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Abstract
The task of detecting facial action units (AU) often utilizes discrete expression categories, such as Angry, Disgust, and Happy,
as auxiliary information to enhance performance. However, these categories are unable to capture the subtle transformations
of AUs. Additionally, existing works suffer from overfitting due to the limited availability of AU datasets. This paper proposes
a novel fine-grained global expression representation encoder to capture continuous and subtle global facial expressions and
improve AU detection. The facial expression representation effectively reduces overfitting by isolating facial expressions from
other factors such as identity, background, head pose, and illumination. To further address overfitting, a local AU features
module transforms the global expression representation into local facial features for each AU. Finally, the local AU features
are fed into an AU classifier to determine the occurrence of each AU. Our proposed method outperforms previous works and
achieves state-of-the-art performances on both in-the-lab and in-the-wild datasets. This is in contrast to most existing works
that only focus on in-the-lab datasets. Our method specifically addresses the issue of overfitting from limited data, which
contributes to its superior performance.

Keywords Facial action coding ·Facial action unit detection ·Facial expression recognition ·Expression-aware representation ·
Deep learning

1 Introduction

Facial Affect Analysis is a vibrant and rapidly-evolving
research field within the computer vision and affective com-
puting communities. It encompasses two primary descrip-
tors: facial expression and Facial Action Units (AUs). As
a universal non-verbal method of communication, facial
expressions can be effectively analyzed by combining vari-
ous AUs, as determined by the Facial Action Coding System
(FACS) [6]. These AUs include 32 atomic facial action
descriptors, which are based on distinct anatomical facial
muscle groups. By utilizing FACS and AUs, researchers can
gain valuable insights into human emotions and behavior,
fostering the development of more accurate and robust facial
affect analysis systems. Each AU characterizes the move-
ment of a specific facial region. For instance, the Inner Brow
Raiser (AU1) descriptor focuses on the medial portion of
the frontalis muscle. AUs and facial expressions are inex-
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tricably linked, as nearly any conceivable expression can
be accurately described as a specific combination of facial
AUs. For instance, as illustrated in Fig. 1, a happy expres-
sion can be achieved by the occurrence of both AU6 and
AU12; a doubtful expression is related to AU4, and a sur-
prised expression is linked to AU1 and AU26. In this regard,
AU features are frequently regarded as a facial expression
representation. Undeniably, AUs play a pivotal role in con-
veying human emotions and enabling automatic expression
analysis. The detection ofAUs has garnered significant atten-
tion in recent years, owing to its vast array of applications,
such as emotion recognition [26], micro-expression detec-
tion [43], talking face generation [19], and mental health
diagnosis [28].

The detection of AUs poses a significant challenge due
to the prevalence of overfitting resulting from the scarcity
of annotated data. Even for well-trained experts, manually
labeling a hundred imageswithAUs requires hours of tedious
effort [53]. Consequently, acquiringwell-annotatedAUs data
on a large scale is both time-consuming and laborious [37].
On one hand, this limits the effectiveness of deep networks
due to data overfitting and severe data imbalance. On the
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Fig. 1 Examples of three expressions and their corresponding AUs. From left to right: doubt, happy, surprise. Expression is a global description of
the face muscle movements, while AUs refer to the individual local description of muscle motion

other hand, AU datasets often feature a limited number of
identities, ranging from dozens [22, 49] to hundreds [50],
leading to identity overfitting [24, 39]. This paper aims to
tackle the aforementioned overfitting challenges.

Global learning Compared to AU datasets, there are several
readily accessible and easy-to-annotate expression datasets,
such as Facial Expression Coding System (FEC) [36] and
AffectNet [23]. These datasets are useful in improving AU
detection performance due to their close correlations [39].
Expression recognitionhas also been explored to enhanceAU
recognition tasks [5, 18]. However, considering expressions
as just a few rough discrete classes is sub-optimal for learning
subtle expression transformations [5, 18].

In contrast, this paper aims to capture the subtle dis-
tinctions between expressions through similarity learning,
by utilizing continuous and compact expression features for
AU representations. Additionally, similarity annotation can
be easily performed by non-professional participants, with-
out requiring certifiedAU annotators. Large-scale annotation
efforts aid in disentangling identity as much as possible
[48].

Local learning Facial AUs are defined anatomically based
on the movements of their corresponding facial muscles, and
therefore, they are inherently related to local facial regions,
referred to as AU’s local characteristics. The exploration of
these local characteristics of AUs is also considered as a
potential solution to alleviate overfitting.

Effectively extracting local features from an input face
image is a crucial yet unresolved challenge in this regard,
as local facial deformations are not only subtle and tran-
sient [53], but they also vary among individuals [24, 39].
The conventional approach involves dividing the input image
into several local parts in a predefined manner and feeding
them into networks to capture local information, commonly
known as patch learning [25, 54]. Such methods pre-define

AU local regions with prior knowledge and crop a face image
into several regular yet coarse-grained patches. However, this
approach is limited by the quality of cropped patches, which
can negatively impact the feature extractor’s performance.

Another category of approaches involves leveraging struc-
tured geometric information, such as landmarks, to generate
more detailed and fine-grained local partitions, such as
Regions of Interest (ROIs) [51] or attention maps [13, 17, 31,
32, 44]. Recent research studies [13, 17, 32] have emphasized
learning attention maps in a supervised manner by utiliz-
ing facial landmarks. During training, the attention maps are
often initialized with pre-defined AU centers based on land-
marks and then treated as the ground truth.

Nevertheless, facial AUs are usually not restricted to land-
mark points but occur in specific locations [21]. Therefore,
pre-defined AU regions or centers in a uniform manner,
whether based on landmarks or prior domain knowledge,
are prone to errors. For instance, several prior AU patch
generation techniques are fixed for different head positions,
whereas landmark detection often deviates under significant
head rotations, leading to imprecise AU patches or attention
[25]. Overall, these approaches have two major drawbacks.
Firstly, AU centers, which are based on domain knowledge
and landmarks, are restricted to landmark positions and/or
predetermined rules [21, 31]. Secondly, errors in landmark
detection frequently impact the final performance [21, 31].
Therefore, relying onmanually pre-defined rules with coarse
guidance to capture local features could limit the potential of
local feature extractors. Consequently, the precise position
of each AU in the facial feature maps ought to depend on the
specific AU detection task and the training dataset. In other
words, the learning process of the attention maps should be
driven by the data.

