56.3] 64.2
SEV-Net [39] [58.2] 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9
HMP-PS [73] 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
MAL [42] 47.9 [49.5] 52.1 77.6 77.8 82.8 88.3 66.4 49.7 59.7 45.2 48.5 62.2
ME-GraphAU [74] 52.7 44.3 60.9 77.9 [80.1] 85.3 89.2 69.4 [55.4] [64.4] [49.8] 55.1 [65.5]
KDSSRL [75] 53.3 47.4 56.2 79.4 80.7 85.1 [89.0] 67.4 55.9 61.9 48.5 49.0 64.5
GLEE-Net (Ours) 60.6 44.4 61.0 [80.6] 78.7 [85.4] 88.1 64.9 53.7 65.1 47.7 58.5 65.7

TABLE II
COMPARISONS OF OUR METHOD AND THE STATE-OF-THE-ART METHODS ON DISFA IN TERMS OF F1 SCORES (%).

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.
LSVM [68] 10.8 10.0 21.8 15.7 11.5 70.4 12.0 22.1 21.8
DRML [69] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
APL [76] 11.4 12.0 30.1 12.4 10.1 65.9 21.4 26.9 23.8
EAC-Net [34] 41.5 26.4 66.4 50.7 8.5 89.3 88.9 15.6 48.5
DSIN [46] 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6
ARL [70] 43.9 42.1 63.6 41.8 40.0 76.2 [95.2] 66.8 58.7
SRERL [71] 45.7 47.8 56.9 47.1 45.6 73.5 84.3 43.6 55.9
LP-Net [36] 29.9 24.7 72.7 46.8 49.6 72.9 93.8 56.0 56.9
UGN-B [72] 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
JÂA-Net [35] 62.4 60.7 67.1 41.1 45.1 73.5 90.9 [67.4] 63.5
MHSA-FFN [49] 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
SEV-Net [39] 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8
HMP-PS [73] 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0
MAL [42] 43.8 39.3 68.9 47.4 48.6 72.7 90.6 52.6 58.0
ME-GraphAU [74] 54.6 47.1 [72.9] [54.0] 55.7 76.7 91.1 53.0 63.1
KDSSRL [75] 60.4 [59.2] 67.5 52.7 51.5 76.1 91.3 57.7 [64.5]
GLEE-Net (Ours) [61.9] 54.0 75.8 45.9 55.7 [77.6] 92.9 60.0 65.5

the occurrence or absence of 12 AUs and the intensity of 5
AUs. For fair comparisons, we choose the same three-fold
dataset division as the previous works [34], [35] and perform
the three-fold cross validation.

DISFA is composed of about 130,000 frames from 27 video
clips. Like BP4D, the expressions in videos come from human
spontaneous reactions. The subjects contain 12 females and 15
males, which is less than BP4D. The annotation of each frame
includes the intensities (range from 0 to 5) of 8 AUs. Following
previous works, the intensity with {0, 1} value represents the
AU absence and the intensity with {2, 3, 4, 5} value represents
the AU occurrence. We also compare our method with other
works based on the three-fold cross validation.

BP4D+ extends more subjects based on BP4D. It contains
1400 video clips from 140 subjects (82 females and 58 males).
About 198,000 frames are annotated with the occurrence or
absence of the same 12 AUs in BP4D. Following the previous
works, we also perform three-fold cross validation. Moreover,

to further prove the superior generalization of our method,
we also construct the experiment that is trained on BP4D and
evaluated on BP4D+ following the works [35], [70].

B. Implementation Details

We first pretrain the global and local branches on FEC [40]
and then finetune the whole framework on evaluated AU
datasets. In the pretraining stage, we use an SGD optimizer
with momentum 0.9 and learning rate 2×10−4. The pretraining
converges within 10 epochs with a batch size of 30. We set
the margin m to 0.1 for one-class triplets and 0.2 for two-class
and three-class triplets, as recommended by DLN [59]. One-
class triplets involve three images from the same emotion tag,
while two-class and three-class triplets contain three images
from two or three different emotion tags. These triplet types
are included in FEC annotations. We use Euclidean distance
in the pre-training processing, following the DLN [59].
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In the finetuning stage, we train the entire framework
with an SGD optimizer with momentum 0.9 and a learning
rate 2 × 10−3 for 10 epochs. We employ the method [80]
as the facial landmark detector. The input face images are
aligned by similarity transformation as JÂA-Net [35]. The
computational cost of our method involves 8.72 GFLOPs. The
number of parameters is 56.6M. Our GLEE-Net is not heavy-
weighted because our local feature extractor for per patch
only contains a few layers, and the input of the Transformer
encoder is 12 AU features of dimension 32. For the expression
embedding pre-training, each iteration takes an average of
0.2482 seconds, and each epoch takes approximately 45.18
minutes to complete. During the training process for AU
detection, taking the BP4D dataset as an example, each step
iteration takes an average of 0.1375 seconds, and each epoch
takes approximately 5.502 minutes to complete. The time
spent on other datasets is roughly the same. For the test
stage, the inference time is relatively small, with only 0.0241
seconds needed to process a single batch. All time analyses
are conducted using a single GPU of 3090Ti.

