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ABSTRACT
Nonverbal communicative behaviors during speech are im-
portant to model a virtual agent able to sustain a natural
and lively conversation with humans. We investigate statisti-
cal frameworks for learning the correlation between speech
prosody and eyebrow motion features. Such methods may
be used to synthesize automatically accurate eyebrow move-
ments from synchronized speech.

Index Terms— Hidden Markovian models, speech to
motion synthesis, virtual agent

1. INTRODUCTION

Embodied conversational agents are autonomous entities with
often a human-like appearance (see Figure 1) and endowed
with communicative and expressive capabilities. As humans
do they can communicate through various means such as
speech, facial expressions, gesture, gaze, etc. Communicative
behaviors are polysemic that is a same behavior may convey
several meanings. For example, a head nod can convey agree-
ment, mark an emphasis, or be a backchannel signal. Various
studies have shown the tight relationship between speech and
nonverbal behaviors production. For example, [1] found a
strong correlation between the raise of F0 and of eyebrow
movements. Nonverbal behaviors are important not only for
the speaker as they are a mean of encoding her thoughts but
also for the interlocutors that can perceive and decode these
signals. Virtual humans ought to be capable of displaying
such high quality behaviors. Our aim is to develop a model
that drives the virtual agent’s behaviors from the speech. It
takes as input the spoken text the agent needs to say. It com-
putes the facial expressions and other behaviors associated
with the acoustic stream. While such an animation model
does not rely on semantic information, the acoustic stream is
by itself a reflector of communicative intentions. There are
several applications that could benefit from such a compu-
tational model of communicative behaviors. The behaviors
of avatars of human users in a 3D world could be driven
by the users’ speech. In video games non-player characters
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could also be animated similarly. It could aso be applied for
computing the nonverbal behaviors of autonomous embodied
conversational agents.

Nonverbal behaviors are not only higher level informa-
tion such as emotional states and attitudes [2], but also with
correlated with prosodic and acoustic features. [3] reported
high correlation between head motion and the fundamental
frequency (F0); on the other hand, [4] stated that ”between
80 and 90 of the variance observed in face motion can be ac-
counted for by the speech acoustics”. Computational mod-
els such as those proposed by [5] and [6] rely on such links
to learn the relationship between modalities. Most existing
models of virtual agents’ behaviors can be clustered into two
main groups. In one group, models are based on theoreti-
cal models taken from domains such as psychology, emotion
studies, linguistic [7]. On the other hand, statistical models
have been applied to learn the correlation between speech and
multimodal behaviors [8, 5, 9, 10, 11, 6, 12, 13, 14, 15, 16,
17]. These models make use of the tight relationship between
acoustic and visual behaviors. While a few methods have al-
ready been proposed most of them lack variability in the pro-
duced animation.

We investigate here three statistical models to infer the fa-
cial signals from the speech signals. As a first start we focus
on eyebrow motion. Our goal is to build a statistical system
which is able to learn from training samples how to generate
natural animation motion from speech features while autho-
rizing realistic variability in the synthesized behaviors. We
developed three statistical Markovian systems that all rely on
contextual models, able to take into account contextual in-
formation (speech features here). In the remaining of this
paper we first describe related works then we introduce our
approaches and we finally report experimental results.

2. BACKGROUND AND RELATED WORKS

Basically we are interested in techniques that allow generat-
ing an output information stream (motion) from an input in-
formation stream (speech). We first recall major works on
synthesizing smooth sequences from a HMM.
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2.1. Using HMMs for synthesis

Synthesizing a realistic sequence of observations (called a tra-
jectory hereafter) from a HMM is a key issue. Of course, syn-
thesizing the most likely observation sequence given a par-
ticular state sequence yields a very unlikely piecewise con-
stant trajectory. Integrating over all state sequences the corre-
sponding piecewise constant trajectories gives a better result
[14]. A key technique has been proposed by [18] to synthe-
size more realistic smooth trajectories from a standard HMM
with Gaussian probability density functions. [18] proposed
few variants of a generic method that we do not detail here
but which is a building block in few methods for speech-to-
motion synthesis that we will discuss in the following, includ-
ing ours. We will distinguish between a general synthesis case
(named Integrated method hereafter) that consists in synthe-
sizing a trajectory from the HMM by integrating trajectories
over all possible state sequence, and a more restricted synthe-
sis that considers only one state sequence (possibly the most
likely or whatever), which we will name single method.

