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ABSTRACT

In this paper we focus on three aspects of multimodal ex-
pressions of laughter. First, we propose a procedural method
to synthesize rhythmic body movements of laughter based
on spectral analysis of laughter episodes. For this purpose,
we analyze laughter body motions from motion capture data
and we reconstruct them with appropriate harmonics. Then
we reduce the parameter space to two dimensions. These
are the inputs of the actual model to generate a continuum
of laughs rhythmic body movements.

In the paper, we also propose a method to integrate rhyth-
mic body movements generated by our model with other
synthetized expressive cues of laughter such as facial expres-
sions and additional body movements. Finally, we present a
real-time human-virtual character interaction scenario where
virtual character applies our model to answer to human’s
laugh in real-time.
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1. INTRODUCTION

During laughter, the whole body (head, torso, shoulders,
face) is involved [11, 22]. Body movements are important
markers allowing distinguishing laughter from smiling (be-
sides facial and vocal expressions). The presence of body
movements influences the perceived intensity of laughter [6].
Some body movements, but not all, are due to the respira-
tion phases [22]. Despite the important role of body move-
ments, most of the laughter synthesis algorithms for virtual
characters (VCs) are limited to facial animation [5, 17].

In this paper, we propose a model of rhythmic body move-
ments (RBM) based on spectral analysis of laughter episodes.
We describe a multimodal synchronization schema to inte-
grate all facial and body movements of laughter including
RBM. We also present a human-virtual character (H-VC)
interaction scenario where laughter is triggered: the VC’s
rhythmic laughter behaviors are generated in real-time and
in link with human’s laughter.

The bodily expressive patterns of laughter are complex.
According to Ruch and Ekman [22], a laughter episode is
usually composed of several repetitive laugh pulses that are
caused by forced exhalation. The maximum number of these
pulses is between 9 and 12 depending on volume of the lungs.
Long laughter episodes include additional inhalations that
can result in a higher number of pulses. Several attempts to
measure laughter pulses frequency (e.g., [19] in audio modal-
ity, [2] in respiration) converge to similar results: laughter
pulses have the frequency between 4 and 6 Hz. The body
movements observed during laughter can be of two types
[22]. Most of laughter body movements are associated with
the respiratory patterns of laughter [22]. Examples of such
movements are the backward movements of head and trunk
that appear to ease the forced exhalations, or the upward
movements of torso that are related to the inhalation phase.
Laughter pulses generate also visible vibrations of the shoul-
ders and of the trunk. Since these movements are related to
respiration phases, one expects they are repetitive and have
a fixed rhythm. The movements related to respiration can
be accompanied by other body movements such as sideways
rocking, which are, however, of different origin [22].

In the first part of the paper, we focus on a significant sub-
set of laughter body movements, the rhythmic body move-
ments. We use Fast Fourier Transform (FFT) to build a



RBM model. Using computer vision algorithms we extract
the position of upper-body points from several laugh episodes.
We conduct spectral analysis on this data. We associate the
prevalent harmonics resulting from this analysis to different
types of laughter movements (e.g., shake shoulders). Next
we conduct statistical analysis on the harmonics’ parame-
ters (i.e., amplitude, frequency). Finally, to allow a human
animator an easy control over VC’s RBMs, we introduce
two high-level normalized variables: intensity and wvelocity
and we provide a mapping between these two variables and
the harmonics’ parameters needed to synthesize RBM. Our
model allows us to control VC laughter rhythmic body move-
ments via high-level commands like: “shake shoulders with
intensity = X and velocity = Y.

The rhythmic body movements are just one element of
laughter expressive pattern. Other body and face move-
ments have important role in laughter [22] and need to be
included. We present how RBMs can be synchronized with
facial and other body animations [§8]. To generate a mul-
timodal laughter animation, our model takes as input the
phonetic transcription of laughter [27]. We end the paper
by presenting a scenario of H-VC realtime interaction.

The paper is organized as follows. The next section presents
a survey of works on visual laughter synthesis, laughter based
interactive systems, and nonverbal synchronization of move-
ments in general. Section 3 is dedicated to the analysis and
synthesis of the rhythmic body movements of laughter. Sec-
tion 4 focuses on multimodal synchronization and Section 5
presents an interactive scenario. We conclude our paper in
Section 6.

