
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2014; 25:353–362

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1580

SPECIAL ISSUE PAPER

Flock morphing animation
Xinjie Wang1, Linling Zhou1, Zhigang Deng2 and Xiaogang Jin1*

1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
2 Computer Science Department, University of Houston, Houston, TX, USA

ABSTRACT

We propose a new animation technique, called flock morphing, to create special morphing effects between two arbitrary
3D objects by combining the features of 3D morphing and flock animation. Its core idea is first to tetrahedralize the source
3D mesh and regard each tetrahedron as an agent in a flock and then continually generate the flock morphing animation
until the target mesh emerges, formed by the same set of tetrahedra. By applying plausible trajectory planning scheme
and smooth deformation algorithm, we demonstrate that our proposed method can simultaneously achieve visually desired
morphing effects. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS

tetrahedralization; shape morphing; flock simulation; flock morphing; special effects; computer animation

*Correspondence

Xiaogang Jin, State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang Province, China.
E-mail: jin@cad.zju.edu.cn

1. INTRODUCTION

Special effects, which blur the boundaries between art and
technology, are playing an important role in entertainment
and film industries. During the past several decades, there
have been many developments of creating special effects
using computer animation techniques. Shape morphing and
flock simulation are two important ones among them.

In this paper, we propose a novel flock morphing method
to create visually desired special effects that share the
visual appearances of 3D shape morphing and flock sim-
ulation. Flock morphing produces aggregate motion of
tetrahedron particles, and it visually meets velocity match-
ing and flock centering rules. To produce visually pleasing
morphing animation, we incorporate many features of flock
simulation into our morphing model. To the best of our
knowledge, similar techniques have not been reported in
the literature to date.

Our algorithm can be described as follows. First, two
3D objects (called source and target) are located in differ-
ent positions in the working space. Then, we subdivide the
two objects until they possess the same number of tetra-
hedra. Second, each individual tetrahedron in the source
object moves in a plausible trajectory and smoothly morphs
to its corresponding tetrahedron, along a user-specified
global path. After arrival at their destinations, these tetra-
hedra gradually form the target object. Figure 1 shows one
example morphing animation result by our approach.

Similar effects that we have seen in movies are more
like extensions of particle systems. Particle systems have
the following limitations: (i) correspondences between two
mesh objects are not considered; (ii) particles can only
form an approximate shape of an object; and (iii) particle
systems do not support complex and autonomous behavior
patterns.

Our method has four main contributions: (i) it pro-
vides a complete solution to this new morphing animation
effect by seamlessly combining 3D shape morphing and
flock simulation, including tetrahedralization, path plan-
ning and control, deformation, and so on; (ii) we introduce
a new style control into local tetrahedron trajectory plan-
ning, which is useful for changing the patterns of tetrahedra
when they are regarded as agents in a flock; (iii) we design
a new obstacle avoidance algorithm for velocity genera-
tion of the flock, and this algorithm can also be easily
integrated into any velocity-based multi-agent simulation
systems; and (iv) we introduce a new smooth shape inter-
polation algorithm between two arbitrary tetrahedra, which
can be potentially used for other morphing applications,
not limited to the proposed approach.

2. RELATED WORK

Although techniques for producing the visual effect pre-
sented in this paper has never been reported in the litera-
ture, there exists a large volume of relevant research. It is

Copyright © 2014 John Wiley & Sons, Ltd. 353



Flock morphing animation X. Wang et al.

(a) - 0% (b) - 7% (c) - 35%

(d) - 55% (e) - 75% (f) - 100%

Figure 1. A flock of tetrahedra morphs between two-word models and follows a user-specified path. The percentage value below
each frame denotes its corresponding t value in the morphing process.

Figure 2. The pipeline of the proposed approach.

beyond the scope of this paper to comprehensively review
all previous morphing, motion planning, and crowd simu-
lation methods; as such, we will keep our focus on a few
recent, most relevant approaches.

Morphing is a widely-used graphical technique [1].
Two-dimensional image-based morphing [2] has the lim-
itation of lacking the underlying model’s spatial informa-
tion, which may cause visually unpleasant artifacts when
it is implemented into 3D animations. As a compari-
son, 3D mesh-based morphing can produce more real-
istic and vivid visual effects (A comprehensive survey
is provided in [3]). However, most of the existing mor-
phing approaches focus on establishing the one-to-one
correspondence between two meshes beforehand, without
dealing with crowd (flock) algorithms.