Overview Inspired by the aforementioned observations, we
present a pioneering framework for AU detection called the
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Global-to-Local Expression-aware Network (GTLE-Net),
which aims to overcome the aforementioned challenges.
Firstly, to address the challenges of data and identity overfit-
ting, we pre-train a global facial expression representation
encoder (GEE) on a large-scale facial expression dataset,
FEC [36], to extract identity-invariant global expression
features. Rather than classifying expressions into discrete
categories, we project them into a continuous representation
space, which proves to be more effective for AU detection
in our experiments given that AUs are inherently subtle and
continuous. Secondly, to capture local features, we design
a local AU feature module (LAM) with two extractors that
produce AU masks and feature maps for each AU, respec-
tively. Notably, the AUmask extractor is learned without any
intermediate supervision, meaning that the attention solely
depends on the input data. Finally, we obtain AU masked
features by multiplying the AU feature maps and the corre-
sponding AU masks, which effectively filter out irrelevant
fields and retain informative ones. Our framework has the
distinct advantage of utilizing large-scale, well-annotated
expression data to its fullest potential. Furthermore, it can
learn attention maps adaptively without requiring any extra
supervision, which effectively enhances AU detection.

To sum up, the main contributions of this paper can be
summarized below.

1. This paper presents a novel facial action unit detection
framework that intentionally targets the issue of over-
fitting, which is commonly encountered with limited
training data. Through extensive experimentation, the
validity and accuracy of our proposed method have been
fully established across four commonly used benchmark
datasets. In fact, our method has proven to surpass the
current state-of-the-art solutions by a significant margin.

2. Our proposed solution relies on jointly learning interme-
diate latent spaces of both a global facial expression and
localAU-specific facial regions. The global facial expres-
sion is based on a pretraining model of facial expression
similarity and it is used to produce the local AU-specific
latent spaces.

The remainder of this paper is organized as follows.
Related works are presented in Section 2. The details of our
method are described in Section 3. Comprehensive experi-
ment results and a series of visual analyses are reported in
Section 4. Discussion and concluding remarks are provided
in Section 5. This paper has a preprint version on arxiv1 that
will be updated after the acceptance of this paper.

1 https://arxiv.org/pdf/2210.15160v2.pdf

2 Related work

Over the past few years, researchers have explored numerous
approaches for detecting AUs, including those incorporat-
ing multi-task and attention mechanisms, as well as those
integrating auxiliary information such as landmarks, text
descriptions, and facial expressions. In the following section,
we will provide an overview of previous related works.

2.1 AU detection with auxiliary information

Due to the high cost of annotating AUs, existing AU detec-
tion datasets are often limited in scale and subject variation.
Consequently, previous methods for AU detection have
relied on various forms of auxiliary information to improve
generalization performance. Among these features, facial
landmarks are the most frequently used pre-trained features
forAUdetection. For instance,EAC-Net [17] constructs local
regions of interest and spatial attention maps from facial
landmarks. LP-Net [24] trains a person-specific shape reg-
ularization network from detected facial landmarks, which
reduces the influence of person-specific shape information
and yields more AU-discriminative features. JAA-Net [30]
is the first work to jointly perform AU detection and facial
landmark detection from data annotated with both labels.
These works demonstrate the efficacy of facial landmarks as
auxiliary information in AU detection. However, since these
methods rely on landmark detection results as prior knowl-
edge and the locations of AUs are confined to a pre-defined
set of positions [31], their detection results may be affected
by the performance of landmark detection.

Several other types of auxiliary information have been
investigated for improving AU detection. Zhao et al. [52]
pre-trained a weakly supervised embedding using a large
dataset of web images. Cui et al. [5] utilized prior proba-
bilities of AU occurrences as generic knowledge to jointly
optimize emotions and AUs. ME-GeaphAU [20] proposed a
novel approach that models the relationship between each
pair of AUs explicitly via node and edge features in a
graph model, achieving superior performance. WSRTL [40]
introduced RoI inpainting and optical flow estimation as
auxiliary tasks, outperforming existing methods. Recently,
SEV-Net [44] leveraged textual descriptions of AU occur-
rences by utilizing pre-trained word embedding to obtain
auxiliary textual features. These studies demonstrated the
effectiveness of incorporating various types of auxiliary
information in AU detection, such as unlabeled data, prior
probabilities of AU occurrences, emotions, inpainting, opti-
cal flow, and textual descriptions. However, the effectiveness
of compact expression embedding as auxiliary information
has not been explored. In this paper, we introduce pre-trained
expression embedding as auxiliary information to enhance
the generalization of our model.
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2.2 AU feature learning

Due to the variations in local definitions of AUs, it is cru-
cial to extract local AU features. To achieve this, some
researchers propose patch learning to obtain local infor-
mation. For example, Zhong et al. [54] preprocess input
images into uniform patches before encoding them to ana-
lyze facial expressions. Onal et al. [7, 25] consider head pose
and crop AU-specific local facial patches containing infor-
mation for specific AU recognition after registering the 3D
head pose to reduce the impact of headmovements.Addition-
ally, attention mechanisms are commonly used to highlight
features at facial AU-based positions. Facial landmarks with
sparse facial geometric features are advantageous as a super-
vised attention prior. EAC-Net [17] creates fixed attention
maps related to the correlations betweenAUs and landmarks.
JÂA-Net [32] performs joint AU detection and facial land-
mark detection, and the predicted landmarks are used to
compute the attention map for each AU. Jacob et al. [13] pro-
pose a multi-task approach that combines AU detection and
landmark-based attention map prediction. ARL et al. [31]
proposed a channel-wise and spatial attention learning for
each AU and a pixel-level relation is learned by CRF to refine
the spatial attention. Except for the facial landmarks, the dif-
ference saliency map [1] is also validated to be effective in
feature learning for AU detection. SEV-Net [44] utilizes the
textual descriptions of local details to generate a regional
attention map. In this way, it highlights the local parts of
global features. However, it requires extra annotations for
descriptions. Our work proposes a pixel-wise attention map
that is data-driven without explicit supervision. The exper-
iments show that our method is able to generate attention
maps adaptively and effectively in promoting AU detection.

2.3 Expression representations

Facial expressions are crucial for accurate AU detection.
Some previous studies have utilized large amounts of avail-
able expression data to improve the performance of AU
detection [5, 52]. Various approaches have been proposed to
transform face images into a lower-dimensional manifold for
subject-independent expression representations. However,
earlier works [23] trained embeddings for discrete emotion
classification tasks that neglect the facial expression varia-
tions within each class.

The 3D Morphable Model (3DMM) [27] has been devel-
oped to fit identities and expression parameters from a
single face image. In 3DMM, expressions are represented as
the coefficients of predefined blendshapes. These estimated
expression coefficients are then utilized for talking head syn-
thesis [16], expression transfer [46], and face manipulation
[8]. However, the estimated expression coefficients exhibit

a limitation in their ability to represent fine-grained expres-
sions.

To address this limitation, Vemulapalli and Agarwala [36]
proposed a solution in the formof a compact facial expression
embedding that captures subtle and complex expressions.
This embedding defines facial expression similarity through
triplet annotations. Similarly, Zhang et al. [48] proposed a
Deviation Learning Network (DLN) to generate more com-
pact and smooth representations of facial expressions by
removing identity information from continuous expression
embeddings. While these works demonstrate the promising
potential of compact and continuous expression embeddings,
their impact on AU detection is unknown. This motivated us
to explore the use of such embeddings to enhance AU detec-
tion, which can be seen as an extension of our previous work
[48].