C. Comparison with the State-of-the-Art

We first compare our method with the state-of-the-art. The
compared methods include LSVM [68], JPML [33], DRML
[69], APL [76], EAC-Net [34], DSIN [46], ARL [70], SRERL
[71], ML-GCN [82], MS-CAM [83], LP-Net [36], FACS3D-
Net [81], UGN-B [72], JÂA-Net [35], MHSA-FFN [49],
SEV-Net [39], HMP-PS [73], MAL [42], ME-GraphAU [74],
KDSSRL [75]. Following the experimental settings of most
previous works, we employ the F1 score [84] on the frame
level as the evaluation metric.

Evaluation on BP4D. The results on BP4D are shown in
Table I. The average F1 score of our method is 65.7%, which
outperforms all the competing methods. In terms of the per-
formance on single AUs, our GLEE-Net achieves the highest
or the second highest F1 score among all the methods on 6 of
the 12 evaluated AUs. Compared to SEV-Net, JÂA-Net and
MAL that employ extra auxiliary information to facilitate AU
detection, our method obtains better results with the compact
expression embedding as prior knowledge. Our method also
outperforms MHSA-FFN which also introduces Transformer
into classifiers. ME-GraphAU achieves a close result as our
method on BP4D but shows a significant disadvantage on
DISFA.

Evaluation on DISFA. Table II shows the results on DISFA.
The average F1 score of our method outperforms all the state-
of-the-art methods. Compared to the most recent works SEV-
Net, HMP-PS, MHSA-FFN and ME-GraphAU, our method
obtains the improvement of 6.7%, 4.5%, 4.0%, and 2.4%,
respectively. As the number of subjects in DISFA is smaller
than that of BP4D, most of the previous methods suffer from
overfitting to the appearance of training subjects more severely.
Therefore, benefiting from our identity-independent expression
representations, our method achieves an even more significant
improvement.

Evaluation on BP4D+. Table III shows the results of the
three-fold cross-validation on BP4D+. Results of the compared
methods are reported by SEV-Net [39]. Our method achieves
the F1 score of 63.7% and outperforms all the state-of-the-art
methods. To further evaluate the generalization performance
on large-scale testing identities, we perform the cross-dataset
validation. We do not choose the BP4D and DISFA since
they have different labeled AU categories. Therefore, we train
our method on BP4D and evaluate it on the full BP4D+ of
140 subjects. The results are shown in Table IV. We use the
reported results in the work [35] for comparison. Again, our
method outperforms all the compared methods under the large-
scale cross-dataset evaluation. It proves that our method can
extract identity-independent information and generalize well
to new identities.

Through comparisons on different datasets, we observe that
our method significantly improves the F1 scores for some
AUs, but not for others. This is because our work makes
efforts to alleviate data sparsity and imbalance and improve
generalization. Our approach exhibits clear superiority, bet-
ter generalization, and less susceptibility to imbalanced data
distribution when observing those AUs with insufficient data
samples, including AU1, AU4, AU17, and AU24 in BP4D,
AU4 and AU9 in DISFA, and AU1, AU2, and AU24 in BP4D+.
On the other hand, the other AUs have relatively-sufficient
data, our method shows comparable performance or relatively
weak improvement.

D. Ablation Study

We also conduct an ablation study to evaluate the effec-
tiveness of each module by removing or replacing it with a
baseline method. The results are shown in Table V.

Prior Knowledge. In the experiment without pretraining
on the expression dataset (w/o pretrain), we can see an
apparent drop in average F1. It proves the significance of prior
knowledge from the compact expression embedding. We also
set up an experiment with fixed pretrained parameters of global
and local branches (w. fixed GB & LB) and obtain a lower
average F1, which indicates a domain gap exists between FEC
and BP4D datasets.