2. STATE OF THE ART
2.1 Visual Laughter Synthesis

Few models of laughter animations were proposed recently
[5, 17] but they are restricted to facial displays. The major
exception is by Di Lorenzo et al. [7], who proposed an audio
driven model of upper body animation during laughter.

The model defines the relationship between lungs pressure
and laughter phase that can be derived from the amplitude
of the audio signal. It applies an anatomically-inspired and
physics-based model of human torso that is a combination
of rigid and deformable components. The model is able to
produce realistic animations but it is computationally ex-
pensive.

In other works, algorithms based on FFT were applied to
animate VCs. Unuma et al. [25] used Fourier decomposition
of motion capture data to model emotional walks, whereas
Troje [24] successfully modeled walks with the first two com-
ponents of Fourier series. More recently, Tilmanne and Du-
toit [23] extended this approach by applying Fourier decom-
position to angular representation of various style walking
sequences. In a perceptive study they showed that various
walking styles can be successfully modeled with the first two
components.

2.2 Nonverbal Behavior Mirroring

Several virtual character systems were build that synchro-
nize certain nonverbal behaviors. Bailenson and Yee [1]
studied the Chameleon Effect in the interaction with vir-
tual characters. In their study, a VC that mimics head nods
of the human interaction partner is shown to increase per-
ceived effectiveness. Prepin and Pelachaud [18] presented

a dynamic coupling model based on the concept of an os-
cillator able to synchronize different nonverbal behaviors of
virtual characters or of a human and a virtual character. In
their model the interactants’ movements become synchro-
nized to communicate reciprocal understanding of the ver-
bal content. Riek et al. [21] studied how a robot mimicking
the human head nodding influences human perception of in-
teraction. No effect of mimicry was observed.

2.3 Laughter Based Interactive Systems

Urbain et al. [28] developed a system able (i) to de-
tect human laugh and (ii) to answer it by displaying vir-
tual character pre-synthetized laugher responses. The sys-
tem contains a database of pre-synthetized laugher episodes
extracted from real human audio recordings that are directly
replayed, and the corresponding facial animations obtained
by retargeting the motion capture data. The choice of the
VC’s response from the database is done algorithmically and
it is based on the real-time analysis of acoustic similarities
with the input laughter. Fukushima et al. [9] studied laugh-
ter contagion in human-robot interaction. They used simple
toy robots that play pre-registered laughter sounds when the
system detects the initial human laughter. The evaluation
study showed that robots’ laughter was contagious and in-
creased human laughing. Niewiadomski et al. [14] proposed
an interactive TV watching scenario in which a human par-
ticipant and a virtual agent watch together funny content.
The agent is able to detect human laughs and can laugh
in response to the detected behavior by using synthetized
facial expressions and audio. Such laughter response is gen-
erated by taking into the consideration the duration and the
intensity of the human laugh.

|

Figure 1: A frame from MMLI recordings [15]. On
the left: a participant is wearing green markers. On
the right: another participant is wearing a motion
capture suit and green markers.

2.4 Beyond the State of the Art

Existing works may produce even very realistic anima-
tions of laughter (see Section 2.1). In this work our main
alm, however, is not to improve the realism of laughter an-
imation but to build a simple and computationally cheap
method for laughter synthesis, which can be used and con-
trolled in realtime in H-VC interaction. Importantly, we pro-
pose a procedural approach in which the synthetized body
movements can be easily controlled manually by a human
animator (by using a high level language such as BML, see
Section 3.3) or by a machine (e.g. see Section 5).

Secondly, unlike the existing interactive realtime systems
(see Section 2.3) which do not analyze human body move-
ments when generating VC laughter, we focus on body move-
ments of both a human and a VC. However, we do not use



the copy-synthesis method to reconstruct the whole nonver-
bal behavior of the human as it might be perceived to be
awkward or even as mockery. Inspired by previous works on
H-VC interaction (see Section 2.3), in which only some dy-
namic characteristics of movement are considered, we pro-
pose to tune one aspect only: laughter rhythm. Thirdly,
although spectral analysis was previously used in procedu-
ral synthesis of nonverbal behaviors e.g., walk (see Section
2.1), applying this method to analyze and synthetize body
movements of laughter is a novel approach.