3 Proposedmethod

This section provides a brief overview of the problem def-
inition and introduces the proposed GTLE-Net framework.
GTLE-Net is a novel architecture designed to extract both
global expression and local AU features to address the issue
of overfitting. The global expression component is designed
to leverage fine-grained representation and disentangle the
identity component from the expression, which can alleviate
the overfitting of limited AU annotation and identities. Addi-
tionally, the local AU features are also incorporated to help
alleviate the issue of limited AU annotation. By combining
both global and local features, GTLE-Net aims to provide a
more robust and accurate approach to AU detection.

3.1 Problem definition

The task of AU detection involves predicting the occurrence
probabilities of AUs, denoted by [o1, o2, ..., oN ], given a
face image with a resolution of 256 × 256. As discussed
in Section 1, global and local expressions are two distinct
levels of description that are highly interrelated and can be
leveraged to enhance each other.While facial expression data
are readily available and annotated, AUs are more subtle
and challenging to annotate. However, extracting facial AU
information from facial expression representations becomes
feasible when expression representations are fine-grained.
Therefore, we propose a novel architecture, GTLE-Net,
which includes a global expression encoder (GEE) pre-
trained on a large-scale facial expression dataset to obtain
a robust expression representation. Additionally, we propose
a local AU features module (LAM) consisting of two extrac-
tors, namely the AUmask extractor (Em) and the AU feature
map extractor (Ea), to capture local AU features. The frame-

123



Learning facial expression-aware global-to-local representation for robust action unit detection

……

…

Global Expression Encoder(GEE) Local AU Features Module（LAM） AU Classifier

…

GAP

…
GAP

GAP

AU Feature Map Extractor

AU Mask Extractor

…

Conv1d

Conv1d

Conv1d
Pretraining Procedure

Anchor Positive Negative

Anchor

Positive

Negative

close

away
Anchor

Positive

Negative

close

away

Triplet Loss

close

away

AU Embeddings

Global Expression Encoder

1

AU1

AU2

AU −1

2 3

1 2 3

1

2

Pixel-wise mutiplication Sigmoid Activation Binary Classification

1

2

−1

1

2

−1

…

(∙)

(∙)

1(∙)

(∙)

1

2

−1

2(∙)

−1(∙)

AU Masked  Features

GAP
AU

(∙)

Conv1d

Fig. 2 The schematic pipeline of the proposed global-to-local
expression-aware representation AU detection framework. It is com-
posed of three main modules: the Global Expression representation
Encoder (GEE), the local AU features module (LAM), and the AU
classifier. The GEE, pre-trained by expression similarity tasks with the
triplet loss, extracts a global expression feature map from the input
image, which is capable of sensing subtle expression changes. The

global expression feature is then fed into the AU Mask Extractor (Em )
and the AU Feature Map Extractor (Ea). The two extractors produce
AU-specific masks and feature maps from the global expression feature
(h), respectively. AU masked features are obtained through pixel-wise
product on the outputs of two extractors, which are then fed into the
following AU Classifier to obtain the AU embeddings and detection
results

work is illustrated in Fig. 2. In the following, we provide a
detailed discussion of each main module.

3.2 Global expression encoder

As previously mentioned, the availability of datasets is lim-
ited, which may result in overfitting to unexpected factors
such as identity, head pose, background, and so on [48].
To improve the generalization of our model, we incorporate
a compact and continuous expression embedding as prior
auxiliary information. This is achieved by pre-training our
model, knownasGEE, on the expression similarity task using
the FEC dataset [36]. The FEC dataset consists of numer-
ous facial image triplets, each of which includes annotations
indicating which image has the most different expression.
By pre-training GEE using the triplet loss, we constrained
the embedding distance of more similar expressions to be
smaller. In each triplet, we refer to the image with the most
different expression as the Negative (N ), and the other two

images as the Anchor (A) and Positive (P), respectively. For
a triplet (A, P,N),G E E outputs three expression embeddings
E A, EP and EN . The pre-training process involves using the
triplet loss in the following manner:

Ltr i = max(0, ‖E A − EP‖22 − ‖E A − EN ‖22 + m)

+ max(0, ‖E A − EP‖22 − ‖EP − EN ‖22 + m).
(1)

The triplet loss employed in the pre-training process enables
GEE to learn an expression embedding space that maps sim-
ilar expressions closer and different ones farther away. With
the large number of triplets present in the training data, the
pre-trained feature encoder is capable of generating a com-
pact and identity-invariant expression representation. This
is highly advantageous for downstream expression-related
tasks such as AU detection.

We trained GEE with four commonly used candidate
backbones and determined that InceptionResnetV1 [34] pro-
duced the best performance (refer to Table 1). Consequently,

Table 1 Ablation study on GEE
frameworks by Accuracy (%).
The reported results are the
triplet accuracy (ACC %) on the
FEC validation set, with
different frameworks trained on
the FEC training dataset

Framework VGG16 ResNet50 RepVGGA2 InceptionResNetV1

ACC(%) 81.12 81.13 81.49 86.10

The best results are shown in bold
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we selected it as the backbone of GEE and replaced the last
classifier layer with a linear layer, which was subsequently
followed by normalization. After dimensionality reduction,
it outputs a 16-dimensional vector as the expression embed-
ding. Our pre-training process involved training GEE on the
expression similarity task.We then utilized the shallow layers
(up to the layerwith featuremaps in a resolution of 16×16) to
extract the global expression representation h from the input
face image im. This process is illustrated by the following
equation:

h = G E E(im) (2)

Then, our whole framework including G E E is fine-tuned for
AU detection.

We have two main intuitions. Firstly, we believe that
initializing GEE with expression embedding learning will
enable the AU detection framework to capture more effective
expression features. Secondly, it provides a strong initial-
ization at the outset of training, thereby minimizing the
problem of over-fitting, which is commonly associated with
AU datasets due to their limited data and identities.

3.3 Local AU features module

The expression features extracted by the pre-trained G E E
capture facial movements globally, while disentangling them
from redundant factors such as identity, head pose, back-
ground, hair, and so on (please refer to Fig 6 and 7). This helps
to prevent overfitting to these factors, which can be particu-
larly problematic given the limited data available. Moreover,
since AUs are characterized by subtle, localized motions in
particular facial regions, it is crucial to learn local represen-
tations to effectively detect each AU.

To achieve this goal, we design the Local AU Features
Module (L AM), which consists of two parallel extractors:
an AUmask extractor (Em) and an AU feature map extractor
(Ea), to transform the global expression features into local
AU-related representations.