To date, extensive researches have been carried out on
crowd simulation [4]; for example, a large volume of exist-
ing studies are focused on modeling various patterns of
real-world crowds, including flock behavior [5], social
force model [6], example-based approaches [7], and so on.
Recently, increasing attentions have been drawn to control
or generate crowd formations and transitions. For example,

Takahashi et al. produce sophisticated group formations
by combining heuristic rules with explicit hard constraints
[8]. Along a different direction, Gu and Deng introduce an
automated approach to generate various free-form group
formations using a novel sketching interface [9]. Ju and
colleagues present a method that blends different crowd
data to create a morphable crowd simulation [10]. Further-
more, Xu et al. propose an agent-based flock animation
system that is capable of satisfying dynamic 3D shape con-
straints [11]. But all the methods mentioned earlier do not
integrate with shape morphing algorithms. In other words,
individuals in these methods just group together so that
the flock looks like a shape, without changing into another
shape during the transformation process.

3. APPROACH OVERVIEW

The pipeline of our approach can be illustrated in Figure 2.
At the beginning, two mesh models are specified as source
and target. Then, they are tetrahedralized into two sets,
which have the same number of tetrahedra. During the
morphing process, the source tetrahedron set is moving

354 Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



X. Wang et al. Flock morphing animation

toward the target as a flock simulation, where each tetrahe-
dron can be regarded as an individual agent. At each time
step, we compute the velocity of each agent and update
its position accordingly. Once a tetrahedron approaches the
target area, we will dynamically identify its corresponding
(target) tetrahedron. Then, by adjusting its arriving veloc-
ity, it will gradually morph to the target tetrahedron. The
animation stops once all the tetrahedra reach their goals
and together form the target model.

4. MESH TETRAHEDRALIZATION

We adopt “Tetgen” [12] to obtain a tetrahedron set that
accurately tetrahedralizes a mesh model. Given a piece-
wise linear complex (PLC) without intersecting segments
or facets, Tetgen can generate a quality mesh of Delaunay
tetrahedra with radius-edge ratios no greater than 2.0. Most
3D meshes can be converted into PLCs easily.

Once we have tetrahedralized the source mesh and the
target mesh into two tetrahedron sets S and T , we continue
subdividing them until they share the same number of tetra-
hedra. Let n1 and n2 be the number of tetrahedra in S and
T , respectively. Let n be a user-specified parameter, which
is the total number of tetrahedra during the morphing, and
n � max.n1, n2/. The default value for n is max.n1, n2/.
Three different schemes can be used for subdivision, as
illustrated in Figure 3.

We first apply one-to-four subdivision scheme
(Figure 3(a)) to all the tetrahedra in S. So S is replaced by
a new set with 41 � n tetrahedra after one level of subdivi-
sion. We repeatedly apply one-to-four subdivision scheme
k times where k should satisfy:

4k � n1 � n < 4kC1 � n1 (1)

It is easy to know that k equals to

ˇ̌̌
ˇlog

n
n1
4

ˇ̌̌
ˇ. So far, the

subdivided S has m D 4k � n1 tetrahedra. Let

d D
jn � m

3

k
, r D n � m � 3 � d (2)

We first sort the tetrahedra of the subdivided S according
to their volumes in a descending order and then subdivide
the preceding d tetrahedra using one-to-four subdivision
scheme. If r equals to 2, we subdivide the tetrahedra

with index d with the one-to-three subdivision scheme
(Figure 3(b)). If r equals to 1, we subdivide the tetrahe-
dron with index d by the one-to-two subdivision scheme
(Figure 3(c)). To this end, both S and T have n tetrahedra,
respectively.

5. MOVING SCHEME

In this work, we assume that the source mesh and the
target mesh do not overlap. Thus, the simplest way to
generate morphing animation is to guide all agents to
move straightly from their source positions to their goals.
However, many scenarios require agents to follow a more
flexible and controllable path.