3. MODEL OF RHYTHMIC BODY MOVE-
MENTS OF LAUGHTER

3.1 Data Analysis

Two types of movements are involved in laughter RBM:
torso leaning and shoulder vibration. The first one is rather

slow and it may have different directions: linear, e.g., front /back

and left/right, or circular. The shoulder movement is much
faster and it is always repetitive. It is also symmetric - both
shoulders are involved and move synchronously [22, 11].

The freely accessible MMLI corpus'[15] was used to an-
alyze laughter body movements as it is, to our knowledge,
the largest freely accessible corpus dedicated to full-body ex-
pressions of laughter. Participants wear mocap sensors, and
two green markers (lightweight polystyrene balls) on shoul-
ders. Data consists of synchronized 3D coordinates streams,
3 audio streams, and 6 video streams (640x480, 30fps).

Despite the variety of sensors used in the MMLI corpus, in
our analysis only RGB video streams are used. In particular,
the inertial motion capture sensors used in MMLI were not
placed on participant’s shoulders so the resulting data could
not capture shoulder vibration.

Thirty-five episodes (N = 35) from five participants (2
males) containing both types of RBMs have been chosen for
analysis. They contain spontaneous laughter that is either
induced (watching videos task) or interactive (social games
task). During all episodes participants were standing. Ad-
ditional selection criteria required that (i) the green mark-
ers had to be well visible during the whole segment and (ii)
that the person is not walking. An example of a video frame
taken from the MMLI corpus is displayed in Figure 1. The
mean duration of an episode is 2.87s (o = 2.22, min = 1.4s,
mazx = 13.43s).

e color tracking is performed by the EyesWeb XMI plat-
form?: we isolate the green component of the input
RGB 30 fps video stream and we apply a threshold
on it; we determine the barycenter of the 2 largest
pixel groups corresponding to the green markers; since
shoulder movements are usually symmetric, for each
episode we consider only one marker (left or right shoul-
der) and only its vertical coordinate y;(t);

e since the values of y;(t) are not comparable across
different videos (i.e., different cameras configurations
were used to record the participants), we normalize
yi(t) by the participant’s head height: e.g., normalized
[lyi(t)|] is equal to 2 if the marker vertical position is
equal to two times the head height, where coordinate
[ly:(t)|| = O corresponds to the top image border;

"http://www.infomus.org/people/mmli/
2http:/ /www.eyesweb.infomus.org
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Figure 2: Examples of spectrum analysis for four
different episodes

e FFT is applied to ||yi(t)||, that is, it is applied to
the green marker’s vertical coordinate for the entire
episode 1.

We observe that two frequency intervals can be identified
in the resulting frequency spectra for each episode (see Fig-
ure 2). The first one - around 0.5 — 1.5Hz - contains the
fundamental frequency. However, relatively strong peaks
can be identified also around 3.5 — 6 Hz. Following the lit-
erature (see Section 1) we assume that: slower components,
that is, frequencies around 0.5 — 1.5H z, correspond to torso
forward /backward leaning whereas faster components, that
is, frequencies around 3.5 — 6Hz, correspond to shoulder
vibration.

3.2 Signal Reconstruction with Estimation of
Error

We process the input signal s; = [|y:(¢)|| in 2 steps: (i)
filtering and (ii) error computation. By performing low and
high pass filtering we extract torso and shoulder movements.
Then, we reconstruct the input signal to estimate the recon-
struction error and validate the process.

3.2.1 Filtering

We apply two filters to s; = ||yi(¢)||: the first one (low
pass) allows us to extract only the torso leaning component;
the second one (high pass) allows us to extract only the
shoulder vibration component. Starting from the literature
on laughter (see Section 1) we define a threshold at Th =
3Hz: the first filter allows one to isolate only frequencies
in the interval I; = [0,3)Hz; the second one allows one to
isolate only frequencies in the interval I = [3,15]Hz.