Our approach involves extracting AU features ( f i (i =
1, 2, ..., N )) using theAU featuremap extractor, Ea , from the
global expression features. These AU features are distinct to
each specific AU. However, we identified that Ea may gener-
ate AU features containing information from irrelevant AUs.
To resolve this, we introduce an AU mask extractor (Em) to
locate the region of interest for each AU and eliminate unre-
lated content. In this way, we ensure that the extractedAU fea-
tures are precise and accurately represent each specific AU.

AU featuremapextractor TheAU featuremap extractor, Ea ,
is designed to generate AU-related features. To accomplish
this, Ea utilizes the global expression feature, h, and operates

as follows:

[ f 1, f 2, ..., f N ] = Ea(h), (3)

The k-th AU feature map denoted as f k ∈R
3×H×W , corre-

sponds to the k-th AU, where N represents the total number
of all AUs. Due to the abundance of AUs on the face, design-
ing an individual extraction branch for each AU will result
in a large number of parameters. Thus, we propose a shared
backbone for theAU featuremap extractor withmultiple pre-
diction heads. As illustrated in Fig. 3(a), the architecture of
Ea is derived from the generator in StarGAN v2 [4], with a
switch from AdaIN [12] to instance normalization (IN) [35].
The shared backbone comprises stacked residual blocks [10]
and upsampling layers, which magnify local facial details to
benefit the subsequent AU detection task. Each prediction
head consists of a convolutional layer and an activation layer
and is responsible for predicting the facial content related to
a specific AU.

AU mask extractor The task of the AU mask extractor Em

is to create AU mask maps based on the global expression
features h, with each mask indicating the specific region of
interest for a particular AU.

[m1, m2, ..., m N ] = Em(h), (4)

where mk ∈ R
1×H×W is the k-th facial mask for the k-th

AU.
As illustrated in Fig. 3(b), the architecture of Em is similar

to Ea . In order to constrain the predicted facial masks to a
standardized range of 0 to 1 (where 0 signifies "no attention"
and 1 represents "strongest attention"), the final layer of Em is
augmented with an activation function. While Sigmoid and
Softmax both serve this purpose, Softmax often produces
sparse attention maps that disregard regions relevant to the
target AU. Consequently, the downstream recognition task
may not receive sufficient information to learn effectively.
As a result, we opt to use Sigmoid as the activating function
for the outputs of Em .

AUmasked features After obtaining the AU-specific feature
maps and masks, we generate the final AU masked features
by performing a multiplication operation between them:

[c1, ..., cN ] = [m1 × f 1, ..., m N × f N ], (5)

The computed masked AU feature for the i-th AU is denoted
as ci , where i represents an integer in the range (1, 2, ..., N ).
These masked AU features are subsequently used in the AU
detection task. In this way, the L AM algorithm facilitates the
generation of these masked features, which are then passed
on to an AU Classifier (described below) for the recognition
of AUs.
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Fig. 3 The architectures of (a) AU Feature Map Extractor and (b) AU
Mask Extractor. Their main blocks consist of several (c) Instance Norm
Residual Blocks and (d) Instance Norm Blocks, respectively. Their out-

put modules consist of convolution layers with Sigmoid activation that
output AU feature maps and masks

3.4 AU classifier

The L AM algorithm generates a set of RGB feature maps
with high resolution (256×256) as its output. Since the num-
ber of these feature maps corresponds to the number of AUs
in the given dataset, the subsequent AU classifier module,
denoted as gi (·), is designed as a multi-layer CNN architec-
ture comprising 6 convolution blocks and a global average
pooling layer. The first five convolution blocks are followed
by batch-normandELUactivation functions, and their output
channels are 16, 32, 64, 128, and 256, respectively. To ensure
a broad receptive field, the kernel size, stride, and padding of
each of these convolution blocks are set to 7, 2, and 3, respec-
tively. The global average pooling layer is positioned after
the fifth convolution block to aggregate the feature maps into
AU Embeddings, which extract more information relevant to
the specific AU from the input AU masked feature map. The
AU embeddings are then input into the last convolution lay-
ers, where the output channel, kernel size, stride, and padding
are set to 1. This process can be represented mathematically

as the following function:

[y1, y2, ..., yN ] = [g1(c1), g2(c2), ..., gN (cN )]. (6)

The output of the last convolution layer of the i-th AU is
represented by yi . The predicted probability oi of the AU’s
probability is obtained by applying a Sigmoid activation on
yi , which can be expressed as follows:

[o1, o2, ..., oN ] = [σ(y1), σ (y2), ..., σ (yN )]. (7)

3.5 Loss functions

Our proposed framework consists of two steps, as shown
in Fig. 2. The first step involves the pretraining procedure,
which is focused on learning expression similarity using the
triplet loss (Ltri ), as defined in Equation (1). In the second
step, the problem of AU detection is treated as a multi-label
binary classification problem, and the AU detection loss is
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defined accordingly:

Lau = −
N∑

i=1

[pi log p̂i + (1 − pi ) log(1 − p̂i )], (8)

where the number of AU classes is represented by N , and pi ,
p̂i denote the ground truth and predicted probability, respec-
tively, for the i-th AU.

4 Experimental results

In this section, we present a comprehensive set of exper-
iments to demonstrate the effectiveness of our proposed
method on in-the-lab and in-the-wild datasets. The subse-
quent sections are structured as follows.

We first provide a detailed description of the four datasets
used in our study, followed by an explanation of the imple-
mentation details of the training and validation procedures.

Furthermore, we conduct a comparative analysis to demon-
strate the superior performance of our proposed approach.
To facilitate a comprehensive evaluation, we report F1-
score, accuracy, and AUC results on each dataset. To ensure
fair comparisons, we adopt the evaluation settings used in
prior works [17, 32, 42]. Specifically, for the three in-the-
lab datasets (BP4D, BP4D+, and DISFA), we employ a
three-fold cross-validation approach and follow the specific
division of training and validation data as outlined in [17,
32]. The reported results are an average of the three-fold
experiments conducted on each dataset. For the in-the-wild
dataset (RAF-AU), we adopt the evaluation and dataset split
approach used in [42], where the training section is four times
larger than the test section.

Thirdly, to further obtain insight into our method, we
design ablation experiments to study the impact of the built
sub-modules, including the proposed global expression rep-
resentation encoder and local AU features module.

Finally, to evaluate the robustness andgeneralization capa-
bility of ourmodel, we conduct a cross-dataset evaluation study
and a partial dataset experiment. Additionally, we analyze the
training and validation losses and visualize several samples
to validate the effectiveness of our proposed approach.