Expression Representation. To validate the effective-
ness of representations extracted by the 3D global, global
and local branches, we construct the model with only 3D
global branch (w/o GB & LB) and only the global and local
branches (w/o 3DGB) individually. To indicate the significance
of the global and local branches, we replace these two branches
with a ResNet [85] (w. ResNet). Also, we build up a model
without the local branch (w/o LB) to confirm the usefulness
of the local branch. The experiments show removing those
components lead to degraded performance compared to full
GLEE-Net, proving that three branches are all effective. The
local branch is used to supply extra local detail information
to the global branch rather than working individually.

Classifier. We replace the Transformer classifier with
an MLP classifier (w/o TC), the decrease of average F1
indicates that the Transformer classifier improves AU detection
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TABLE III
COMPARISONS OF OUR METHOD AND THE STATE-OF-THE-ART METHODS ON BP4D+ IN TERMS OF F1 SCORES (%).

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
FACS3D-Net [81] 43.0 38.1 49.9 82.3 85.1 87.2 87.5 66.0 48.4 [47.4] 50.0 [31.9] 59.7
ML-GCN [82] 40.2 36.9 32.5 84.8 [88.9] 89.6 [89.3] 81.2 [53.3] 43.1 55.9 28.3 60.3
MS-CAM [83] 38.3 37.6 25.0 85.0 90.9 90.9 89.0 [81.5] 60.9 40.6 [58.2] 28.0 60.5
SEV-Net [39] [47.9] [40.8] 31.2 86.9 87.5 89.7 88.9 82.6 39.9 55.6 59.4 27.1 [61.5]
GLEE-Net (Ours) 54.2 46.3 [38.1] [86.2] 87.6 [90.4] 89.5 81.3 46.3 [47.4] 57.6 39.6 63.7

TABLE IV
COMPARISONS OF OUR METHOD AND THE STATE-OF-THE-ART ON CROSS-DATASET EVALUATION (TRAINED ON BP4D AND EVALUATED ON BP4D+) IN

TERMS OF F1 SCORES (%).

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
EAC-Net [34] 38.0 [37.5] [32.6] 82.0 83.4 87.1 85.1 62.1 44.5 43.6 45.0 [32.8] 56.1
ARL [70] 29.9 33.1 27.1 81.5 83.0 84.8 86.2 59.7 [44.6] [43.7] [48.8] 32.3 54.6
JÂA-Net [35] [39.7] 35.6 30.7 [82.4] [84.7] [88.8] [87.0] [62.2] 38.9 46.4 48.9 36.0 [56.8]
GLEE-Net (Ours) 39.8 37.9 41.6 83.4 88.2 90.2 87.4 76.6 48.3 42.9 47.7 29.8 59.5

TABLE V
ABLATION STUDY ON BP4D MEASURED BY F1 SCORES (%).

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
w/o pretrain 54.8 44.5 52.3 77.6 75.9 82.5 86.7 63.6 45.6 62.3 47.5 51.0 62.0
w. fixed GB & LB 55.1 44.9 49.1 76.5 75.9 82.2 87.2 65.0 36.3 59.8 34.4 50.2 59.7
w. ResNet 55.0 45.2 52.0 77.8 77.8 83.3 [87.8] 65.8 46.2 63.8 45.8 53.5 62.8
w/o GB & LB 55.2 45.2 46.1 76.1 75.6 81.5 86.0 64.8 36.0 59.7 34.1 49.4 59.1
w/o 3DGB 54.4 43.3 59.2 [79.5] [78.1] [84.7] 87.6 64.6 [53.9] 63.9 47.3 [58.2] 64.6
w/o LB 58.9 [46.8] 55.9 78.3 78.0 83.3 87.6 62.1 52.8 [64.2] 50.3 53.5 64.3
w/o TC [59.7] 43.0 64.0 78.7 77.2 83.3 87.5 63.8 54.3 [64.2] 46.7 56.0 [64.9]
w/o joint FC 56.3 47.3 57.0 77.9 76.1 84.0 87.7 [65.4] 51.6 63.2 [48.9] 56.5 64.3
GLEE-Net (Full) 60.6 44.4 [61.0] 80.6 78.7 85.4 88.1 64.9 53.7 65.1 47.7 58.5 65.7

performance. We also remove the joint FC layer of the
Transformer classifier and the final prediction (w/o joint FC).
The performance drop validates the practical design of our
two-stage predictions. In comparison to other modules, the
Transformer Classifier (w/o TC) and joint FC have a relatively
minor impact. This could be because our feature extraction
is well-designed and places low demands on the tail-end
classification network.