Next, in each frequency interval I1, Iz, we find the har-
monics exhibiting the two highest local maxima of amplitude
and we sort them in frequency ascending order. More pre-
cisely, for I, we define a matrix L of size N x 6 (where
N = 35 is the number of laughter episodes). Let L;_be the
i-th row of matrix L, L;,_contains the 6 torso leaning param-
eters of episode 7, that is, L;_ = [a1,4, f1,i, $1,i, 02,1, [2,5, P2,4],



components | mean o min max
all 0.16 0.18 <0.01 0.72
2 0.21  0.20 0.05 0.77
4 0.18 0.15 0.05 0.54
6 0.18 0.16 0.04 0.57

Table 1: Signal reconstruction error computed on
26 signals

where a;; means amplitude, f;; - frequency, ¢;; - phase of
{j,i}-harmonics, and f1,; < f2,i, f1,i, f2,s € [0,3)Hz. Simi-
larly, for I2, we define a matrix V' of size N X6 such that the i-
th row V;_of V contains the 6 shoulder vibration parameters
of episode i, that iS, ‘/i,— = [Al,inl,i7 q)l,iyA2,i,F2,i7 @2,1'},
where F1; < Fa; and Fi;, Fa; € [3,15|Hz. Also, we in-
dicate with L_; and V_;, the j-th columns of matrices L
and V, respectively. For example, L o (resp. V. 2) of L
(resp. V) is a column vector that contains the lower fre-
quencies, among the above selected ones, in [0,3)Hz (resp.
[3,15]Hz); while L_5 (resp. V. 5) is a column vector that
contains the higher frequencies, among the above selected
ones, in [0,3)Hz (resp. [3,15]Hz).

3.2.2  Error Computation

For each laughter episode i we reconstruct the original
signal using the harmonics described by matrices L and V.
We use 4 harmonics: {(aw,i, fr,i, dr,i)|k € {1,2}} € L and
{(Ak,i, Fri, Pri)|k € {1,2}} € V. Thus the reconstructed
signal r; is:

r, = Z (ak’iCOS(Qﬂ'fk,it + ¢)k,1) + Ak’iCOS(Qﬂ'Fk,it + (I)k,z))

k=1..2

(1)
Then we compute the reconstruction error for episode ¢ as
the normalized maximum difference between the original sig-
nal s; and 7;:

max(|s; — 7i|)

E; = :
max(s;) — min(s;)

(2)

The mean error E, computed according to the above equa-
tion on 26 episodes, is £ = 0.18 (see Table 1).* We finally
check how the reconstruction mean error depends on the
number of harmonics. We compare 4 harmonics reconstruc-
tion error with the following additional cases: (i) reconstruc-
tion performed on the entire FFT spectrum; (ii) reconstruc-
tion performed on 2 harmonics, the prevalent one in [0, 3)Hz
and the prevalent one in [3,15]H z; (iii) reconstruction per-
formed on 6 harmonics, 3 in [0,3)Hz and 3 in [3,15]Hz
selected in a similar way as for L and V. The corresponding
computed errors are reported in Table 1. It can be seen that
the signal reconstructed with the use of four harmonics pro-
vides satisfactory results (see Figure 3). Adding more har-
monics does not reduce significantly the mean error. Thus,
it is a good compromise between the accuracy and the num-
ber of parameters needed to describe the signal.

3Remaining 9 episodes had only one local maximum of am-
plitudes in one of two considered ranges and, thus, they have
been discarded.