4.1 Datasets

As previously mentioned, our evaluation of the proposed
approach was conducted on four widely-used AU detection
datasets: BP4D [49], DISFA [22], BP4D+ [50] and RAF-AU
[42]. Each of these datasets was annotated with AU labels by
certified experts for each frame. The order of these datasets
from largest to smallest is BP4D+, BP4D, DISFA, and RAF-

AU. While BP4D+, BP4D, and DISFA contain in-the-lab
data, RAF-AU records in-the-wild data. BP4D and BP4D+
were recorded in similar shooting environments and light
conditions, and both share the same 12 AU classes. In com-
parison, DISFA is a smaller dataset containing only 8 AU
classes and was captured in quite different lighting condi-
tions. Notably, RAF-AU is the smallest dataset with 13 AU
classes, but it consists of complex facial expression images
in the wild.

BP4D contains 328 video clips featuring 41 participants,
consisting of 23 females and 18 males. Each frame of the
videos was annotated with the presence or absence of 12 AU
classes (1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, and 24), totaling
around 140,000 annotated frames by certified FACS experts.
For consistency with previous studies [17, 32], we employed
a three-fold, subject-exclusive, cross-validation technique for
all experiments.

DISFA comprises 27 video clips featuring 27 participants,
including 12 females and 15 males. Each clip captures the
facial activity of a participant while watching a 4-minute
video, consisting of 4,845 evenly spaced frames. A total of
approximately 130,000 frames were annotated with intensity
levels ranging from 0 to 5, with labels of {0, 1} indicating
absence and all others indicating presence, as established in
prior research [13, 17, 32, 44]. We focused our evaluation on
8 AU classes (1, 2, 4, 6, 9, 12, 25, and 26), using the same
subject-exclusive, three-fold cross-validation methodology
as previous studies [17, 32].

BP4D+ includes 1400 video clips featuring 140 participants
(82 females and 58 males), presenting greater identity varia-
tions and video numbers than BP4D. It is worth mentioning
that both datasets share the same 12AUs, and around 198,000
frames were annotated in BP4D+. Our study employed
a three-fold, subject-exclusive, cross-validation methodol-
ogy to compare our approach with state-of-the-art methods.
Additionally, to evaluate the generalization performance, we
trained our model on BP4D and tested it on BP4D+, as pre-
viously done in other studies [31, 32].

RAF-AU is a facial expression dataset with AU annotations
that captures real-world scenarios. It comprises 4601 highly
diverse facial expression images, along with annotations for
26 different AUs. The distinguishing feature of RAF-AU is
that it includes imageswith complex expressions, occlusions,
variations in illumination, resolution, and head poses that
present a challenge to deep learning models. To facilitate
validation, we follow the baseline in [42] and evaluate and
analyze 13 AUs (AU 1, 2, 4, 5, 6, 9, 10, 12, 16, 17, 25, 26,
and 27).
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4.2 Implementation details

The face images are first aligned and cropped based on
landmark detection results. Before feeding to the networks,
we resized the input images to 256 × 256. After passing
through G E E , the resolution of the resulting feature maps
was reduced to 16 × 16.

To enhance the feature extraction capability of low-level
convolution layers, G E E was initialized with the corre-
sponding network parameters pretrained on the dataset of
ImageNet or FEC, and the rest of our networks were set to
Kaiming initialization [9]. Except for the AUMask Extractor
(Em), the whole model parameters were updated by employ-
ing an Adam optimizer with hyper-parameters β = 0.9 and
weight decay 10−6.

For each dataset fold, the networks underwent 20 epochs
of training with an initial learning rate of 10−5, using a mini-
batch size of 10.Awarm-up stage of 103 stepswas employed,
followed by an exponential decay of the learning rate with
an exponent of −0.5. The training and inference pipelines
were implemented in PyTorch and utilized 4 GeForce GTX
2080ti GPUs.

4.3 Comparisons with the state-of-the-art

We compared our method with many state-of-the-art AU
detection methods, including HSTR-Net [33], MMA-Net
[29], GeoCNN [2], DC-Net [11], EAC-Net [17], ARL
[31], SRERL [15], ML-GCN [3], MS-CAM [47], FACS3D-
Net [45], JÂA-Net [32], SEV-Net [44], D-PAttNet t t [25],
ME-GraphAU [20], Dual-Learning [38], WSRTL [41], and
AU-CNN[42]. Except for AU-CNN validated with the in-

the-wild dataset of RAF-AU, all the above other ones are
validated only with in-the-lab datasets.

Specifically, EAC-Net, ARL, JÂA-Net and SEV-Net were
evaluated on all three datasets. Meanwhile, SRERL, HSTR-
Net, MMA-Net, GeoCNN, DC-Net, ME-GraphAU, and
WSRTL were evaluated on both BP4D and DISFA datasets.
D-PAttNet t t was solely evaluated on BP4D. On the other
hand, FACS3D-Net, ML-GCN, and MS-CAM were solely
evaluated on BP4D+. However, since BP4D+ was released
at a later time, not all methods utilized it.

Following the majority of prior research, we adopted the
F1 score on the frame level as the evaluationmetric. Thismet-
ric calculates the harmonic mean of precision (P) and recall
(R) and is represented as F1 = 2P R/(P + R). By consid-
ering both false positives and false negatives, the F1-score
provides a more comprehensive and effective measurement
of themodel’s performance compared to accuracy, especially
on datasets where class distribution is uneven. Additionally,
some previous studies have reported accuracy and AUC as
performance measures. Thus, for comparison purposes, we
present the accuracy and AUC on all datasets. It is worth
noting that since the F1-score is the most frequently used
metric for AU detection, most prior studies only report F1-
Score results and rarely provide accuracy and AUC [20, 32,
38, 42].
Evaluation on BP4D Table 2 displays the F1-score outcomes
of our method on BP4D, while Table 3 shows the accuracy
and AUC results. Our approach achieves superior results,
with an average F1-score of 66.3%, accuracy of 80.8%, and
AUC of 84.2%, surpassing all other state-of-the-art methods.

Table 2 demonstrates that our method achieves an aver-
age F1 score of 66.3%, outperforming all other com-
parison methods by a significant margin. Notably, our

Table 2 Comparisons of our method and the state-of-the-art methods on BP4D in terms of F1 scores (%)

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

EAC-Net 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

ARL 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 [55.4] 61.1

SRERL 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9

JÂA-Net 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4

Dual-Learning 52.6 44.9 56.2 79.8 [80.4] [85.2] 88.3 65.6 51.7 59.4 47.3 49.2 63.4

MMA-Net 52.5 [50.9] 58.3 76.3 75.7 83.8 87.9 63.8 48.7 61.7 46.5 [54.4] 63.4

DC-Net 51.6 47.3 56.8 79.0 79.7 84.5 88.0 65.6 51.3 62.5 47.7 51.5 63.8

GeoCNN 48.4 44.2 59.9 78.4 75.6 83.6 86.7 65.0 53.0 64.7 49.5 54.1 63.6

SEV-Net [58.2] 50.4 58.3 [81.9] 73.9 [87.8] 87.5 61.6 52.6 62.2 44.6 47.6 63.9

D-PAttNet tt 50.7 42.5 59.0 79.4 79.0 85.0 89.3 [67.6] 51.6 [65.3] 49.6 54.5 64.7