E. Visual Analysis

In this part, we present some t-SNE visualization results to
investigate the impact of our proposed expression embedding
pre-training and each feature branches used in our pipeline.

Figure 5 presents the t-SNE results of Eexp obtained
through the use of our pre-trained expression embedding
(Ours) and the absence of pre-training (w/o pre-train). We
randomly select five AU labels from BP4D, and plot their
respective t-SNE distributions. The legends in Fig. 5, such as
”AUs(6,7,10,12),” denote the occurrence of AUs 6, 7, 10, and
12 in the respective samples, and follow the same convention
as the other legends. From the figure, it is evident that our
expression embedding pretraining method allows the model
to learn a more reasonable feature distribution. Specifically,
samples with the same label are clustered closer together,
and samples with similar AUs (e.g., AUs(6,7,10,12,14) and

AUs(6,7,10,12,14)

Others

AUs(6,7,10,12)
AU4
AUs(10,12)

AUs(4,7)

AUs(6,7,10,12,14)

Others

AUs(6,7,10,12)
AU4
AUs(10,12)

AUs(4,7)

Ours w/o pretrain

Fig. 5. T-sne result of Eexp obtained by using the pretraining (Ours) and not
using pretraining (w/o pretrain). We randomly choose five AU combinations
in BP4D and it can be seen that our expression embedding pretraining lead
to a more reasonable distribution in the feature space.

AUs(6,7,10,12)) are closer to each other than to samples with
different labels.

To demonstrate the effectiveness of each feature branch
of GLEE-Net, we sample some images with seven common
AU combinations in BP4D, and show the t-SNE visualization
of their expression representations Fexp in Figure 6. We
compute the expression representation variance for each AU
combination and average them as Ave-Var. Samples of the
same AU combination from different identities are distributed
more closely under our full method (GB & LB & 3DGB)
than other ablation settings. This indicates that our expression
representation focuses on the AU features rather than over-
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GB (𝑨𝒗𝒆-𝑽𝒂𝒓= 0.0623) GB & LB (𝑨𝒗𝒆-𝑽𝒂𝒓= 0.0601) GB & LB & 3DGB (𝑨𝒗𝒆-𝑽𝒂𝒓= 0.0592)3DGB (𝑨𝒗𝒆-𝑽𝒂𝒓=0.0613)

AUs(6,7,12)

AUs(1,4)

AUs(12,14,15)

AUs(6,10,12)

AUs(14,17,24)

AU14

AU17
3DGB: 3D global branch    GB: global branch    LB: local branch 

Fig. 6. T-SNE visualization of sampled AU combinations in the four different representation spaces. It is observed that representations from our proposed
GLEE-Net (GB & LB & 3DGB) are more compact in each AU combination. Ave-Var is the average of representation variances of all the AU combinations.

GB & LB & 

3DGB

GB & LB

3DGB

GB

Fig. 7. Illustration of our expression representation facilitating AU detection. We attain one image as a center (marked in red) and sample its surrounding
features from the expression representation space. It can be seen that images with similar AUs are retrieved in this space.

fitting to training identities. Figure 7 shows the expression
representation facilitates AU detection. We choose one image
as center (in red) and sample its surrounding features in the
representation space. Under the joint features of the three
branches (GB & LB & 3DGB), neighbouring images all
have the same facial expressions. The other three versions
roughly capture similar facial actions, but there are still subtle
variances of AUs.

F. Discussion

Existing top-ranked works like MHSA-FFN [49] and SEV-
Net [39] also use additional dataset information, such as
landmarks, word embedding, and so on, but they still suffer
from the identity overfitting problem on DISFA that contains
smaller subjects. Compared with previous works, our method
is the first to introduce the effective expression embedding and
3D expression coefficients to alleviate the issue of overfitting
caused by limited identities of AU datasets. Our method
makes full of the identity-independent expression represen-
tation based on additional dataset information (without AU
labels) to facilitate AU detection.

Compared with MHSA-FFN and SEV-Net, our method
achieves the promising results on widely-used BP4D, BP4D+

and DISFA datasets. Also, cross-dataset evaluation demon-
strates our better generalization than the state-of-the-art meth-
ods.