3.3 Model of Rhythmic Movements in Laugh-
ter

To generate RBMs with our model one needs to specify
the type of the movement (i.e., torso leaning, shoulders vi-
bration), the desired duration of the movement ¢, and two
additional variables that describe the movement: intensity
INT € [0,1] and velocity VEL € [0, 1] (see Section 3.3.2 for
details). For a frame to be displayed at time ¢, the model
outputs two values: torso leaning [(¢) and shoulder vibra-
tion v(t). Accordingly to results presented in Section 3.1
and 3.2 each of these body movements is modeled using two
harmonics:

I(t) = a1cos(2m f1t + ¢1) + azcos(27 fot + ¢2) )
v(t) = Arcos(2mFit + ®1) + Azcos(2mFat 4+ $2)

Thus, body movements in our model can be fully con-
trolled within 12 parameters. However, controlling the an-
imation generation with such a high number of parameters
would be not intuitive for a human. Thus in the next step
we reduce the dimensionality of the body animation control
space and we map the parameters of Equation 3 onto high-
level input variables. For this purpose, we use the values of
matrices V and L and a mapping for input parameters: high
values of the intensity variable INT correspond to strong
movements (i.e., movement with high amplitude) whereas
high values of the velocity variable V EL correspond to high
frequencies. Next, for each column of V and L we compute
its mean and standard deviation. Shoulder animation v(t)
is finally computed using Equation 3 where:

A=V i1+ov ,(2INT-1)
Ay =V_a+ov,(2INT—1)
Fi=V s+ov,2VEL-1)
= V775 + oV s (2 VEL — 1)
Py =P +C

C = izt Vas Vi)

where @1 is a random value in [0, 7], V_; is the mean value of
the elements of the i-th column of matrix V' and ov , is the
standard deviation of the elements of the i-th column. For
example, V_4 is the mean of the amplitudes of the higher
frequencies among the selected ones. Thus, the values A;,
F; of synthetized RBM are in the range of the values ax,;,
fx,; observed in the real data. If the amplitudes and fre-
quencies in matrices V' do not vary a lot then amplitudes
and frequencies of the synthesized movements do not vary a
lot either, independently of the values of INT and VEL. If
the amplitudes and frequencies in matrices V vary a lot then
the values of the variables INT and V EL provided by a hu-
man animator influence strongly the final animations (i.e.,
generated RBMs vary a lot depending on INT and VEL).

Torso leaning [(t) is computed using a similar set of equa-
tions defined on L.

3.3.1 Virtual Character Animation

The duration ¢ = [t1,t2] is the third input to our model.
As shoulders, during vibration, firstly move up (and then
down), we find a time tmin that corresponds to the mini-
mum value of v(¢) on the time interval [¢1, t1+Period], where
Period is the actual period of v(t). Next the animation v(t)
is computed on the interval VI = [tmin, tmin +t2 —t1]. This
ensures that the shoulders movement will always start from
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Figure 3: Reconstruction of two first signals from
Figure 2. The original signal is dotted; the red curve
shows signal reconstructed using 4 components (2
above and 2 below 3Hz), the green curve shows the
sum of the two prevalent harmonics below 3 Hz,
while the blue curve shows the sum of the two preva-
lent harmonics above 3 Hz.

the neutral (lowest) position.

Torso leaning can be performed in both directions (forward,
backward). To ensure that torso animation starts from the
neutral position, it is computed from time to > tyin, where
I(to) < 0.001. Next the animation [(¢) is computed on the in-
terval LI = [to, tmin+t2 —t1] while [(t) = 0 for t € [tmin, to]-
This ensures that torso movement is still synchronized with
shoulders movement, but it does not need to start from the
first frame of the animation.

At the end of the animation, additional frames may be added
to allow shoulders and torso to come back to the neutral po-
sition. In the last step, the values of v(¢) and I(t) computed
on the intervals VI and LI are applied to joints of the VC
skeleton but starting from the original time ¢;.

3.3.2 Controlling Behaviors with BML Language

BML* is an XML-based language used to control behav-
iors of VCs. Shoulder movements are not encompassed in
version 1.0 of the BML standard. In order to control such
movements, we propose to extend it. In particular, to con-
trol RBMs we add the tag shoulder with the lexeme “shake”
as well as the lexeme “leaning” to the repository of pose tag.
Both tags have all obligatory BML’s attributes such as id,
start, and end as well as two additional attributes, intensity
and velocity, taking values in [0, 1] (see Table 2). For exam-
ple, to generate a two seconds shoulder vibration one may
use the following command:

<shoulder id="s1” start="1.0" end="3.0" lexeme="shake”
side="both” intensity="1" velocity="1">.