In this section, we describe a two-phase velocity control
method that can create many different kinds of plausible
trajectories. Agents will apply different velocities accord-
ing to their positions during different phases, as illustrated
in Figure 4. During phase 1, we generate velocity EV1 for
each agent by using a two-level velocity method

�
EVg and

EVl

�
and two collision avoidance schemes

�
EVoa and EVla

�
.

During phase 2, a simple velocity EV2 is applied to each
agent according to its corresponding target tetrahedron.
The next four sections give the details of four velocity
fields needed for calculating EV1, and Section 5.5 describes
the detailed computation of EV1 and EV2.

5.1. Global Velocity

First, we find out the centroid CS (or CT ) of the source
(or target) mesh. The vector

���!
CSCT is regarded as the main

direction of the global velocities of all the agents in S.
Second, our approach allows users to specify the global

path by sketching an arbitrary curve in the 3D space. We
sequentially sample m key points (m can be specified by
users) on the curve, Q.Q0, Q1, : : : , Qm, QmC1/. Specially,
Q0 D CS and QmC1 D CT , which indicates that the nav-
igation curve must start from the source and end at the
target. Each pair of two adjacent points derives a unit vec-
tor Efi, from the former to the latter (Figure 4). Then, we
calculate the global velocities for all the agents:

EVg.X, t/ D Efi � speed0,

where i D argmin.distance.Ex.t/, Qi/
(3)

Figure 3. Three subdivision schemes for a tetrahedron.

Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd. 355
DOI: 10.1002/cav



Flock morphing animation X. Wang et al.

Figure 4. Moving scheme for flock morphing.

In Equation 3, speed0 is a user-specified parameter,
which defines the base speed of the flock. X is a tetra-
hedron, and X 2 S, Ex.t/ D Ex.t, x, y, z/ means the current
3D position of X’s centroid at moment t. The func-
tion distance./ calculates the distance value between two
points. We can also define the width of the path and add
an attractive velocity on EVg to force all agents to move in a
fixed width. It is unnecessary to go into the details because
it is easy to implement. Besides, it is noteworthy that the
path should not be self-intersecting. Otherwise, we may not
obtain the correct path.

Moreover, we design the specific moving order of X 2
S according to the path. Generally, when animation starts,
all of the tetrahedron agents are stationary in the source
model. Those who are in front along the global moving
direction will move earlier. On the other hand, at the end of
the animation, agents will form the target model by starting
with the farthest locations. A concrete example is shown in
Figure 1. To achieve this, we define an order D1.X/ for any
X 2 S, and D2.X0/ for any X0 2 T :

D1.X/ D .Q0 � Q1/ �
�
Ex.t0/ � Q1

�
D2.X

0/ D �.QmC1 � Qm/ �
�
Ex0.t0/ � Qm

� (4)

In the previous equations, t0 denotes the first time step of
the animation, when all the tetrahedra in S have not started
to move yet. As a preprocessing step, we calculate D1 and
D2 and sort them in an ascending order, respectively.

5.2. Style Velocity

While the global velocity can guarantee agents to move
along the path, we still expect that they can exhibit charac-
teristic motion patterns. Therefore, a few existing velocity
fields can be integrated with our approach, such as stochas-
tic wind fields, gravitational fields, or noise fields. These
velocity fields are used to generate local behaviors, so our
approach is able to create a variety of animation scenar-
ios. For example, we can employ the following curl-noise
velocity field, inspired by the work of Wang et al. [13] and

Bridson et al. [14], to obtain swarm-like behaviors of the
flock:

EP.Ex/ D

�
P1

�
Ex

scale

�
, P2

�
Ex

scale

�
, P3

�
Ex

scale

��
� gain

EVl.X, t/ D r � EP
�
Ex.t/

�
(5)

Here, Ex is a 3D point, and P1, P2, and P3 are three Perlin
noise functions with different random seeds. Ex.t/ is still X’s
centroid at moment t. We use two noise parameters: scale
(for controlling the grid density indirectly) and gain (for
adjusting the magnitude of the Perlin noise).

In this way, we combine EVg (Equation 3) and EVl
(Equation 5) to obtain the governing velocity as follows:

EVgrn D !1 � EVg C !2 � EVl (6)

where !1 and !2 are adjustment factors.

