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Abstract. Head and eyebrow movements are an important communi-
cation mean. They are highly synchronized with speech prosody. En-
dowing virtual agent with synchronized verbal and nonverbal behavior
enhances their communicative performance. In this paper, we propose an
animation model for the virtual agent based on a statistical model link-
ing speech prosody and facial movement. A fully parameterized Hidden
Markov Model is proposed first to capture the tight relationship between
speech and facial movement of a human face extracted from a video
corpus and then to drive automatically virtual agent’s behaviors from
speech signals. The correlation between head and eyebrow movements is
also taken into account during the building of the model. Subjective and
objective evaluations were conducted to validate this model.

Keywords: virtual agent, speech to motion synthesis, head motion syn-
thesis, eyebrow motion synthesis, Hidden Markov model, speech driven

1 Introduction

Embodied conversational agents, ECAs, are autonomous software characters
that often have a human-like appearance and endowed with communicative and
expressive capabilities. They are capable of using speech and multimodal behav-
iors to convey intentions and to express emotions as humans do. The prevalence
of embodied conversational agents in interactive systems such as online web ap-
plications has been motivated by the development of computational models to
generate realistic, natural and believable virtual agents. In video games or cin-
ematographic applications the animation of virtual characters are reproduced
from large motion capture datasets of an actor’s performance. This approach
induces two non-negligible disadvantages: data acquisition expenses and restric-
tion to movement reproduction of the recorded scenarios [1]. On the other hand,
the control of the behaviors of autonomous virtual characters is either based on
psychology literature [2] or on statistical approaches such as Markovian model
[1].

Human-to-human communication is a multimodal process involving speech,
facial expression, body gesture and gaze, etc. Humans are sensitive to subtle
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expressions during face-to-face conversation. For example, they are skilled in in-
ferring their interlocutor’s affective and mental states from their accompanied
facial expression or body gestures. [3] reported that natural head motion signif-
icantly facilitates auditory speech perception. Speech and behaviors production
are tightly coupled [4, 5]. For example, [6] found a strong correlation between
the raise of pitch contour (F0) and of eyebrow movements.

Our work is focused on investigating a statistical model to infer eyebrow
and head motions from speech signals. This model can be parameterized from
training samples and can then synthesize natural animation motion from speech
features. In our model, head and eyebrow motions are not separately synthesized
from speech signals; rather it takes into account the relationships between these
two-modal motions.

In the remaining of this paper we first describe related works, we introduce
our approach and finally we report on experimental results from objective and
subjective evaluations.

2 Related works

[7–9] proposed rule-based approaches to generate nonverbal communicative fea-
tures, such as head motion and gesture. However, since human behaviors arise
from and may be influenced by various factors, such as emotion, personality,
gender, physiological state and social context [10], it is extremely difficult to
define a large set of rules to fully capture the role of these factors onto human
behaviors, even after decades of studies in psychology. Besides, multiple rules
could result in synthesizing conflicting expressions [10].

Recently, data-driven models have been proposed as body or facial motion
generators. Few predictive models have been investigated such as Conditional
Restricted Boltzmann Machine (CRBM) [11] but the majority of systems are
built using statistical models such as Hidden Markov models (HMMs) or more
generally state space models. A state space model implements a probability
density on observed sequences (e.g. a temporal series of head position). In a state
space model the observed sequence is assumed to be produced in two steps: first
a state sequence is chosen, second an observation sequence is produced given the
state sequence. In both cases the choice is done by drawing a sample according
to the corresponding model distribution. Such models are widely used to model
speech, handwriting, etc. For instance to model speech phones one uses a state
space model with one state for the beginning of the phone, one for the middle part
and one for the end of the phone [12]. Within each state observation are produced
according to a particular probability density (usually a Gaussian mixture).

A common approach for designing a speech to motion synthesis system rely-
ing on such statistical models consists in learning two state space models. There
is one model for the speech stream and another model for the motion stream.
Both models have the same number of states that are learnt jointly in such a
way that these states are paired. Let us illustrate this approach with a simple
case where the system consists in learning two HMMs where the first model
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is trained to model speech observation sequence whereas the second model is
trained to model head movement observation sequences. First the speech HMM
is learnt on speech observation sequences. Then this model is used to infer the
most likely state sequence for every training speech observation sequence. Second
the head move HMM model is trained by considering that head move observa-
tion sequence have been produced along the state sequences determined by the
speech HMM. Doing so one learns which head movements are likely to occur
for a given speech signal. The speech/motion mapping is somehow modeled by
pairing the states. In presence of speech only, the speech model is first used to
infer a state sequence then the head move model is used to syntesize a series of
head positions along this state sequence via synthesis techniques as those pro-
posed in [13]. This approach has been implemented in various ways. [14] used
two Gaussian Mixture Models; while [15, 16, 1, 17–19] used two HMMs and [20]
used a Conditional Random Field (CRF) for the speech and a HMM for motion.