The full description of the new tags is out of the scope of
this paper.

*http://www.mindmakers.org/projects/bml-1-0

Attribute Type Required | Default
lexeme UP|FRONT|BACK|SHAKE Yes -
intensity float € [0..1] Not 1
velocity float € [0..1] Not 0.5
Side LEFT|RIGHT|BOTH Not BOTH

Table 2: Attributes of the shoulder tag

4. INTEGRATION: MULTIMODAL LAUGH-
TER SYNTHESIS

In this section we briefly introduce our laughter expres-
sions model for torso movement and facial expression. Next,
we describe how to generate the complete multimodal ex-
pression of laughter by combining rhythmic body movements,
facial expressions, additional body movements and by syn-
chronizing them with laugh sound.

4.1 Contextual Gaussian Model and PD Con-
troller Laughter Synthesis

To model laughter animation, we rely on our previous
work [8]: lip and jaw animations are modeled with a Con-
textual Gaussian Model (CGM) while head, eyebrow, eyelid
and cheek animations are generated by concatenating seg-
mented motions. Finally torso animations are synthesized
with a proportional-derivation (PD) controller.

Animations were developed on the data of the freely avail-
able AVLC dataset [28] that contains facial motion capture
data synchronized with audio. Fourteen pseudo-phonemes
have been defined (see [27] for their detailed description).
Phonetic transcription of audio stream with these 14 pseudo-
phonemes was extracted [27]. Then we divided motion cap-
ture data of facial motions for the laugh episodes in AVLC
into segments where each segment has a duration of one
pseudo-phoneme. All segments were labelled by their corre-
sponding pseudo-phoneme and clustered into 14 sub-datasets
corresponding to the 14 pseudo-phonemes.

The input I to the laughter animation model consists of
the phonetic transcription of the laughter to be generated.
It contains the following information:

e pseudo-phonemes sequence as well as their respective
duration, which can be extracted automatically from
a laughter audio file (e.g., [27]),

e prosodic features of laughter. We consider two fea-
tures, pitch and energy, at each frame. These features
are extracted using PRAAT [3].

The animations of different parts of the body are gen-
erated with different methods: lip and jaw animations are
modeled with a Contextual Gaussian Model (CGM). The
output animation is described using 23 animation parame-
ters: 22 parameters for the lip movements and 1 for the jaw
motion.

A CGM is a Gaussian distribution whose mean vector
depends on a set of contextual variable(s). In our case, con-
textual variables are the values of pitch and energy at each
frame. When such CGM with a parameterized mean vector
is used to model lip and jaw motions, the mean of the CGM
obeys the following equation:

(0) = W"60 + (5)

where W* is a 23 x 2 matrix and j is an offset vector. The
mean 4 is a 23-dimension vector containing values of all 23



animation parameters per frame. 6 stands for a 2-dimension
vector containing values of the pitch and energy (contextual
variables) at a given frame. Each of the 14 pseudo-phonemes
has its own CGM model. Each sub-dataset is used to build
the CGM model, which is learned through Maximum Likeli-
hood Estimation (MLE). So, each laughter pseudo-phoneme
of the input I is used to select one from 14 CGMs; the val-
ues of pitch and energy are applied to the selected CGM to
determine lip shape and jaw motion.

Head, eyebrow, eyelid, and cheek animations are deter-
mined by selecting and concatenating existing (captured)
motion segments, which are scaled to the pseudo-phonemes
duration specified in the input /. The synthetized animation
is obtained by concatenating the segments that correspond
to the input pseudo-phonemes sequence. Each sub-dataset
for a given pseudo-phoneme contains many examples of mo-
tion segment. The choice of the motion segment from a
sub-dataset depends on the sum of two criteria: duration
cost and continuity cost. Duration cost is computed as the
difference between expected (target) duration and the can-
didate segment duration; continuity cost is the distance be-
tween the end position of the previously selected segment
and the beginning position of the candidate segment. The
candidate with the least sum of the two costs is selected as
output. Finally, the outputted motion is obtained by con-
catenating and interpolating the selected samples between
two successive segments.