ME-GraphAU 53.7 46.9 59.0 78.5 80.0 84.4 87.8 67.3 52.5 63.2 50.6 52.4 64.7

HSTR-Net 55.5 49.5 [61.9] 76.6 80.2 84.2 87.4 62.6 [54.8] 64.1 47.1 52.1 64.7

WSRTL [59.7] [51.7] [61.6] [80.3] [80.9] [85.2] [89.7] [67.8] 52.2 63.4 [51.4] 46.9 [65.9]

GTLE-Net [58.2] 48.7 61.5 78.7 79.2 84.2 [89.8] 66.3 [56.7] [64.8] [53.5] 53.6 [66.3]

The best results are shown in bold and brackets, and the second-best results are in brackets
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Table 3 Comparisons of our method and the state-of-the-art methods on BP4D in terms of accuracy (%) and AUC

Accuracy AUC
AU EAC JÂA-Net ARL MMA-Net GTLE-Net SRERL Dual-Learning ME-GraphAU GTLE-Net

1 68.9 75.2 73.9 [77.2] [81.7] 67.6 [78.5] 75.0 [81.3]

2 73.9 80.2 76.7 [82.4] [80.4] 70.0 75.9 [78.0] [79.8]

4 78.1 [82.9] [80.9] [82.9] [82.9] 73.4 84.4 [85.4] [87.0]

6 78.5 [79.8] 78.2 79.3 [80.2] 78.4 [88.6] [88.9] [89.1]

7 69.0 72.3 [74.4] 73.0 [76.2] 76.1 [84.8] 84.0 [84.9]

10 77.6 78.2 79.1 [80.2] [81.0] 80.0 [87.3] [87.4] 86.3

12 84.6 [86.6] 85.5 86.4 [88.6] 85.9 [93.9] 93.2 [94.8]

14 60.6 65.1 62.8 [66.5] [66.0] 64.4 [71.8] 69.9 [72.4]

15 78.1 81.0 [84.7] 82.9 [85.2] 75.1 80.7 [82.7] [84.0]

17 70.6 72.8 [74.1] 71.2 [76.9] 71.7 75.0 [79.1] [81.5]

23 81.0 82.9 82.9 [83.9] [84.5] 71.6 78.7 [79.5] [82.4]

24 82.4 [86.3] 85.7 [87.2] 85.8 74.6 84.3 [87.8] [86.9]

Avg 75.2 78.6 78.2 [79.5] [80.8] 74.1 82.0 [82.6] [84.2]

The best results are shown in bold and brackets, and the second-best results are in brackets

approach improves upon the second-highest performing
supervised-learning-based methods, including D-PAttNet t t ,
ME-GraphAU, and HSTR-Net, by approximately 1.6%.
Moreover, our method surpasses state-of-the-art weakly
supervised learning approach WSRTL by approximately
0.4%onBP4Dand by a considerablemargin onDISFA (refer
to "Evaluation on DISFA" for further details). Regarding
individual AUs, our method achieves the highest or second-
highest F1 scores on 5 out of the 12 evaluated AUs, namely
AU1, AU12, AU15, AU17, and AU23. Additionally, our
approach exhibits over 1.9% superiority on AU15 and AU23
compared to the second-highest performing methods.

Our method demonstrates superior performance in AU
feature learning compared to D-PAttNet t t by approximately

1.6%. This finding highlights the effectiveness of extracting
local features through attention, indicating that our approach
outperforms patch learning in AU feature extraction.

The non-predetermined AU attention learning approach
exhibits superior performance compared to EAC-Net and
JÂA-Net by 10.4% and 3.9%, both of which employ atten-
tionmechanismswith pre-definedAUcenters as supervision.
This underscores the effectiveness of our approach in AU
attention learning without the need for predetermined AU
centers.

Furthermore, Table 3 demonstrates that our method
achieves the highest performance on the average accuracy or
AUC, surpassingothermethods bymore than1.3%and1.6%,

Table 4 Comparisons of our
method and the state-of-the-art
methods on DISFA in terms of
F1 scores (%)

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.

EAC-Net 41.5 26.4 66.4 50.7 8.5 [89.3] 88.9 15.6 48.5

ARL 43.9 42.1 63.6 41.8 40.0 76.2 95.2 [66.8] 58.7

SRERL 45.7 47.8 56.9 47.1 45.6 73.5 84.3 43.6 55.9

JÂA-Net 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5

SEV-Net 55.3 53.1 61.5 53.6 38.2 71.6 [95.7] 41.5 58.8

GeoCNN [65.5] [65.8] 67.2 48.6 51.4 72.6 80.9 44.9 62.1

DC-Net 48.7 51.6 68.2 [55.6] 52.3 76.0 92.6 54.3 62.4

HSTR-Net 54.3 50.8 70.1 [66.6] [59.6] 68.0 [97.9] [69.8] 62.9

ME-GraphAU 54.6 47.1 72.9 54.0 55.7 76.7 91.1 53.0 63.1

Dual-learning 62.9 [65.8] 71.3 51.4 45.9 76.0 92.1 50.2 64.4

WSRTL 57.3 51.8 [74.3] 49.8 44.8 [79.3] 94.6 64.6 64.6

MMA-Net 63.8 54.8 [73.6] 39.2 [61.5] 73.1 [92.3] [70.5] [66.0]

GTLE-Net [64.5] [63.2] 70.1 47.7 53.6 76.2 94.8 65.1 [66.9]

The best results are shown in bold and brackets, and the second-best results are in brackets
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Table 5 Comparisons of our method and the state-of-the-art methods on DISFA in terms of Accuracy (%) and AUC

Accuracy AUC
AU EAC MMA-Net JÂA-Net ARL GTLE-Net SRERL Dual-learning ME-GraphAU GTLE-Net

1 85.6 [96.8] [97.0] 92.1 95.4 76.2 [90.5] 90.0 [90.1]

2 84.9 [96.5] [97.3] 92.7 [96.5] 80.9 [92.7] 88.5 [90.2]

4 79.1 [91.6] 88.0 [88.5] [90.5] 79.1 [93.8] [94.2] 92.3

6 69.1 91.5 [92.1] [91.6] 91.5 80.4 [90.3] [92.5] 90.0

9 88.1 [96.5] 95.6 95.9 [96.4] 76.5 84.4 [91.5] [92.9]

12 90.0 92.3 92.3 [93.9] [93.6] 87.9 95.7 [95.9] [96.4]

25 80.5 95.5 94.9 [97.3] [97.1] 90.9 [98.2] [99.1] [99.1]

26 64.8 [95.0] [94.8] [94.8] 93.9 73.4 87.4 [91.2] [91.1]

Avg 80.6 [94.5] 94.0 93.3 [94.4] 80.7 91.6 [92.9] [92.8]

The best results are shown in bold and brackets, and the second-best results are in brackets

respectively. Additionally, our approach yields the highest or
second-highest scores for nearly all AUs, regardless of accu-
racy or AUC.
Evaluation on DISFA The F1-score on DISFA is presented
in Table 4, while Table 5 displays the accuracy and AUC
results on DISFA. Our approach delivers remarkable results,
achieving an average F1 score of 66.9%, accuracy of 94.4%,
and AUC of 92.8%, surpassing or obtaining comparable out-
comes to all compared state-of-the-art methods.