In terms of the limitation of our method, we pre-extract the
3DMM features to improve training and prediction efficiency.
However, this approach may not be suitable for real-world sce-
narios as it can affect the speed of real-time detection. Despite
the aforementioned limitation, our method exhibits outstanding
performance in terms of results. In our future works, we
intend to seek methods to overcome these limitations and
investigate in-the-wild AU datasets such as SEWA [86] and
Aff-wild2 [87], [91], which have not been widely employed in
existing works. We will exploit the effect of different orders
of AU learning on Transformer-based models’ performance.
And we will investigate the potential improvement by using
the semi-supervised method [88] and VLAAD [63]. Also, the
methods used in [30], [31], [89], [90] are also worth paying
attention to.

V. CONCLUSION

This paper presents a novel AU detection framework,
dubbed GLEE-Net, by fully taking advantage of available
facial expression data. Through the global and local branches,
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our GLEE-Net extracts rich representations of input faces in a
compact and continuous expression space. Taking advantage
of the expression representations, similar AU combinations
cluster closer in the latent space. This not only significantly
facilitates AU classification but also makes AU detection gen-
eralized well to various subjects. Moreover, our introduced 3D
facial expression branch provides complementary information
to 2D AU detection. Our Transformer-based classifier effec-
tively fuses representations of three branches and produces
more accurate AU detection results than the state-of-the-art.
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“Aggregating local image descriptors into compact codes,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 34, no. 9,
pp. 1704–1716, 2011.

[63] J. Zhang, Y. Cao, and Q. Wu, “Vector of locally and adaptively ag-
gregated descriptors for image feature representation,” Pattern Recog-
nition, vol. 116, p. 107952, 2021.

[64] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 10 076–10 085.

[65] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[66] C. T. Kelley, Iterative methods for optimization. SIAM, 1999.
[67] J. Zhang, K. Chen, and J. Zheng, “Facial expression retargeting from

human to avatar made easy,” IEEE Transactions on Visualization and
Computer Graphics, 2020.

[68] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871–1874, 2008.

[69] K. Zhao, W.-S. Chu, and H. Zhang, “Deep region and multi-label
learning for facial action unit detection,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[70] Z. Shao, Z. Liu, J. Cai, Y. Wu, and L. Ma, “Facial action unit detection
using attention and relation learning,” IEEE Transactions on Affective
Computing, 2019.

[71] G. Li, X. Zhu, Y. Zeng, Q. Wang, and L. Lin, “Semantic relationships
guided representation learning for facial action unit recognition,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 8594–8601.

[72] T. Song, L. Chen, W. Zheng, and Q. Ji, “Uncertain graph neural
networks for facial action unit detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 1, 2021.

[73] T. Song, Z. Cui, W. Zheng, and Q. Ji, “Hybrid message passing
with performance-driven structures for facial action unit detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 6267–6276.

[74] C. Luo, S. Song, W. Xie, L. Shen, and H. Gunes, “Learning multi-
dimensional edge feature-based au relation graph for facial action unit
recognition,” arXiv preprint arXiv:2205.01782, 2022.

[75] Y. Chang and S. Wang, “Knowledge-driven self-supervised representa-
tion learning for facial action unit recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 20 417–20 426.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3288903

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Houston. Downloaded on June 26,2023 at 02:56:59 UTC from IEEE Xplore.  Restrictions apply. 



[76] L. Zhong, Q. Liu, P. Yang, J. Huang, and D. Metaxas, “Learning multi-
scale active facial patches for expression analysis,” IEEE Transactions
on Cybernetics, vol. 45, no. 8, pp. 1499–1510, 8 2015.

[77] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale, A. Horowitz,
P. Liu, and J. M. Girard, “Bp4d-spontaneous: a high-resolution spon-
taneous 3d dynamic facial expression database,” Image and Vision
Computing, vol. 32, no. 10, pp. 692–706, 2014.

[78] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F.
Cohn, “Disfa: A spontaneous facial action intensity database,” IEEE
Transactions on Affective Computing, vol. 4, no. 2, pp. 151–160, 2013.

[79] Z. Zhang, J. M. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci, S. Canavan,
M. Reale, A. Horowitz, H. Yang et al., “Multimodal spontaneous
emotion corpus for human behavior analysis,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 3438–3446.

[80] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, “Openface
2.0: Facial behavior analysis toolkit,” in FG 2018. IEEE, 2018, pp.
59–66.

[81] L. Yang, I. O. Ertugrul, J. F. Cohn, Z. Hammal, D. Jiang, and H. Sahli,
“Facs3d-net: 3d convolution based spatiotemporal representation for
action unit detection,” in 2019 8th International Conference on Affec-
tive Computing and Intelligent Interaction (ACII). IEEE, 2019, pp.
538–544.

[82] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-label image
recognition with graph convolutional networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5177–5186.