To overcome the unnatural effect of a moving head at-
tached to a rigid body, the third part of our model gen-
erates additional torso movements. Thus we compute the
torso movement from the head movement. The torso anima-
tions are generated by PD controllers. The input to the PD
controllers are the three rotation angles of the head. Three
PD controllers are independently built to control the three
torso rotations (pitch, yaw, and roll). The output of the PD
controllers depends on the input at the current frame and
the output at the previous frame. Consequently, the torso
rotations follow the head rotation, and the head rotations
depends on the currently considered pseudo-phoneme. For
example, when the head moves down (pitch rotation) then
the torso leans forward (pitch rotation). In the PD con-
trollers, the parameters, which define the relation between
the head and the torso rotations, are manually defined.

4.2 Synchronization between Modalities

The model presented above is controlled by the phonetic
transcription I (list of phonemes and their durations). The
same input I is used to synchronize all the modalities: 1)
to generate appropriate facial expressions with CGMs and
torso movements by concatenation of motion segments, 2)
to control (indirectly) the additional body movements (com-
puted from head movement done at item 1), 3) to compute
the rhythm of laughter and to control the model of rhythmic
body movements, 4) to synchronize with real or synthesized
sounds of laughter.

The synchronization procedure is presented in Figure 4.
The animation can be synchronized with real or synthe-
sized sounds of laughter. When using natural (real) laugh-
ter audio, we need to extract automatically the sequences
of pseudo-phonemes. We use Urbain et al.’s laughter seg-
mentation tool [27]. The topic of generating laughter audio
synthesis is beyond the scope of this paper. We only mention
that there exist several techniques for that, e.g., [26]. The
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Figure 4: Synchronization procedure

animations generated with the model presented in Section
4.1 take as input the pseudo-phoneme lists and compute the
animation based on the duration of each pseudo-phoneme.

Rhythmic body movements can also be synchronized with
the whole animation. In the case of multiple modalities to
be synchronized the values INT and VEL (see Section 3.3)
are not controlled anymore by a human but they are com-
puted from audio, and then applied to Equation 4. Both
audio bursts and shoulder movements are caused by repet-
itive forced exhalations and display similar ranges of fre-
quencies (see Section 1). Thus, we assume that to generate
synchronized audio-visual laughter it is sufficient to align
the main frequency of the shoulder movements F; with the
mean frequency of the laughter bursts in the audio sample;
this latter can be obtained from the phonetic transcription:
Fiy = | pho|. Using it and reversed Equation 4 one can
compute the value of VEL and thus F>. The laughter in-
tensity of the audio sample can be estimated in real-time,
we use a method proposed in [14]. Once we have the value
of INT, we compute the remaining parameters of Equation
4, namely Ai, and A,. Finally we know the value of v(t).

Figure 5 shows an example of the synchronized multi-
modal animation. We used a freely available MPEG-4 com-
patible virtual character called Greta®[13].

5. INTERACTION SCENARIO: REAL-TIME
ADAPTATION OF LAUGHTER RHYTHM

The approach presented in Section 3 has one important
advantage: it can be applied during real-time H-VC interac-
tion. In this section we propose how, using our models, a VC
tunes the rhythm of its laughter to the nonverbal behavior
of a human interacting with it. The ability to perform such
an adaptation could contribute to, for example, increase en-
titativity or affiliation between the human and the VC [10].
We describe here the concept of such real-time interaction,
leaving the system implementation and evaluation for future
work.

Several interactive H-VC systems considering laughter for
the VC side have been proposed, as discussed in Section
2.3. While in these works the VC is able to respond to the
user by producing laughs, none of them takes into account
human’s laughter body movements. Our concept of interac-
tion described below could be integrated within any of these
systems.

