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ABSTRACT
This paper is a preliminary work towards the design of a
model able to generate realistic motion sequences condi-
tioned on a number of contextual variables like age, mor-
phology, emotion etc. We focus in a first step on the design
of contextual markovian models able to perform recognition
of activities performed under various emotions even in the
case no training samples are available for a particular (activ-
ity, emotion) pair, a zero shot learning setting.
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INTRODUCTION
There has been a number of works that aim at designing sys-
tems able to synthesize realistic animations of avatars using
statistical models. Of course the way one moves depends on
many factors which are related to rather stable features such
as her morphology age, habits, emotion and on more contex-
tual features such as emotion, role etc. We are interested in
designing a generic synthesis system able to generate realis-
tic trajectories in various contexts related to the gender, the
age, the morphology, the emotion, the role... of the character
to animate. Moreover we would like our generic system to be
easily controled by setting these context variables (the gender,
the age, the morphology...) by hand before generating an ani-
mation. Actually it is quite likely that not all combinations of
these contextual variables will occur in the training set or that
some combinations will be rare. To overcome these problems
and thus to allow learning of statistical models from limited
training datasets, one has to design methods able to disen-
tangle the influence on these many contextual factors on the
final animation. This latter property could make possible the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MOCO’16, July 05-07, 2016, Thessaloniki, GA, Greece
2016 ACM. ISBN 978-1-4503-4307-7/16/07...$15.00
DOI: http://dx.doi.org/10.1145/2948910.2948958

generation of synthesis whatever the combination of the con-
textual variables, would this combination occur or not in the
training set. This work is a preliminary step in this direction.

HMMs for learning information from motion capture data
have been studied in the past decade[2, 6, 11]. In [2], an
entropy-based model is presented for learning stylistic vector
for each set of activity sequences, which can easily change the
styles of an activity. Other data-driven models are studied for
dealing with style learning of human motions[10, 1, 9]. Al-
though researchers have achieved some great results, learning
style representation is still a challenging task. Besides, [12]
proposed a supervised model called parametric HMM which
is able to find the linear contextual information in test set by
given the prior knowledge in training step. In [8], a con-
textual HMM framework (CHMMs) is proposed for condi-
tioning the probability distribution of a HMM. These pioneer
works showed the ability of Contextual HMMs to perform
high quality avatar animation from speech [3] and for laugh-
ter animation [4]. researchers have applied parametric HMMs
in sythesis of movements of human body, such as [6]. In
these works, contextual parameters are given in training step,
but more often representing motion style is difficult. So, our
work focuses on learning a represention for emotion or any
other contexts by taking advantage of CHMMs framework.

We follow this latter line of work and we propose a CHMM
approach for learning motion patterns performed in various
contexts without any prior knowledge about this contextual
information. We extend previous works to jointly learn how
to exploit the contextual information and how to represent
it. We apply our framework on activity recognition task per-
formed under various emotion. This is a first step towards
synthesis which is relevant since first it may be evaluated with
objective measure such as recognition accuracy and second
since it has been observed in previous studies that the models
that allow high recognition accuracy are the ones that yield
high quality synthesized trajectories [3].

PROPOSED METHOD
Contextual HMMs (CHMMs) [8] have been originally pro-
posed as an extension of parametric HMMs [12] for dealing
with variability in the data. The main idea is to make HMMs
parameters (Gaussian means, Covariance matrices and transi-
tion probabilities ) dependent on what is called external vari-
ables that might represent additional contextual variables like
the gender of a gesturer in a gesture recognition task, the es-
timated signal to noise ratio in a speech recognition task...



The contextual variables then represent some available addi-
tional information that bears some information on the data
which is not easy to integrate in a HMM based recognition
system. Such a modeling framework has been used both to
design accurate recognition systems and to design synthesis
system that are conditioned on some input, e.g. to animate an
avatar based on its speech signal [3].