2.2. Speech to motion synthesis

Few researchers have presented data-driven approaches to
synthesize speech animation, including body and facial ani-
mation. [13, 12] and [10] generate automatically body mo-
tions from spoken speech. Given the tight relationship be-
tween acoustic phonemes and visual visemes, speech is also
used to drive lip motion in [8, 15]. While these works mainly
focus on speech content, other works are particularly inter-
ested in synthesizing nonverbal communicative behaviors
during speech, such as head and eyebrow motion.

A key idea that was followed by a number of researchers
has been to use Gaussian distribution on feature vectors in-
cluding speech and motion features to capture the correlation
between these two types of features. [11, 16] used Gaus-
sian Mixture Model (GMM) while [19] and [5, 9, 6, 17] used
HMMs. This latter approach is probably the most popular
for synthesizing behaviors from speech (we will use this as a
baseline in our experiments). It consists in designing a Gaus-
sian joint HMM, named λ hereafter, working on concatenated
observation vectors for the two streams (i.e. a frame at time t
is xt =

[
x1tx

2
t

]′
where xit stands for the feature vector at time

t for stream i). A key point is that one can build from the joint
HMM a Gaussian HMM for every stream, named λ1 and λ2
by keeping only parameters related to the stream. Note that
these models λi, have the same architecture and share transi-
tion probabilities. Based on this, once a joint HMM is trained,
one can synthesize a trajectory for the second stream from
the observation sequence of the first stream as follows. Us-
ing λ1 one determines the most likely state sequence. Then
using λ2 one can determine a synthesized trajectory for the
second stream using the single method of [18]. Alternatively,
one may use λ1 to compute the probability distribution over
all state sequence given the stream 1 observation sequence.

Fig. 1. Left: Illustration of the extracted facial animation pa-
rameters (arrows illustrate displacements). Right: Represen-
tation of a HMM used for speech to motion synthesis in [6]
as a dynamic Bayesian network. Motion and speech features
are coupled in observation frames and their interdependency
is modeled through covariance matrices.

Then using λ2 one can determine a synthesized trajectory for
the second stream using the integrated method.

3. SPEECH TO MOTION SYNTHESIS USING
CONTEXTUAL MARKOVIAN MODELS.

We present below three approaches that are based on contex-
tual HMMs [20]. We introduce first contextual HMMs and
show how they can be used to infer motion from speech. This
reference method generalizes in particular the method in [6].
Then we present two new approaches that improve on this
baseline. The three proposed modeling are illustrated in Fig-
ure 2 as dynamic Bayesian networks. In the following we
consider a training dataset where every observation sequence
is a sequence of frames xt’s that are composed of motion fea-
tures mt and of speech feature st.

3.1. Contextual HMMs (CHMMs)

Our first system is based on Contextual hidden Markov mod-
els (CHMMs). CHMMs have been initially proposed for
recognizing gestures with the idea of using contextual in-
formation related to the physiology of the person realizing
the gesture or the amplitude of the gesture [21], [20]. As-
sume that we are given a set of external (contextual) vari-
ables θ (vector of dimension c) for any observation sequence
x = (x1, ..., xT ) where xt’s are d-dimensional feature vec-
tors. A CHMM is a HMM whose means and covariance ma-
trices depend on θ. For instance the mean µ̂j (d-dimensional
vector) of the Gaussian distribution in state j is defined as:

µ̂j(θ) = Wµ
j θ + µ̄j (1)

with Wµ
j a d × c matrix, and µ̄j is an offset vector. Training

is performed via the Generalized EM algorithm. Note that
θ may be dynamic and vary with time [20]. In such we get
a sequence of θt together with the sequence of observation
and Gaussian pdfs have time-varying means and time-varying
covariance matrices. For instance the mean in state j equals:

µ̂j(θt) = Wµ
j θt + µ̄j (2)
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To design a speech-to-motion system we learn one CHMM
with speech features as (dynamic) contextual variables (i.e.
pdfs are conditioned on speech features) and with both mo-
tion and speech features as observations as in [6]. Note that
when used as contextual variables we use short term means
of the speech frames computed on a sliding window of length
10 (we note these features s̄).

Once such a model is trained one can determine a CHMM
on speech λs only by ignoring pdf parameters on motion fea-
tures. Also one can use the speech signal to determine a
CHMM on motion whose parameters are modified by the
speech stream, we note this model λm/s. Actually it is a
CHMM with time varying parameters (e.g. the mean of a
Gaussian changes with time). At the synthesis step, speech
features are first processed with λs to find the most likely state
sequence, then we use the single method of [18] (cf. section
2.1) to synthesize a trajectory along this state sequence with
λm/s. While this approach is close to [6] however we use
contextual HMMs instead of HMMs which allows capturing
complex dependencies between speech and motion, yielding
improved synthesis as we will demonstrate.