Compared to the most recent works ME-GraphAU,
WSRTL and MMA-Net, our method achieves impressive
improvements of 3.8%, 2.3% and 0.9%, respectively, on
the F1-score. It is worth noting that our model only uti-
lizes AU labels, unlike EAC-Net and JÂA-Net, which are
supervised by both AU and landmark labels. Despite this,
our approach still outperforms them by 18.4% and 3.4%,
respectively, highlighting the effectiveness of our method
in AU feature and attention learning. Note that our method
does not explicitly model AU relationships, yet it signifi-
cantly exceeds all relation-based methods, including SRERL
andME-GraphAU. Additionally, Table 5 also provides accu-
racy and AUC results on DISFA. Our approach achieves
comparable accuracy and AUC to those of state-of-the-art
methods. Its performance is inferior to the best ones (MMA-
Net on Accuracy and ME-GraphAU on AUC) by only 0.1%.
It is noteworthy that the F1 score is a better metric [17, 31,

53] (mentioned in Section 4.3) on imbalanced datasets like
DISFA, which supports the validation of our approach due
to its best performance on the F1 score (See Table 4).

Evaluation on BP4D+ The evaluation of F1-score on BP4D+
is presented in Table 6. The results reported in [44] include
SEV-Net, GCN, and MS-CAM. Additionally, Table 7 lists the
accuracy (ACC) andAUCresults of ourGTLE-Net approach,
named GTLE-Net(ACC) and GTLE-Net(AUC), respectively
It is noteworthy that those SOTA methods listed in Table 6
do not report metrics of ACC and AUC, nor do they provide
their available codes, thus they are not compared in Table 7.

Table 6 demonstrates that our method achieves the highest
or second-highest results on 11 out of 12AUs evaluated, with
an average F1 score of 65.7%. Our approach surpasses all
the state-of-the-art methods, outperforming the second-best
method (SEV-Net) by more than 4.2%. Additionally, Table 7
showcases that our method achieves an impressive accuracy
of 88.6% and an AUC of 89.1% on BP4D+.

Cross-dataset evaluation JÂA-Net [32] conducts a cross-
dataset evaluation to assess the generalization performance
on a large-scale test provides. They trained their model on
BP4D and evaluated it on the entire BP4D+ dataset com-
prising 140 subjects. Following their study, we replicate the
experiment with our method, and the outcomes are displayed

Table 6 Comparisons of our method and the state-of-the-art methods on BP4D+ in terms of F1 scores (%)

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

FACS3D-Net 43.0 38.1 [49.9] 82.3 85.1 87.2 87.5 66.0 48.4 47.4 50.0 [31.9] 59.7

ML-GCN 40.2 36.9 32.5 84.8 88.9 89.6 [89.3] 81.2 [53.3] 43.1 55.9 28.3 60.3

MS-CAM 38.3 37.6 25.0 85.0 [90.9] [90.9] 89.0 81.5 [60.9] 40.6 58.2 28.0 60.5

SEV-Net [47.9] [40.8] 31.2 [86.9] 87.5 89.7 88.9 [82.6] 39.9 [55.6] [59.4] 27.1 [61.5]

GTLE-Net (F1) [51.5] [46.6] [43.5] [86.8] [89.6] [91.0] [89.8] [82.3] 46.8 [49.3] [60.9] [50.9] [65.7]

The best results are shown in bold and brackets, and the second-best results are in brackets
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Table 7 Accuracy(ACC %) and AUC results of our method on BP4D+

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

GTLE-Net (ACC) 90.9 90.4 94.6 87.0 86.3 88.4 88.2 77.2 89.1 87.5 87.1 96.1 88.6

GTLE-Net (AUC) 87.3 84.0 83.4 94.7 92.3 95.1 94.6 82.7 87.0 85.9 87.8 94.6 89.1

The use of these bold entries facilitates readability

in Table 8. We compare our results with those presented
in [32]. Once again, our approach exhibits superior per-
formance to all other methods tested under the large-scale
cross-dataset evaluation. This indicates that our approach can
extract identity-independent features and generalize effec-
tively to new subjects.

Evaluation on RAF-AU The results of the evaluation of the
test set on RAF-AU are presented in Table 9. Notably, only
AU-CNN [42] has been validated with RAF-AU in the lit-
erature. To provide further evidence of the efficacy of our
approach in the wild, we trained two other state-of-the-art
methods, JÂA-Net and ME-GraphAU, using their public
codes on RAF-AU. We also conducted an experiment with-
out GEE, referred to as w/o GEE in Table 9, to assess the
contribution of GEE.

With respect to F1-score, GTLE-Net records the high-
est average scores, surpassing ME-GraphAU, AU-CNN and
JÂA-Net by 3.75%, 6.82% and 21.4%, respectively. Notably,
GTLE-Net also achieves the highest or second-highest F1-
score for almost all AUs, indicating its potential in detecting
AUs in diverse settings. Additionally, GTLE-Net signifi-
cantly outperforms other approaches in terms of accuracy and
AUC both on average and individual AU results. Our method
attains the highestAUCperformance across all AUs, surpass-
ing the second highest, AU-CNN, by 2.91%on averageAUC.
These findings further demonstrate that GTLE-Net exhibits
superior performance and robustness even on complex and
diverse facial expression data.

Moreover, GTLE-Net outperforms JÂA-Net in F1-score,
accuracy and AUC. One contributing factor is the supe-
rior generalization ability of the GEE module trained on
in-the-wild datasets, as demonstrated by the pretraining of
GTLE-Net on a facial expression similarity task. The results

in Table 9 confirm this, with GTLE-Net achieving improve-
ments of 13.93%, 4.32% and 6.27% in F1-score, accuracy
and AUC, respectively, compared to the feature extractor of
GTLE-Net being randomly initialized (w/o GEE).

In addition, supervised attention-based techniques, such
as JÂA-Net, may require landmark detection to determine
the location of AUs. However, this step heavily depends on
the accuracy of landmark detection and tends to overfit to
particular patterns, making it vulnerable to factors like large
head pose, varied lighting, and exaggerated facial expres-
sions. This further highlights the superiority and robustness
of our approach, which uses adaptive attention.

4.4 Ablation study

In this section, we conduct ablation studies to evaluate the
effectiveness of each key sub-module in our framework,
including: 1) the prior knowledge of expression similarity
learning, and 2) the local AU features module. Specifically,
all the ablation experiments are conducted on the BP4D
dataset due to space limitations. The experimental results
are reported in Table 10.