In a CHMM, Gaussian means are parameterized. The mean
of a Gaussian distribution in state j, µ̂j , is defined as:

µ̂j = µ̄j + Wjθ (1)

where µ̄j ∈ Rd is an offset vector and Wj ∈ Rd×c are pa-
rameters that determine how θ modifies the offset mean µ̄j
(d is the dimension of the observation space and c the dimen-
sion of θ, c = |θ|, i.e. number of contextual variables). If
θ variables were useless and did not include information to
model the data, then Wj could be set to 0 and one would re-
cover a standard HMM whose Gaussian distribution in state j
is µ̄j . Contextual HMMs are learned with a specific instance
of the Baum-Welch EM algorithm [7], [8]. The EM max-
imization step has an analytical solution which leads to the
parameter reestimation formula below which are iterated, as
well as the standard parameter reestimation formula for other
parameters, until convergence:

Wj =

[∑
k,t

γktj(xkt − µ̄j)θTk
][∑

k,t

γktjθkθ
T
k

]−1

(2)

where γktj denotes the probability of being in state j at time
t, given the observed sequence k, θk stands for the contex-
tual variables associated to sequence k, and xkt denotes the
observation vector (the frame) at time t in sequence k. Note
that when θ is known, a CHMM model, that we note λ here-
after, may be instanciated as a standard HMM by comput-
ing the means of Gaussian distributions according to Eq. 1.
Then any standard algorithm like Viterbi may be used with
this model. We note λθ the HMM which is the instance of a
CHMM model λ obtained given θ value.

We will focus here on rather simple CHMMs where only
the means of Gaussian distributions are parameterized by θ.
Transition probabilities and covariance matrices are unparam-
eterized, hence independent of θ. Note also that while θmight
vary with time we only deal here with a unique θ (hence time-
invariant) per sequence.

Learning Activity Models under Different Contexts
We investigate the use of CHMMs for efficiently learning
models of activity while samples of these activities have been
performed in a few contexts, e.g. various emotions.

Assume that there are M activities A = {A1, ..., AM} per-
formed under N different contexts C = {C1, ..., CN} (e.g.
emotions) in the training set. Any training sequence then
comes with a pair of labels (a, c), namely its corresponding
activity a and emotion c. There are two usual ways for deal-
ing with this situation. The first one is to learn one model
per activity Aj from all training sequences corresponding to
this activity, i.e. training sequence x with label (Aj , c). This
model, being learned for all the contexts, should be designed

to be robust to variability brought by the various contexts,
which is not easy to achieve. Alternatively one can learn
M × N models, i.e. a model for every possibility of activ-
ity and context (Ai, Cj). The problem lies here in that the
training set for a specific pair (Ai, Cj) might be too small
(even empty!) to correctly learn all of these models

Using CHMMs offers an alternative. One can indeed learn
one CHMM per activity Aj , noted λj , from all training se-
quence x whose label (a, c) is such that a = Aj , but using
the contextual variables θ to encode the context c of x, c(x).
Doing so one can smartly handle variability brought by the
contexts, while sharing a number of parameters (transition
probabilities, covariance matrices and mean offsets µ̄) en-
abling learning from few training samples for each (Ai, Cj)
pair. One key issue is to define the encoding of the contexts
{θ(c), c ∈ C} since these will strongly affect the behavior of
the method. A simple and natural choice is to use what is
known as one-hot-codes (we investigate smarter schema in
the next section) : The vector θ(Cj) corresponding to the jth
context Cj is a M dimensional vector whose components are
all set to zero except the jth one which is set to one. At test
time, the context is unknown and activity recognition for a
sequence x is performed according to :

â = argmaxi

[
argmaxjp(x|λiθ(Cj)

)
]

(3)