Although this line of works has brought significant results it suffers from the
weak interdependency between the input stream (e.g. speech) and the output
stream (e.g. head movements) that is actually taken into account through the
state space sharing strategy mentioned above.

3 Contextual Markovian Models

We have developed few variants of HMMs to simulate facial animation from
speech described in a previous work [21]. In particular we proposed a new model
that we name here fully parameterized Hidden Markov model (FPHMM) for
learning a mapping function between speech and motion signals, where speech
signals can influence directly the synthesized motion signals. We use such models
here to simultaneously generate head and eyebrow motions from speech input.
We first briefly introduce this model and we show how it can be used to synthesize
a motion stream from a speech stream. More details on the models may be found
in [21].

A FPHMM is an extension of a contextual HMM (named CHMM hereafter),
which has been initially proposed in [22] for modeling and recognizing gestures.
The idea behind CHMM is to exploit some contextual information that we know
the observation we want to model depends on. Contextual variables may stand
for the physiology of a person realizing the gesture, the amplitude of the ges-
ture, the emotional state of a person speaking... [22, 23]. In CHMM contextual
variables are used to alter probability density functions in states. More precisely,
a CHMM is a HMM whose means and covariance matrices of Gaussian distri-
bution depend on a set of contextual variables, noted by θ, that may vary with
time [22, 23]. The contextual variables corresponding to a particular observation
sequence are assumed to be known in the training stage as well as in the test
stage.

A FPHMM is an extension of a CHMM where in addition to means and
covariance matrices, transition probabilities and initial state distribution are
also parameterized and depend on θ instead of being fixed at particular values.
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In a FPHMM the transition probability aij from the ith state to the jth state at
time t is defined as:

ai,j(t) =
eW

tr
ij θt∑

j′ e
W tr

ij′θt
(1)

where θt is the c-dimensional vector of contextual features at time t and W ’s are
matrices associated to transitions. Using such a modeling framework transition
probabilities vary with time according to the values of contextual variables,
meaning that a transition may be more likely to occur or not occur at some time
according to the contextual information. As any statistical model a FPHMM is
trained via likelihood maximization with a Generalized EM algorithm. To ease
learning it is initialized with a trained CHMM.

In our work, a FPHMM is used to synthesize the motion stream from the
speech stream as follows. We first learn a FPHMM that takes speech features as
contextual variables and that produces motion features observation. During the
training phase, motion and speech streams are both used to learn a FPHMM.
During the motion synthesis phase (i.e. the animation generation phase), only
the speech stream θ is known. It is used to compute the time dependent transition
probabilities and the time dependent altered emission probability distributions
in states (cf. e.g. equation (1)). Once all the parameters of the model are set,
one can compute the most likely state sequence, or to get even a more accurate
result one can infer the probability distribution over all state sequences. Finally,
from this single state sequence or from the distribution over state sequences, one
can synthesize a trajectory using techniques such as in [13].

4 Experiments

In this section, we present the corpus used in our experiments and how we
extracted facial and prosodic features. Then we describe the conducted objective
and subjective evaluations. At last, we report the results and discuss them.

4.1 Datasets

Experiments were performed on the Biwi 3D AudioVisual Corpus of Affective
Communication database [24]. We used 240 sequences from 3 subjects extracted
from this corpus. In this corpus, each subject tells 80 short English sentences.
Each sentence lasts 4.67s long on average. 3D face geometries were captured at
25Hz, which comprise of a total of 23370 facial points including 3 head rotations.

From such a large set of facial points, we extracted a subset of facial motion
features that correspond to 3 head rotations and 8 eyebrow features (see Figure
1). These features coincide with the Facial Animation Parameters as defined by
the norm MPEG-4 [25]. For sake of simplicity, we assume both eyebrows move
identically and we take the mean of the right and the left eyebrows as the eyebrow
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Fig. 1. Facial motion features - Left: 3 head rotations. Right: Eyebrow animation
parameters (arrows illustrate displacements).

motion features. At the end a motion signal is transformed in a sequence of 7-
dimensional (3-dimensional head and 4-dimensional eyebrow) feature vectors at
a rate of 25 frames (i.e. feature vectors) per second (fps).

Concerning the speech features we consider 2 prosodic features (pitch and
RMS energy), which were extracted with PRAAT software [26] at the same
sample rate as for motion feature extraction (25 fps).