At least two solutions can be proposed to map human
nonverbal behavior onto the animation of a VC: (i) a low-
level mapping in which the RBM parameters of the human

®http://perso.telecom-paristech.fr/“pelachau/Greta/



Figure 5: Example of animations created with the model

behavior are directly copied to VC’s RBM, (ii) a high-level
mapping in which more generic characteristics of human ex-
pressivity during laughter are captured and mapped onto
the VC’s RBM parameters. In this interaction scenario we
focus on the second solution. Instead of directly copying
the harmonics of rhythmic laughter movements, we measure
higher-level expressive qualities of human nonverbal behav-
ior during laughter and we propose a mapping of these values
onto the laughter RBM harmonics from Equation 4. The
idea of mapping human’s expressive features to VC’s ex-
pressive features without copying the movement itself is not
novel [4, 20], however, to our knowledge, no previous work
focused on body movements of laughter.

The EyesWeb XMI platform is used to analyze the ex-
pressive qualities of nonverbal behaviors in laughter. It is
equipped with several algorithms to analyze expressive qual-
ities of movement, such as quantity of motion or smooth-
ness. Human data is captured and processed in real-time
using EyesWeb XMI and the human’s silhouette is automat-
ically extracted from the depth map captured by a Microsoft
Kinect sensor. From the silhouette, three expressive features
are computed - Quantity of Motion, Contraction Index, and
Smoothness Index - which have been widely discussed in lit-
erature, see for example [16]. Such features are then mapped
onto the VC’s RBM parameters {(ax, fi, ¢x)|k € {1,2}} and

In particular, we propose the following mapping;:

e Quantity of Motion, that is, the detected amount of
human’s body movement, is mapped onto the VEL
variable (which determines the frequency of shoulder
and torso pulses, see Equation 4);

e Contraction Index, that is, the detected amount of
horizontal and vertical human’s body contraction, is
mapped onto the INT variable (which determines the
amplitude of shoulder and torso movement, see Eq. 4);

e Smoothness Index, that is, the amount of continuity in
human’s body movement, is mapped onto the C = &,
- ®; (that determines the distance between the phases
of the 2 harmonics of the generated movement, see
Equation 4).

Consequently: (i) the more the human produces body
movements during laughter, the more frequent are the VC’s
RBMs movements, (ii) the larger are the human’s move-
ments during laughter, the stronger are the RBM pulses;
(iii) the smoother are the movements, the smoother are the
trajectories of the VC’s RBM movements.

The problem of the detection of human laughter is out
of the scope of this paper. There exist several algorithms
working in real-time for that, e.g., [12, 14].

6. CONCLUSION AND FUTURE WORK

In this paper we studied and modeled the rhythmic body
movements of laughter. The spectral analysis of expressive
body movements confirms the findings in literature about
the rhythmic movements of laughter. We also showed that
only 4 harmonics can effectively reconstruct RBMs. Our
RBM model combines the ease of controlling an animation
obtained by procedural approach with the accuracy and nat-
uralness of animation based on experimental data. Our
model is based on real data analysis but it allows a hu-
man to control the animation via a small set of parameters.
Importantly, our approach is computationally light and it
can be applied to any virtual character. It enables to map
human movements to virtual characters in real-time. We
believe that it could be easily extended to other rhythmic
movements performed while, e.g., coughing or crying. In
this paper we also showed how rhythmic animations can be
synchronized with the other synthetized expressive cues of
laughter such as facial expressions and other body move-
ments. Finally we have also discussed an interactive appli-
cation integrating our RBM model.

Several limitations and future works should be consid-
ered. Our current RBM model is based on a relatively small
dataset. Anatomical differences as well as stances (e.g., sit-
ting) may strongly influence movements in laughter. We
plan to analyze more data of different gender and stances.
Regarding the synthesis part, we are going to extend our
model by considering other movement types, such as arm
throwing, and knees bending. To validate our model we will
perform a perceptive study. The study will provide feedback
on the pertinence of our animation model of multimodal
laughter. Participants will be asked to evaluate different
stimuli of the virtual agent laughing. Three conditions will
be compared; they will all use the same audio episode syn-
chronized with facial animation, only the RBM movements
will vary between conditions as follow: 1) animations with
RBM movements generated with our model, which are syn-
chronized with audio the episode, 2) RBM movements of
frequency and amplitude beyond the intervals specified in
Equation 4 of our model, 3) animations without RBM move-
ments (the facial animation is still synchronized with audio).
The believability, realism and naturalness of the animations
will be compared.
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