Joint Learning of CHMMs and Context’s Representations
An interesting setting that we want to consider is to learn
both the parameters of CHMMs models and the represen-
tation θ(Cj)’s of all possible contexts. Actually the use of
one-hot-codes as above is limited. A more interesting encod-
ing of contexts would be a low dimensional and dense (as
opposite to the sparse one-hot-codes) vector representation.
Such an encoding would allow more parameter sharing be-
tween contexts, thus improving recognition ability of the sys-
tem for rarely observed (activity, context) pairs in the train-
ing set. Further this increased sharing between all parameters
might hopefully allow to generalize on unobserved (activity,
context) pairs in the training set, as we will demonstrate. We
focus now on the case where instead of being given the θ’s for
all contexts at training time , we don’t know what these θ are
or should be and we want to learn them together with Wj’s
and with all other parameters of the CHMMs. Unfortunately
since θ’s and Wj’s interplay there is no closed form solution
to embed in a standard EM algorithm. Instead we propose a
coordinate ascent like algorithm that alternates between opti-
mizing the CHMM parameters (W ’s and HMM parameters)
while θ’s are kept fixed, and optimizing θ’s while CHMM pa-
rameters remain fixed (See Algorithm 1). In that case both
steps may be efficiently performed with standard EM. Rees-
timation formulas for θ’s may be obtained analogously to
equation 2, given that all other parameters are kept fixed.
Naturally, updating θl is based on all training sequences x
whose context label c is Cl. The sums above range over all
sequences k whose activity label is l, i.e. c(xk) = l.

θl =

[∑
k,t,j

γktjW
T
kjΣ

−1
kj Wkj

]−1[∑
k,t,j

γktjW
T
kjΣ

−1
kj (xkt−µ̄kj)

]
(4)



Algorithm 1 Joint training of CHMMs and of contextual vec-
tors
1: procedure TRAINING
2: Train one HMM per activity, yielding M HMMs.
3: Initialize CHMMs from HMMs
4: Randomly initialize θ vectors
5: repeat
6: Fix θ’s and optimize W ’s using EM (Cf. Eq. 2)
7: Fix W ’s and optimize θs using EM (Cf. Eq. 4)
8: until Convergence
9: end procedure

EXPERIMENTS AND RESULTS
We performed experiments on activity classification where
activities are performed under different emotions. All along
the experimental section the contexts Cj stand for the emo-
tion under which an actor performs an activity.

Motion Capture DataSet
We used the dataset in [5]. It consists of motion capture data
gathered when 12 actors were performing 8 different activi-
ties such as ’Being Seated’, ’Sitting Down’, ’Knocking on the
Door’, ’Simple Walk’, ’Walk with something in the Hands’...
Every activity is performed in 8 different emotional contexts
which are ’Anger’, ’Anxiety’, ’Joy’, ’Neutral’, ’Panic Fear’,
’Pride’, ’Sadness’ and ’Shame’. Each of the 12 actors per-
forms 12 times each activity-emotion combination. There
is then a total of 9216 sequences in the dataset. Motion se-
quences are represented as sequences of frames (of length be-
tween 200−500 depending on the activity) where each frame
is a 69-dimensional vector whose components correspond to
69 joint angles of 23 joints in skeleton. We use PCA to reduce
the number of the dimensions of body pose to 20. We report
experimental results on only two similar activities: ”Simple
Walk”(SW) and ”Walk with something in the Hands” (WH)
which are much similar and confusable.

Experimental Setting
We report averaged experimental results gained with cross
validation on few splits of the training, validation and test
data. Stratified cross validation is used so that data from all
actors occur in the three datasets. Also in all these experi-
ments we select a few (activity, emotion) pairs that we make
only appear in the test set (we call these missing pairs) to in-
vestigate if the models that we compare may generalize well
to cases that have not been observed in the training stage.
Test set performances are then reported as Test performance
based on the results on the test set except on missing pairs
and as Missing pairs performance computed on missing pairs
only. We compare our approach with a HMM baseline system
where we use one HMM per (activity, emotion) combination.
In any case we use one CHMM per activity. Whatever the
models (HMMs, CHMMs) each model is a ergodic model
(i.e. all transitions are allowed) with 12 states and we use sin-
gle Gaussian emission probability densities. All models are
trained through Maximum Likelihood Estimation. We trained
standard HMM first to initialize most of CHMM parameters,
initial state probabilities {πi}, transition probabilities {aij},
means of Gaussian emission probability densities {µ̄j}, and