3.2. Fully Parameterized HMMs (FPHMMs)

We have developed a new extension of CHMM, named
FPHMM, by parameterizing transition probabilities including
the initial state distribution with external variables θt. In addi-
tion to means and covariance matrices already parameterized
in CHMMs, transition probabilities also depend on external
variables here. The state transition distribution ai,j from ith=

state to jth state at time t is defined as:

ai,j(θt) =
elogAij+W

tr
ij θt∑

j′ e
logAij′+W

tr
ij′θt

(3)

where W tr
i,j is a c-dimensional vector and Aij may be viewed

as an offset value. Hence transition probabilities change at
every time step according to the contextual variables. Such a
model is interesting in our case when one exploits speech fea-
tures as contextual variables. It allows defining more directly
the sequence of states as a function of the speech signal.

To design a speech-to-motion synthesis system we learn a
FPHMM that takes speech features as external variables and
motion features only as observation. Thereby, speech features
influence directly state transition probabilities and emission
probability distributions. This model is trained via likelihood
maximization with a GEM algorithm. For synthesis, speech
features (external variables) are used to determine a proba-
bility distribution over all the hidden states at each time step
using only transition probabilities. Then we use the integrated
method of [18] to generate the most likely animation with the
motion HMM λm/s.

Fig. 2. Representation of a CHMM (left) and of a FPHMM
(right) as DBNs. CHMM use short term speech features to
modify the pdfs while FPHMM model more directly the mo-
tion as a function of the speech. State at time t is noted qt and
short term mean of speech feature vectors (when speech is
used as contextual variable) is noted s̄t. Note that a PFHMM-
CRF are similar to PFHMM (right) but where the dependen-
cies indicated by thick lines are modeled with a CRF.

3.3. Combining FPHMMs and CRFs (FPHMMs-CRFs)

At last, we have investigated the combination of Fully Param-
eterized HMMs and of Conditional Random Fields (CRFs)
[22], named FPHMMs-CRFs, where the CRF is used simi-
larly as in [13]. The FPHMM has the same architecture as
in previous case, it takes speech features as external variables
and motion features as observation. The CRF has the same
architecture as the FPHMM. It takes speech features as in-
put and it outputs a state sequence or a probability distribu-
tion over state sequences, which will be used to synthesize
the motion features.

For training, we first learn a FPHMM as described in sec-
tion 3.2. Then for each training sequence xi, we determine
the most likely state sequence hsi in the motion FPHMM
λm/s. Then the CRF is trained using the set of (si,hsi) as
training dataset. For synthesis, a speech signal s is input to
the CRF to get a probability distribution over hidden state se-
quences in λm/s. Speech features are also used to determine
λm/s from the Fully Parameterized HMM. Then, given the
distribution on hidden states as output by the CRF, we syn-
thesize with λm/s a smooth trajectory using the integrated
method of [18]. This approach not only overcomes the limi-
tations from the assumptions of standard HMM by Fully Pa-
rameterized HMM but also takes the advantages of CRF as a
discriminative model for inferring accurate probability distri-
bution over all hidden state sequences.

4. EXPERIMENTS

4.1. Datasets

Experiments have been performed on the Biwi 3D Audio-
visual Corpus of Affective Communication database (B3D
/ AC) [23]. 14 subjects were invited to speak 80 short En-
glish sentences. In total, this corpus includes 1109 sequences,
each lasting 4.67s long on average. We used a part of this
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corpus corresponding to 240 sentences from three subjects.
We manually annotated the data with respect to five labels
L = {c1, ..., c5} that consist in combination of Action Units2

(including a no move label). A sequence of observation is then
labeled as a sequence of labels (a specific combination of ac-
tion units) together with their boundaries, just like a speech
signal is annotated in phones. Every training sequence con-
sists then in a triple (s,m,y) of a sequence of speech feature
vectors (of length T ), a sequence of motion feature vectors
(of length T ) and a sequence of labels y (of length T , with
∀t, yt ∈ L). We preprocessed each sequence to get a speech
stream and an eyebrow motion stream at the same rate of 25
frames (i.e. feature vectors) per second (fps). For the mo-
tion stream we gathered four features for each eyebrow corre-
sponding to four facial animation points (FAPs) as defined by
the MPEG-4 standard [25] (see Figure 1); these features move
with respect to a neutral pose according to FAPs values. We
computed average values for the 4 FAPs for each each brow.
Concerning speech we used prosodic features (pitch and RMS
energy) which we extracted with PRAAT [26]. We used aug-
mented feature vectors both for motion and for speech streams
by adding first and second order derivatives of static features
(i.e. velocity and acceleration). Hence we get 6 dimensional
frames for speech and 12 dimensional frames for motion. In
contextual models, the speech feature s̄ used as contextual
variables are short term means of the speech frames computed
on a sliding window of length 10 (found by trials and errors
to give the best results).