We call static features, the 7-dimentional motion features and the 2 prosodic
ones. On top of these features, we include also the first and second order deriva-
tives of static features (i.e. velocity and acceleration of the dynamic features).

4.2 Objective evaluation

Table 1. Performance of the models with respect to the synthesis quality (MSE).
Performances are averaged results gained on 50 experiments (standard deviations are
given in brackets).

Model 10 states 20 states 30 states 50 states

[18] 0.57 (0.054) 0.53 (0.049) 0.49 (0.061) 0.46 (0.053)

separate PFHMM 0.45 (0.069) 0.41 (0.066) 0.39 (0.059) 0.38 (0.051)

joint PFHMM 0.39 (0.071) 0.34 (0.059) 0.30 (0.045) 0.30 (0.036)

We first performed experiments for modeling head and eyebrow features sep-
arately with 2 PFHMMs, one for each motion stream. Then experiments were
performed to jointly model head and eyebrow features with a single PFHMM,
where the joint features of head and eyebrow were considered as FHMM’s ob-
servation features. We compare our results with the baseline approach proposed
in [18] that we have implemented and that we have tuned for the task at hand.

These two sets of experiments were evaluated by computing the reconstruc-
tion error defined as the mean square error between the synthesized motion
signal (from the speech signal) and the real motion signal (MSE criterion). Ta-
ble 1 reports the experimental performances with different numbers of states
based on the averaged results and the standard deviation over 50 random splits
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of the dataset into 80% for training and 20% for testing. The experiments are
configured using full covariance matrix and ergodic topology, which fully guar-
antee the model specified by samples of data training. As can be seen in Table
1, the joint model outperforms the baseline [18] as well as the other two using
separate models.

In these experiments, a combination of covariance matrices were exploited
for the observation function in FPHMM. In the joint model, the relationship
between eyebrow and head features can be learned using the full covariance ma-
trices. In synthesis phase (trajectory computation), generated eyebrow and head
motions are defined not only from the speech features but also from their mu-
tual influence. This influence is captured during the training phase through the
combination of covariance matrices. On the other hand, when using two separate
models, there is an underlying hypothesis implying that head and eyebrow move-
ments are independent from each other that is carried out during the training
phase and that produces poorer results.

As can be seen from Table 1, the joint model with 30 states achieves the
best result. We use this model to compute the animation of the virtual agent.
In the next section we present the subjective evaluation study we conducted
where we looked at qualitative measures. It is a necessary complement of the
objective measure we just presented. Indeed objective measure does not allow
us to measure how motions are perceived by human eyes [27].

4.3 Subjective evaluation

In this section, we detail the subjective evaluation we conducted with human
participants to evaluate the qualitative aspects of FPHMM as generator of head
and eyebrow motion from speech signals. The evaluation was done through an
online web application.

Hypothesis The subjective evaluation was conducted to investigate two hy-
potheses: 1) the perception of the virtual agent displaying head and eyebrow
motions synthesized by FPHMM is similar to the perception of the virtual agent
animated directly by human data; 2) the two-modal motions (head and eyebrow)
outperform single model motion (either head or eyebrow) at a perceptual level.
Through the first hypothesis we aim to measure if FPHMM is capable of captur-
ing and of rendering the sophisticated relationship between motion and speech
streams and that the animation of a virtual character offers similar results when
driven by FPHMM and by real human data. The second one is to verify that
multimodal motions facilitate human perception over monomodal motions. To
verify the first hypothesis, we compare the perceptions resulted from real and
generated motions. To answer the second hypothesis, we compare how anima-
tions of the virtual agent driven either by one of the modal motions (either head
or eyebrow motions) or by two modal motions (head and eyebrow motions) are
perceived.
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Our work focuses on nonverbal communication and not on the appearance
of the virtual agent. Therefore, motions from both, FPHMM types and human
data, are displayed through the identical virtual agent.

Protocol The participants went on a web page where after answering few ques-
tions about themselves, they have to view videos of the virtual agents. Their
task consisted in answering few questions. We provide elements of the protocol
we follow for the perceptive evaluation study.

(1) Participants: in total, there were 280 participants consisting of 136 males
and 144 females with age ranging from 18 to 65 (M=32.89 years, SD=7.99 years).

(2) Stimuli: 7 spoken utterances were randomly selected from the testing
database. They were given as input to the trained FPHMM. Then the synthe-
sized motions (sequences of MPEG-4 FAPs frames) and the corresponding WAV
file of the spoken utterances are used to drive a virtual agent. In all the anima-
tions the lip shapes and body movements of the virtual agents are reproduced
from real data. The final animations including eyebrow and head motion as well
as lip shape and body movements are stored as video clips.