5.3. Obstacle Avoidance

In many scenes, collisions will happen when the
user-specified path passes through the obstacles. Thus,
the agents should be aware of the environment and find
out a collision-free new path in time. Many obstacle
avoidance algorithms have been proposed in the crowd
simulation community. Treuille et al. [15] design the con-
tinuum crowd simulation based on shortest path finding.
But their approach does not support user-defined paths.
Patil et al. [16] introduce a path finding algorithm with
a user-sketched guidance curve. However, in their work,
path following may fail if the guidance curve intersects
with obstacles. In addition, agents distant away from the
curve will not be effected strongly by the curve. In our
flock morphing animation, all the agents should follow the
path as strictly as possible while avoiding obstacles; other-
wise, the visual result would not be satisfying. We address
this issue by introducing a new obstacle avoidance scheme,
described as follows.

356 Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



X. Wang et al. Flock morphing animation

First, we calculate a discrete potential field dt using 3D
grids in the environment, where dt.i/ denotes the shortest
distance from the center of a grid cell i to the obstacles.
Those cells whose centers are inside an obstacle will have
dt D 0. dt distributes in the space and forms a gravitational
field, as illustrated in Figure 5. Any points in this field tend
to move from higher potential to lower potential. The mov-
ing direction of an agent X can be obtained from potential
gradient Eg.dt.X/ equals to dt.i/when X is in the grid cell i).
When we need to calculate an obstacle-avoidance velocity,
we first solve a plane that passes through X and perpen-
dicular to Eg, and then we calculate a repulsion direction of
X by finding a projection unit vector ED of the Vgrn on this
plane. Figure 5 illustrates this computing process (2D view
is chosen for simplicity). Note that if ED is a zero vector,
the repulsion direction of X can be any unit vector on the
plane. The obstacle-avoidance velocity Voa is defined as
follows:

EVoa.X/ D
dt.X/

ka
� EVgrn C

�
1 �

dt.X/

ka

�
� ED � speed0 (7)

where ka is an adjustment factor and denotes the range of
the influenced area. As described in Equation 7, agents that
are close to an obstacle will be more affected by EVoa (the
agent X1 in Figure 5). Conversely, agents that are located
outside the influenced area will maintain their original
velocities (the agent X2 in Figure 5).

The obstacle avoidance algorithm introduced earlier can
be straightforwardly integrated into any velocity-based

multi-agent simulation systems by regarding their govern-
ing velocity fields as Vgrn in Equation 7.

5.4. Local Avoidance

In a path planning scheme, the local collision avoidance
between agents is important. Considering that a large num-
ber of agents may appear in one scene, we address the
local inter-agent avoidance issue using a highly efficient
method called minimum distance enforcement (MDE) rule
to compute a local avoidance velocity EVla, as suggested in
[15]. This rule can be briefly summarized as follows: If
the distance between two agents is smaller than a thresh-
old (i.e., the minimum distance), we add two symmetrical
opposite velocities on them, respectively (illustrated in
Figure 6).

5.5. Velocity Synthesis

As illustrated in Figure 4, we divide the moving scheme
into two phases, by checking whether the agent is inside
the minimal bounding sphere of the target model (phase 2)
or not (phase 1). We calculate the final velocities for agents
during phase 1 and phase 2, respectively.

Phase 1: For an agent X that is moving, the governing
velocity of X should be Vgrn.X, t/ at moment t. We advance
X’s position by this velocity for ıt time. If X is to collide
with obstacles, it needs to change its direction at t. Other-
wise, it will remain its direction. The final velocity during

Figure 5. An illustration of computing the obstacle-avoidance velocity.

Figure 6. An illustrative example of the minimum distance enforcement rule.

Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd. 357
DOI: 10.1002/cav



Flock morphing animation X. Wang et al.

phase 1 can be described in Equation 8, where PX denotes
the current position of X, and RX denotes the radius of the
minimal bounding sphere of tetrahedron X.

EV1.X, t/ D

(
EVoa.X, t/C EVla.X, t/ dt

�
x.t/C EVsyn.X, t/ � ıt

�
< RX ,

EVsyn.X, t/C EVla.X, t/ Otherwise
(8)

Phase 2: When X moves into the minimal bound-
ing sphere of the target model, we immediately find the
corresponding tetrahedron X0 in the target set T using
Equation 4, and we predict the duration tf before it arrives
at X0. tf needs to be used to determine V2 as shown in
Equation 9. Note that V2 is a constant, and we only need to
calculate it once.