[83] R. You, Z. Guo, L. Cui, X. Long, Y. Bao, and S. Wen, “Cross-modality
attention with semantic graph embedding for multi-label classification,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 12 709–12 716.

[84] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced
data–recommendations for the use of performance metrics,” in 2013
Humaine association conference on affective computing and intelligent
interaction. IEEE, 2013, pp. 245–251.

[85] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[86] J. Kossaifi, R. Walecki, Y. Panagakis, J. Shen, M. Schmitt, F. Ringeval,
J. Han, V. Pandit, A. Toisoul, B. W. Schuller et al., “Sewa db: A rich
database for audio-visual emotion and sentiment research in the wild,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[87] D. Kollias and S. Zafeiriou, “Aff-wild2: Extending the aff-wild database
for affect recognition,” arXiv preprint arXiv:1811.07770, 2018.

[88] J. Zhang, J. Yang, J. Yu, and J. Fan, “Semisupervised image clas-
sification by mutual learning of multiple self-supervised models,”
International Journal of Intelligent Systems, vol. 37, no. 5, pp. 3117–
3141, 2022.

[89] J. Yu, Y. Rui, and D. Tao, “Click prediction for web image reranking
using multimodal sparse coding,” IEEE Transactions on Image Pro-
cessing, vol. 23, no. 5, pp. 2019–2032, 2014.

[90] J. Yu, M. Tan, H. Zhang, Y. Rui, and D. Tao, “Hierarchical deep
click feature prediction for fine-grained image recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 44,
no. 2, pp. 563–578, 2019.

[91] W. Zhang, F. Qiu, S. Wang, H. Zeng, Z. Zhang, R. An, B. Ma, and
Y. Ding, “Transformer-based multimodal information fusion for facial
expression analysis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 2428–2437.

Wei Zhang received the B.E. degree in communi-
cation engineering from Nanjing University of Posts
and Telecommunications, Jiangsu, China in 2017
and M.S. degree in electronic and information en-
gineering from Zhejiang University, Zhejiang, China
in 2020. She is currently a research scientist working
with Netease Fuxi AI Lab, Hangzhou, China. Her
current research interests include computer vision,
expression embedding and facial affective analysis.

Lincheng Li received the B.S. and Ph.D. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 2011 and 2017 respectively. He
is currently a researcher in Netease Fuxi AI Lab,
Hangzhou, China. His research interests include
computer vision, pattern recognition, and image and
video processing.

Yu Ding is currently an artificial intelligence expert
and the leader of virtual human group at Netease
Fuxi AI Lab, China. His research interests include
virtual human, deep learning, image and video pro-
cessing, talking-head generation, animation gener-
ation, multimodal computing, affective computing,
nonverbal communication (face, gaze, and gesture),
and embodied conversational agent. He received
Ph.D. degree in Computer Science at Telecom Paris
tech in Paris (France).

Wei Chen received the B.S. degree in information
engineering from the National University of Defense
Technology, Changsha, China, and received M.S.
degree in software engineering from Hebei Univer-
sity, Baoding, China. He is currently an engineer of
Hebei Agricultural University, Baoding, China. His
interests include software engineering, intelligent
optimization algorithm, and deep learning.

Zhigang Deng is Moores Professor of Computer
Science at University of Houston, Texas, USA. His
research interests include computer graphics, com-
puter animation, virtual humans, human computer
conversation, and robotics. He earned his Ph.D. in
Computer Science at the Department of Computer
Science at the University of Southern California in
2006. Prior that, he also completed B.S. degree in
Mathematics from Xiamen University (China), and
M.S. in Computer Science from Peking University
(China). Besides serving as the conference or pro-

gram co-chair for CASA 2014, SCA 2015, MIG 2022 and PG 223, he has been
an Associate Editor for IEEE Transactions on Visualization and Computer
Graphics, and Computer Graphics Forum. He is a distinguished member of
ACM and a senior member of IEEE.

Xin Yu received the B.S. degree in electronic en-
gineering from the University of Electronic Science
and Technology of China, Chengdu, China, in 2009,
the Ph.D. degree from the Department of Electronic
Engineering, Tsinghua University, Beijing, China,
in 2015, and the Ph.D. degree from the College
of Engineering and Computer Science, Australian
National University, Canberra, Australia, in 2019.
He is currently a Senior Lecturer at the University of
Queensland. His research interests include computer
vision and image processing.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3288903

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Houston. Downloaded on June 26,2023 at 02:56:59 UTC from IEEE Xplore.  Restrictions apply. 