co-variance matrices of Gaussian emission probability den-
sities {Σj}. Once HMMs are trained, CHMMs are built by
copying the HMM parameters and by initializingW ’s param-
eters to small random values, then the CHMM parameters are
refined using formulas as in Eq. 2 and/or Eq. 4.

Activity Classification
We first report activity classification results (Figure 1). We
investigated two settings. In any case recognition of a test
sample is performed without any information on it (i.e. the
corresponding emotion is unknown). We report results in two
settings, by learning with all training data available (models
are named CHMM+ and HMM+) and learning with small
training sets by randomly choosing one fourth of available
training material (models are named CHMM- and HMM-).

The most advantageous experimental setting here is when
one has at his disposal a complete training set, i.e. training
samples are available for any label pair (activity, emotion).
This setting corresponds to the curves HMM Train, HMM
Valid and HMM Test (resp. CHMM Train/validation/Test)
which show the performance of the HMM baseline and of
our CHMM approach on the three datasets as a function of
the dimension of θ (HMM performances are independent θ
and plotted as constant). One may see that the while CHMM
is outperformed by the HMM baseline on all datasets when
enough training data is available (+ curves), CHMM outper-
form HMMs when the training data set is smaller (− curves).
This comes from the fact that there is a parameter sharing
schema between activity-emotion models in CHMMs. Also
it is worth noticing that the dimension of θ does not seem to
impact much the performance here, meaning one may signif-
icantly compress the size of the activity models with respect
to the baseline HMM system without decreasing accuracy.

The figure also shows four additional curves with are called
HMM+/− Missing Pairs and CHMM+/− Missing Pairs.
These curves correspond to the performance on Missing Pairs
data only, a more difficult setting. Both our approach and
the HMM baseline naturally perform lower on these data but
CHMM performance drop is significantly smaller than the
one of HMMs, especially when less training data is available.

Figure 1. Accuracy of Activity Classification wrt. |θ|s.

A Deeper Analysis
We provide some addition experimental results that provide
some light what is happening. Figure 2 shows the trajecto-
ries described by the θ vectors of the eight emotions along



the training process. One sees for instance that the represen-
tations of anxiety and shame move away from one another
while anger and joy become closer. As these results show
emotion is clearly taken into account by the markovian mod-
els and actually help improve modeling accuracy. Yet de-
spite these encouraging results emotion recognition results, as
shown in Figure 3 and Fig.4, are rather disappointing. Here
the task is to recognize emotion when activity is supposed
to be known at test time. One sees that the accuracy is rea-
sonably good for the training, validation and test sets when
the dimension of θ increases and also that as before CHMMs
outperform HMMs in small training set experiments while
HMMs are more accurate with large training sets. Looking at
missing pairs performance (HMMs cannot perform on these
data) it seems quite puzzling that the performance drops to
almost random when computed on missing pairs only. This
seems a little contradictory with previous promising results
and we don’t have clear explanations for this phenomenon.
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Figure 2. Trajectories of the 2D representations (θ) of the 8 emotions
along the training process (random initialization).

Figure 3. Accuracy of Emotion Classification wrt. |θ|.
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Figure 4. Confusion Matrix of CHMM- on Test Set |θ| = 6

CONCLUSION
We described an approach for activity recognition performed
under various contexts. We showed how this may be han-
dled with contextual markovian models by learning simulta-
neously activity models’ parameters and representation of the
contexts. Preliminary experiments show that our proposal en-
ables recognizing an activity performed under an emotion for
which there was no training samples.
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