EV2.X/ D
����!
PX0PX

k
����!
PX0PX k tf

, where tf D
k
����!
PX0PX k

speed0
(9)

6. MORPHING SCHEME

Besides the path planning, how to morph between the
source and the target tetrahedra is also a non-trivial issue
in our approach. Based on our experiments, we found that
applying appropriate deformations (shrink, transform, and
enlarge) to an individual tetrahedron could achieve visually
pleasing flock morphing animations.

Figure 7(a) illustrates our morphing scheme. In order to
explain the process more clearly, two key parts of the mor-
phing scheme are zoomed in Figure 7(b) and Figure 7(c),
respectively. As in Figure 7(b), a tetrahedron quickly
shrinks to one-eighth of its original size when it starts to
move. The situation is somewhat different when the tetra-
hedra tend to form the target. As shown in Figure 7(c),
first, a smooth shape transformation is performed between
the shrinked tetrahedron Xs and the corresponding shrinked
target tetrahedron X0s. Then, X0s is enlarged gradually until
it becomes the same as X0. Meanwhile, X0s arrives at the tar-
get position. We present an efficient way to process shape
transformations based on an affine mapping algorithm.

An affine transformation is a transformation that pre-
serves collinearity and ratios of distances, and it can be
uniquely determined by four pairs of points. Inspired by
the work of Farin [17], an affine transformation can be
expressed as follows:

x0 D dC A.x � o/

where o is the origin of x’s coordinate system and x0 is
the image of under affine map x displaced by vector d. Let
T.p1p2p3p4/ be the source tetrahedron and T

�
p01p02p03p04

�
be the target tetrahedron. We assume that pi corresponds
to p0i. To calculate the affine transformation from T to T 0,
we set up a coordinate system at T by taking P1 as the ori-
gin and pi � p1.i D 2, 3, 4/ as three axes. The coordinate

Figure 7. Morphing scheme for flock morphing.

358 Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



X. Wang et al. Flock morphing animation

system at T 0 can be set up similarly based on the same
indices. Points in the two coordinate systems can be
mapped by

x0 D p01 C A.x � p1/

Then, the non-translational portion A of the affine trans-
formation from T to T 0 can be computed as follows:

A D
�
p02 � p01, p03 � p01, p04 � p01

	
� Œp2 � p1, p3 � p1, p4 � p1�

�1

(a) - 3% (b) - 30% (c) - 37%

(d) - 55% (e) - 82% (f) - 95%

(a) - 0% (b) - 5% (c) - 35%

(d) - 60% (e) - 70% (f) - 100%

(a) - 0% (b) - 10% (c) - 30%

(d) - 60% (e) - 90% (f) - 100%

Figure 8. Results of our approach: (top example) a moon-like model morphs to a star; (middle example) two imaginary creatures
transform from one to another in a desert; (bottom example) in a castling situation of a chess game, the rook and the king morph to
the target subtly instead of moving rigidly. The percentage value below each frame denotes its corresponding t value in the morphing

process.

Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd. 359
DOI: 10.1002/cav



Flock morphing animation X. Wang et al.

A is a composite transformation that encodes rotation,
scaling, and shear transformations. If we interpolate it
directly with an identity matrix I, that is, .1� t/IC tA, the
results are not valid. In 1994, Shoemake showed that the
polar decomposition is a good way to interpolate an affine
transformation [18]. The polar decomposition factors A are
represented as follows:

A D RS

where R is an orthogonal matrix and S is a symmetric pos-
itive definite matrix. The factor S is always unique and can
be expressed as S D .AT A/

1
2 , where exponent 1

2 denotes
the principal square root. The factors produced by polar
decomposition are unique and coordinate-independent.

In order to proceed the polar decomposition, we
first converse R to its unit quaternion representation
q D .w, x, y, z/ and then further express q as q D�

cos �2 , nsin �2

�
, where � is the rotation angle and n is

the unit rotation axis. Thus, we can interpolate the rota-
tion between two tetrahedra explicitly by interpolating the
unit quaternion. q can be converted into the rotation matrix
R.n, �/.