4.2. Results

We performed experiments with our approaches and with the
method in [6] that exploits HMMs. We considered as many
models as there are eyebrow motion classes(5). We used an
ergodic model for the no motion class and left-to-right mod-
els for the other classes. We trained the models with a dataset
including speech and motion features for each sentence. We
first trained independently class models (whatever the mod-
els used, HMM, CHMM, PFHMM and PFHMM-CRF) us-
ing corresponding segments of training sequences. Then we
combined these submodels into a global model which is rees-
timated on whole sentences.

For the test we use the sequence of speech features only.
We primarily evaluated our methods with respect to a recon-
struction error, i.e. the mean squared error between the syn-
tesized motion signal (from the speech signal) and the real
motion signal (MSE criterion). To gain more insight on the
behavior of the methods we also evaluated the methods with
respect to their labeling quality, i.e. the recognition of the
sequence of labels. We computed the recognition accuracy
with respect to the Hamming distance (H criterion) and to the

2An Action Unit AU as defined by [24] is a minimal visible muscular
contraction (e.g. raise eyebrow). Facial expressions are described as a com-
bination of AUs and express emotional state (anger, fear, sadness, surprise...).

Model #states MSE Acc (H) Acc (E)

HMM [6]
3 0.67 (0.052) 37% (4.7) 45% (4.2)
5 0.59 (0.042) 43% (4.7) 49% (4.4)
7 0.56 (0.056) 53% (5.7) 51% (4.3)

CHMMs 3 0.51 (0.055) 55% (4.8) 49% (4.4)
5 0.49 (0.064) 58% (5.7) 50% (4.9)
7 0.47 (0.056) 59% (4.5) 50% (3.4)

FPHMM 3 0.55 (0.042) 60% (5.3) 57% (4.7)
5 0.46 (0.051) 61% (5.1) 61% (3.8)
7 0.45 (0.037) 63% (3.0) 62% (3.7)

FPHMM-CRF 3 0.47 (0.054) 58% (4.2) 60% (3.7)
5 0.44 (0.061) 61% (4.0) 65% (3.8)
7 0.39 (0.051) 66% (4.1) 64% (3.7)

Table 1. Performance of the models with respect to the syn-
thesis quality (MSE) and to labelling accuracy where accu-
racy is computed by evaluating Hamming distance (H) and
edit distance (E). Performances are averaged results gained on
20 experiments (standard deviations are given in brackets).

Model #states MSE Acc (H)

HMM [6]
3 0.43 (0.055) 73% (4.7)
5 0.39 (0.051) 75% (4.4)
7 0.36 (0.063) 78% (4.7)

CHMMs 3 0.37 (0.057) 77% (5.0)
5 0.31 (0.061) 81% (4.7)
7 0.30 (0.061) 82% (5.0)

FPHMM 3 0.33 (0.043) 80% (4.1)
5 0.28 (0.048) 83% (5.3)
7 0.25 (0.052) 84% (4.9)

FPHMM-CRF 3 0.31 (0.044) 81% (5.8)
5 0.26 (0.040) 84% (5.5)
7 0.23 (0.038) 84% (5.4)

Table 2. Similar results as in Table 1 but where we assume
the sequence of labels of each test observation sequence is
known (but not the time boundaries).

edit distance (E criterion) between recognized and manually
annotated sequences of labels. Reported results are averaged
results over 20 random splits of the dataset into 80% for train-
ing and 20% for testing, together with standard deviation.

Table 1 reports the performance, on the test set, of the
four methods with respect to the three evaluation criteria and
for a number of states per class model ranging from 3 to
7. As can be seen in Table 1 our three novel approaches
(CHMM, PFHMM and PFHMM-CRF) performs better than
conventional HMMs used by [6] and the performance with
PFHMM-CRF is the best. Table 2 reports similar results in a
slightly different setting. We computed the same performance
criterion as in table 1 but in that case the sequence of labels
was assumed known for every test sequence (but not the time
boundaries between labels). Of course the H and MSE ob-
tained here show significant improvements compared to table
1 but the gap is not so big. This means that even if the system
does not always recognize labels, it does not affect too much
the synthesized motion stream.

5. CONCLUSION

We have investigated few approaches for speech to motion
synthesis. Our results show that contextual models are signif-
icantly better than a benchmark method in the field. Moreover
our method combining a new extension of contextual HMMs
and CRFs outperforms all other methods under investigation.
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