To study both hypotheses, 7 versions (conditions) of the virtual agent ani-
mations were created for each selected sentence. In all conditions the lip shapes
and body movements remain constant and are duplicated from real human data:

1st condition (cond1): No eyebrow and head motion;
2nd condition (cond2): Only human eyebrow motion (no head motion);
3rd condition (cond3): Only synthesized eyebrow motion (no head motion);
4th condition (cond4): Only human head motion (no eyebrow motion);
5th condition (cond5): Only synthesized head motion (no eyebrow motion);
6th condition (cond6): Human eyebrow and head motion;
7th condition (cond7): Synthesized eyebrow and head motion;
Therefore, there are a total of 49 video clips (7 sentences × 7 conditions),

each of which lasts about 4.5s.
(3) Design and Procedure: Subjective evaluations were conducted online. At

first, each participant fills out a demographic questionnaire concerning their age,
gender, education level, occupation and country in which participant spent the
majority of his/her life. Then, the participant watches 7 randomly selected video
clips out of 49. The 7 video clips watched by any participant are comprised of
the 7 sentences and of the 7 conditions. After watching each video clip, each
participant is invited to answer the following questions using a 5 point Likert
scale:

1. Do you think the animation of the virtual character is intelligible?
2. Do you think the animation of the virtual character is natural?
3. Do you think the correlation between the speech and the facial expression

of the virtual character is coherent?
4. Do you think the correlation between the speech and the facial expression

of the virtual character is synchronized?
5. Which emotion(s) does the virtual character display? You should grade each

emotion separately.
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The same 12 emotional states as used in the BIWI experiments are considered
[24]: anger, sadness, fear contempt, nervousness, disgust, frustration, stress, ex-
citement, confidence, surprise and happiness. Each video clip has been evaluated
40 times (i.e., by 40 participants).

Table 2. Results of F-statistic from repeated measures ANOVA

intelligible natural coherent synchronized

only eyebrow F=20.6,p<.001 F=1.79, p>.05 F=2.02, p>.05 F=2.57, p>.05

only head F=1.7, p>.05 F=0.39, p>.05 F=0.02, p>.05 F=2.57, p>.05

eyebrow&head F=3.51, p>.05 F=0.93, p>.05 F=1.9, p>.05 F=0.01, p>.05

Result To investigate the differences of participants perception from human and
from synthesized motions, we conducted three pairwise comparisons in term of
intelligibility, naturalness, coherency and synchronization: only eyebrow motion
(2nd and 3rd conditions), only head motion (4th and 5th conditions) and both
(6th and 7th conditions). The comparison results based on repeated measures
ANOVA are shown in Table 2. The results show no significant differences between
human and generated motions in almost all pairwise conditions except for the
only eyebrow condition in term of intelligibility. In this latter case, the mean
scores of this pairwise condition are 2.67 and 2.27 for only human and synthesized
motions, respectively. While the difference is significative, they are still not too
highly different.

Then, to test our second hypothesis (the two-modal motions outperforms sin-
gle model motion), we compare the 4 different conditions involving synthesized
motions with each other, namely: no head and eyebrow motions (1st condition),
only synthesized eyebrow motion (3rd condition), only synthesized head motion
(5th condition) and both synthesized (head and eyebrow) motions (7th condi-
tion). The comparison results presented in Figure 2 show that when eyebrow
and head motions are modeled together, the human perception improves in the
term of intelligibility, naturalness, coherency and synchronization. The results
based on repeated measures ANOVA show significant differences between any
two different types of motions among the 4 cases (synthesized eyebrow or head,
both synthesized eyebrow and head, no motion of eyebrow and head). The same
conclusions are supported by the similar pairwise for the animations from human
data (see details in Figure 2).

At last, we investigated how synthesized motion conveyed emotional infor-
mation. To do this, we extracted the scores in term of 12 emotions from both
synthesized head and eyebrow motions (7th condition) and from both human
motions (6th condition), respectively. Moreover, the BIWI corpus provides the
emotion recognition rate for the videos of real humans for these 12 emotions
using a 5 point Likert scale. We consider these results as reference when evalu-
ating the virtual agent’s performance. Figure 3 reports the recognition rate of
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Fig. 2. Comparison results between animations from synthesized data (left) and human
data (right).