Now, the interpolated composite matrix can be written
as follows:

A.t/ D .1 � t/IC tR.n, t�/S, 0 � t � 1

Decomposing matrix A into the polar form makes it
possible to interpolate the intrinsic rotation separately,
which leads to smooth transformation. Now, using the pre-
vious formula, the positions of the linearly interpolated
tetrahedron, T.p1.t/p2.t/p3.t/p4.t//, can be computed as
follows:

q1.t/ D .1 � t/p1 C tp01
q2.t/ D q1.t/C A.t/.p2 � p1/

q3.t/ D q1.t/C A.t/.p3 � p1/

q4.t/ D q1.t/C A.t/.p4 � p1/

7. EXPERIMENTAL RESULTS

We used our approach to generate a variety of flock mor-
phing animations and found that our approach can produce
visually satisfactory effects. Our method can be applied
to any 3D objects with arbitrary topology to create visu-
ally pleasing evolving effects from the source object to
the target object. All the transitions are visually smooth
during the whole animation. Several selected simulation
scenarios are discussed in this section. Please refer to the
accompanying demo video for animation results.

Words morphing: Figure 1 clearly shows the process of
our approach. Tetrahedra detach from the word “CASA” in
order and find their paths to form the target word “2014.”
The transformations and scalings between tetrahedra can
be obtained during the animation. Because there is no style
velocity field (i.e., EVl D 0), agents move and follow the
user-specified curve strictly.

T
a

b
le

I.
Pa

ra
m

et
er

se
tt

in
gs

an
d

pe
rf

or
m

an
ce

st
at

is
tic

s
of

ou
r

ap
pr

oa
ch

fo
r

se
le

ct
ed

si
m

ul
at

io
n

sc
en

ar
io

s.

N
um

be
r

of
Pr

ep
ro

ce
ss

in
g

S
im

ul
at

io
n

A
ve

ra
ge

M
D

E
S

ce
na

rio
ag

en
ts

Sp
ee

d 0
Pa

ra
m

et
er

s
G

rid
re

so
lu

tio
n

S
ty

le
fa

ct
or

s
tim

e
(s

ec
on

d)
FP

S
(C

P
U

)
pe

rc
en

ta
ge

pe
r

fr
am

e
(%

)

W
or

ds
13

,8
18

10
.0

!
1
D

1.
0

80
�

12
0
�

60
—

1.
53

6
18

5.
4

0.
13

!
2
D

0.
0

Th
e

m
oo

n
34

74
8.

0
!

1
D

0.
7

12
0
�

40
�

40
S

to
ch

as
tic

w
in

d:
0.

45
4

31
.3

0.
72

!
2
D

0.
3

W
in

dS
pe

ed
D

0.
5

C
re

at
ur

es
48

11
10

.0
!

1
D

0.
5

12
0
�

10
0
�

65
C

ur
l-n

oi
se

:
0.

50
8

17
.8

0.
63

!
2
D

0.
5

ga
in
D

0.
3

sc
al

e
D

0.
6

C
as

tli
ng

-K
in

g
41

46
6.

5
!

1
D

1.
0

10
0
�

80
�

60
—

0.
41

2
32

2.
4

0.
02

!
2
D

0.
0

!
1
D

0.
8

C
ur

l-n
oi

se
:

C
as

tli
ng

-R
oo

k
41

46
5.

5
!

2
D

0.
2

80
�

12
0
�

60
ga

in
D

0.
00

6
2.

15
9

13
.1

1.
27

k a
D

0.
01

sc
al

e
D

0.
01

5

Th
e

ca
lc

ul
at

io
n

of
st

yl
e

ve
lo

ci
tie

s
co

ns
um

es
ex

tr
a

tim
e

in
sc

en
ar

io
s

2,
3,

an
d

5.

360 Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



X. Wang et al. Flock morphing animation

The moon: In this simulation, we employ a stochastic
wind velocity field as a style velocity field. While agents
are constrained by the curve, they are also affected by the
wind field. In Figure 8 (top example), the moon vanishes as
it is blown away by the wind, creating a flow-like morphing
effect. Note that the navigation curve in this scenario does
not actually intersect with itself, just an illusion when the
scene is rendered into 2D.

Imaginary creatures: In Figure 8 (middle example), the
curl-noise style velocity field is employed to make agents
move like insect swarms (described in Section 5.2).

Castling: This scenario shows how agents deal with
obstacles. After the king moves two squares toward the
rook, it becomes an obstacle blocked in the morphing path
of the rook. Then, the rook starts to morph, and all the tetra-
hedron agents can be aware of the king and bypass it. In
Figure 8 (bottom example), the rook’s morphing process is
demonstrated. We encourage readers to check the complete
castling animation in our companion video.

All the previous scenarios were simulated on an off-
the-shelf computer with an Intel 2 DUO Central Processing
Unit (CPU) E7500 and 4 G main memory. Table I shows
the performance statistics of the previous four scenarios.
The regular 3D grid defined in each scenario is employed
for storing style velocities (at the centers) and MDE calcu-
lation. The obtained simulation Frames Per Second (FPS)
shows that our approach can run in near real-time on an
off-the-shelf computer. Besides, the average percentage of
MDE per frame is recorded in the last row of Table I. In all
the previous scenarios, the percentage of calling the MDE
rule is significantly below 2%.

8. DISCUSSION AND
CONCLUSIONS

In this paper, we introduce a highly efficient approach
to create visually pleasing flock morphing animations.
Unlike existing shape morphing and flock simulation meth-
ods, our approach seamlessly combines the two research
directions to produce a new type of visual special effect.
Our approach provides flexible controls to users including
tuning those parameters or employing pre-defined veloc-
ity fields. Another advantage of our approach is its time
efficiency. For example, our approach real-time supports
large-scale simulations (i.e., over 104 tetrahedra agents) on
an off-the-shelf computer.

However, a number of caveats need to be noted regard-
ing our current approach. First, the minimal bounding
sphere that we use for determining whether the agents is
close enough to the target model may not work well when
the target model is too narrow. But adopting a minimal
bounding box, instead of the minimal bounding sphere,
would cause some moving artifacts, because the bounding
box is anisotropic and agents may fail to move in order. We
will leave this issue to the future work.

Second, global avoidance and local avoidance are not
supported when agents move inside the minimal bounding

spheres. Controls of the agents’ velocities are restricted
because moving to the target positions is the primary task
of the agents. In other words, agents may collide with those
obstacles close to the target model or collide with each
other before they reach their destinations. The latter seems
less critical because agents will collide with each other
anyway at the final step. We plan to explore new and bet-
ter path-control schemes to further improve the results. As
the future work, we would like to extend our approach to
handle 3D models in other forms (not tetrahedra), such as
irregular polyhedra, meta-balls, or more complex elements.

ACKNOWLEDGEMENTS

This work was supported by Zhejiang Provincial Natural
Science Foundation of China (grant no. Z1110154), the
Joint Research Fund for Overseas Chinese, Hong Kong
and Macao Young Scientists of the National Natural Sci-
ence Foundation of China (grant no. 61328204), and the
National Natural Science Foundation of China (grant no.
61272298). The authors would like to thank Junjie Chen
for English proofreading.

REFERENCES

1. Gomes J, Darsa L, Costa B, Velho L. Warping and
Morphing of Graphical Objects. Morgan Kaufmann
Publishers Inc.: San Francisco, USA, 1998.

2. Wolberg G. Image morphing: a survey. The Visual
Computer 1998; 14(8–9): 360–372.

3. Alexa M. Recent advances in mesh morphing. Com-
puter Graphics Forum 2002; 21(2): 173–198.

4. Zhan B, Monekosso DN, Remagnino P, Velastin SA,
Xu LQ. Crowd analysis: a survey. Machine Vision and
Applications 2008; 19(5–6): 345–357.

5. Reynolds CW. Flocks, herds and schools: a distributed
behavioral model. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’87. ACM: New York, USA,
1987; 25–34.

6. Helbing D, Molnár P. Social force model for pedestrian
dynamics. Physical Review E 1995; 51: 4282–4286.

7. Lee KH, Choi MG, Hong Q, Lee J. Group
behavior from video: a data-driven approach to
crowd simulation. In Proceedings of the 2007
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. SCA ’07. Eurographics Association:
Aire-la-Ville, Switzerland, 2007; 109–118.

8. Takahashi S, Yoshida K, Kwon T, Lee KH, Lee J, Shin
SY. Spectral-based group formation control. Computer
Graphics Forum 2009; 28(2): 639–648.