participants for the virtual agent when driven from human data and from syn-
thesized model, as well as for the videos of real humans. The results are average
over the recognition rate for 5 of the 7 sentences spoken by the virtual agent.
Two of the sentences have to be disregarded for this test as no result is provided
for them in the case of the evaluation of the real human videos. The number of
participants differ in the case of the study made with videos of real humans as
with videos made with virtual agents. In case of the BIWI study, the first set
of videos was evaluated when the BIWI corpus was built. There is a very low
number of participants that evaluated each video (often around 4 participants
per sentence) while in our study we have 40 participants evaluating all the sen-
tences in average. As can be seen in Figure 3, in all three cases, the faces, be
of a real human or of a virtual agent, are able to convey some emotional com-
munication. However, in term of the perception of emotional expressiveness, the
videos of the real humans outperform the videos of the virtual character driven
from our statistical model; in turn, the videos of the virtual character driven
from our statistical model outperform the videos of the virtual character driven
from human data.

Due to the too big difference between participants number, we only compare
results between the conditions of the virtual agent driven from our model and
from human data. The animations with synthesized motions are perceived as
showing more emotions in a statistically significant way for the emotion: fear,
contempt, nervousness, stress, excitement, surprise, happiness. There is no sig-
nificant difference for the emotions: anger, sadness, frustration. For the emotions
disgust and confidence, the animations from human data are ranked higher than
the animations from synthesized data.

Discussion The post-hoc pairwise comparisons between identical modal mo-
tions show no significant difference between the human and synthesized motions.
In the training phase, the mapping between human audio-visual signals is cap-
tured and recorded in FPHMM, and thus rendered in the output synthesized
animations. Therefore the perception of the animation of the virtual agent with
synthesized motions is similar to the perception of animation with human mo-
tions.
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Fig. 3. Perceived emotions: average values over 5 sentences.

The post-hoc pairwise comparisons of conditions show that there are signif-
icant differences among the monomodal and multimodal conditions. The ani-
mations created in the multimodal conditions are perceived as more intelligi-
ble, natural, coherent and synchronized than the animations created with one
modality only. Humans are very skilled in reading nonverbal signals. So the lack
of either eyebrow or head motions are negatively perceived along these 4 qualita-
tive dimensions. The comparisons of the perceptions between only eyebrow and
only head motions reveals that head motion plays a more important role than
eyebrow motion at the perception level. Similar results have also been reported
in [18].

Rather than examining the recognition rate of emotions from the videos in
different cases, we look at the level of emotional expressiveness. Indeed even
in the reference case, namely the videos of real humans speaking the various
utterances in emotionally-colored fashion, we remark that the recognition rate
level of emotion is rather low and that there are a lot of confusion. That is
human participants did not show a strong agreement in their perception of which
emotion the human actor aimed to convey. Such a result is reproduced with the
virtual agent. In both cases, animation of the virtual character from real human
data and from our model, a lot of confusion can be noticed. However we can
remark that the virtual agent driven by our model is perceived as speaking
with emotions with a higher level than when the virtual agent is driven by
human data. This can be interpreted as the virtual agent driven by our model
is able to exhibit more expressive behaviors; that is, it can communicate in a
more emotionally colored manner. Our statistical model relying on FPHMM is
capable of capturing the speech/motion relationship. It is also able to render
the quality of emotional behaviors: not only its types of movements (i.e. which
head movements and eyebrow shapes) but also the dynamism of the movements.
Our model computes the types of the visual cues but also their trajectory that
carries out dynamics characteristics.
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The results of both evaluation studies, the objective and subjective studies,
show that our model is able to capture pertinent information that are conveyed
through the nonverbal behavior animation of the virtual agent. Considering the
link between prosody and both head and eyebrow motions together allows seizing
their tight coupling. This is in link with results found in studies from psychology
domain [28, 5].

We can conclude that the machine learning approach (FPHMM) can capture
the link between speech prosody and facial movements and can reproduce the
movement dynamism in the output synthesized animations. Thus our animation
model based on FPHMM is able to gather these both aspects that are important
to compute when animating a virtual agent.

5 Conclusion

In this paper, we have presented a data-driven approach to generate head and
eyebrow motions for a virtual agent from speech prosody. The full parameterized
HMM is used to capture the direct mapping between audio and visual informa-
tion. The trained PFHMM allows defining visual animation as a function of the
speech signal. The objective evaluation study shows that considering that si-
multaneously eyebrow and head motions increases the precision of the resulting
animation. It also confirms that eyebrow and head motions are not independent
from each other but rather are connected; the multimodal signals reinforce the
communicative meaning. On the other hand, the subjective evaluation shows
that our proposed model enhances the perception of the virtual agent animation
at the level of emotional expressiveness.
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