9. Gu Q, Deng Z. Generating freestyle group formations
in agent-based crowd simulations. IEEE Computer
Graphics and Applications 2013; 33(1): 20–31.

Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd. 361
DOI: 10.1002/cav



Flock morphing animation X. Wang et al.

10. Ju E, Choi MG, Park M, Lee J, Lee KH, Takahashi
S. Morphable crowds. ACM Transactions on Graphics
2010; 29(6): 140:1–140:10.

11. Xu J, Jin X, Yu Y, Shen T, Zhou M. Shape-constrained
flock animation. Computer Animation and Virtual
Worlds 2008; 19(3–4): 319–330.

12. Si H. Tetgen: a quality tetrahedral mesh generator
and three-dimensional Delaunay triangulator. Techni-
cal Reports 9, Weierstrass Institute for Applied Analy-
sis and Stochastic, Berlin, Germany, 2004.

13. Wang X, Jin X, Deng Z, Zhou L. Inherent noise-aware
insect swarm simulation. Computer Graphics Forum
2014. DOI: 10.1111/cgf.12277. (published online).

14. Bridson R, Houriham J, Nordenstam M. Curl-noise for
procedural fluid flow. ACM Transactions on Graphics
2007; 26(3): 1–4.

15. Treuille A, Cooper S, Popović Z. Continuum
crowds. ACM Transactions on Graphics 2006; 25(3):
1160–1168.

16. Patil S, van den Berg J, Curtis S, Lin M, Manocha D.
Directing crowd simulations using navigation fields.
IEEE Transactions on Visualization and Computer
Graphics 2011; 17(2): 244–254.

17. Farin G. Curves and Surfaces for CAGD: A Practical
Guide 5edn. Morgan Kaufmann Publishers Inc.: San
Francisco, USA, 2002.

18. Shoemake K. Graphics gems IV. In Graphics Gems IV,
Heckbert Paul S. (ed.). Academic Press Professional,
Inc.: San Diego, USA, 1994; 207–221.

AUTHORS’ BIOGRAPHIES

Xinjie Wang is a PhD candidate of the
State Key Lab of CAD&CG, Zhejiang
University, China. She received her
BSc degree in computer science and
technology from Wuhan University in
2010. Her research interests include
computer animation, flock simulation,
and crowd simulation.

Linling Zhou received her BSc degree
in digital media technology in 2011
and MSc degree in computer technol-
ogy in 2014, all from Zhejiang Uni-
versity. Her research interests include
computer animation and interactive
design.

Zhigang Deng is an associate profes-
sor of Computer Science at University
of Houston (UH) and the Founding
Director of the UH Computer Graph-
ics and Interactive Media (CGIM)
Lab. His research interests are in the
broad areas of computer graphics,
computer animation, human-computer
interaction, virtual human modeling

and animation, and visual computing for biomedical appli-
cations. Besides the CASA 2014 general co-chair, he
currently serves as an associate editor of Computer Graph-
ics Forum, and Computer Animation and Virtual Worlds
Journal. He earned his PhD in computer science at the
University of Southern California in 2006. Prior to that,
he completed his BS degree in Mathematics from Xia-
men University (China) and MS in Computer Science from
Peking University (China). Over the years, he had worked
at the Founder Research and Development Center (China)
and AT&T Shannon Research Lab.

Xiaogang Jin is a professor of the
State Key Lab of CAD&CG, Zhe-
jiang University, China. He received
his BSc degree in computer science
in 1989 and MSc and PhD degrees
in applied mathematics in 1992 and
1995, respectively, all from Zhejiang
University. His current research inter-
ests include traffic simulation, insect

swarm simulation, physically based animation, cloth ani-
mation, special effects simulation, implicit surface com-
puting, non-photorealistic rendering, computer-generated
marbling, and digital geometry processing.

362 Comp. Anim. Virtual Worlds 2014; 25:353–362 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/cav


	Flock morphing animation
	Abstract
	Introduction
	Related Work
	Approach Overview
	Mesh Tetrahedralization
	Moving Scheme
	Global Velocity
	Style Velocity
	Obstacle Avoidance
	Local Avoidance
	Velocity Synthesis

	Morphing Scheme
	Experimental Results
	Discussion and Conclusions
	Acknowledgements
	References