Partial data results As mentioned above, GTLE-Net can
alleviate the issue of overfitting in training data due to the
design ofGEE and localAU feature learning. Thismeans that
it can perform well even with limited training data. To con-
firm this, we trainedGTLE-Net, JÂA-Net, andMeGraph-AU
on only 10% and 1% of the available training data, respec-
tively. The results of F1-score and accuracy are presented
in Fig. 4. While all three methods experienced a decline in
performance with reduced training data, GTLE-Net demon-
strated a slower decline compared to the other two methods.
It maintained the highest F1-score, particularly on the in-the-
wild dataset, despite having extremely limited training data.

Table 8 Comparisons of our method and the state-of-the-art on cross-dataset evaluation (trained on BP4D and evaluated on BP4D+) in terms of
F1 scores (%)

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

EAC-Net 38.0 [37.5] [32.6] 82.0 83.4 87.1 85.1 62.1 44.5 43.6 45.0 32.8 56.1

ARL 29.9 33.1 27.1 81.5 83.0 84.8 86.2 59.7 [44.6] 43.7 48.8 32.3 54.6

JÂA-Net [39.7] 35.6 30.7 [82.4] [84.7] [88.8] [87.0] [62.2] 38.9 [46.4] [48.9] [36.6] [56.8]

GTLE-Net [39.5] [37.7] [44.0] [84.5] [84.9] [89.6] [87.7] [72.3] [44.9] [45.3] [52.6] [33.9] [59.7]

The best results are shown in bold and brackets, and the second-best results are in brackets
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Table 10 Ablation study on BP4D measured by F1 scores (%)

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

w/o pretrain 34.9 24.2 36.7 76.1 71.4 81.0 86.3 58.7 25.9 51.9 27.4 31.6 50.5

w. GEE fixed 52.3 45.8 59.8 [79.4] 78.1 [84.8] 89.0 64.0 46.5 64.0 38.6 49.8 63.5

w. GEE Emotion 53.7 44.4 57.9 78.9 78.9 [84.8] 89.2 [65.8] 50.0 63.5 50.5 53.4 64.3

w. GEE ImageNet 49.6 39.7 60.5 77.3 78.7 83.1 88.6 64.6 48.2 63.2 47.5 48.0 62.4

w. VGG16 ImageNet 50.6 44.9 53.9 76.5 [79.3] 83.4 89.0 [66.3] 47.6 61.7 46.4 45.0 62.1

w. RepVGG-A2 ImageNet 54.6 42.1 55.8 78.1 77.7 84.1 87.4 65.1 49.5 63.6 46.1 45.7 62.5

w. ResNet50 ImageNet [56.4] 46.5 57.1 78.1 79.0 84.2 87.3 63.3 51.0 64.3 49.2 53.2 64.1

w/o Em&Ea 55.4 [65.1] [73.9] 49.0 46.9 77.1 [92.9] 54.1 48.1 64.7 [52.5] 47.5 63.3

w/o Em 51.9 43.0 59.2 [79.4] 78.2 [84.5] 89.1 63.2 50.6 64.4 49.3 [55.2] 64.0

w. Supervised-attention 54.3 45.9 61.3 [79.3] [79.4] 84.3 89.2 62.1 [51.6] [65.5] 50.1 53.0 [64.7]

GTLE-Net (Full) [58.2] [48.7] [61.5] 78.7 79.2 84.2 [89.8] [66.3] [56.7] [64.8] [53.5] [53.6] [66.3]

The best results are shown in bold and brackets, and the second-best results are in brackets.

These findings support our earlier assertion that GTLE-Net is
more robust and has better overall generalization capability.

Prior knowledge The proposed framework introduces a fea-
ture encoder, namely G E E , which is pre-trained on the FEC
dataset using expression similarity learning based on our
prior knowledge. To evaluate the effectiveness of this prior
knowledge, we conducted ablation experiments to initialize
G E E using various approaches during the training ofGTLE-
Net as follows:

a) w/o pretrain: G E E is randomly initialized;
b) w. GEE Emotion: G E E is initialized via a pretrained

classifier of seven discrete facial expression emotion (e.g.
neutral, happy, sad, surprise, fear, disgust, angry) cate-
gories trained on the AffectNet dataset;

c) w. GEE ImageNet: G E E is initialized via a pretrained
image object classifier built on imageNet [14];

d) GTLE-Net (Full): our proposed method, G E E is initial-
ized via the facial expression similarity learning;
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Fig. 4 Visualization of the partial data (100%, 10% and 1%) ablation experiments(zoom in for details). The top row is F1-Score (%) and the bottom
row is accuracy (%). Each row includes 4 columns of the partial data experiments (BP4D, BP4D+, DISFA and RAF-AU)
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e) w. GEE fixed: G E E is parameterized by the facial
expression similarity approach but not updated in the
training of GTLE-Net.

f) w. VGG16 ImageNet: G E E is replaced by VGG16 that
is pretrained on ImageNet.

g) w. RepVGG-A2 ImageNet: G E E is replaced by Rep-
VGG-A2 that is pretrained on ImageNet.

h) w. ResNet50 ImageNet: G E E is replaced by ResNet50
that is pretrained on ImageNet.

Firstly, the results outlined in Table 10 demonstrate that
w/o pretrain is outperformed by w. GEE fixed, w.GEE
Emotion, and w. GEE ImageNet approaches, achieving
enhancements of 13% (from 50.5% to 63.5%), 13.8% (from
50.5% to 64.3%), and 11.9% (from 50.5% to 62.4%), respec-
tively. This indicates that prior knowledge is essential, and
the pre-training phase can significantly enhance AU detec-
tion.

Secondly, when compared to w. GEE Emotion, w. GEE
ImageNet, w. VGG16 ImageNet, w. RepVGG-A2 ImageNet,
and w. ResNet50 ImageNet, the performance of GTLE-Net
(66.3%) is superior, surpassing the other pretrainingmethods
by 2%, 3.9%, 4.2%, 3.8%, and 2.2%, respectively. This high-
lights the effectiveness and superiority of the prior knowledge
captured by our facial expression similarity learning.

Thirdly, in comparison to GTLE-Net, w. GEE fixed
achieves a lower average F1-score of 63.5%. This sug-
gests that fine-tuning the global expression feature encoder
is advantageous in extracting more adaptable features for
the subsequent LAM module and is crucial and effective to
enhance the performance.

Local AU features module We perform three ablation exper-
iments to verify the effectiveness of the representations
acquired by our local AU features module (LAM). Specif-
ically, we modify our complete GTLE-Net framework by
removing or replacing certain sub-modules and then retrain
the entire network. The ablation experiments are:

i) w/o Em&Ea : removing both the Em and the Ea ;
j) w/o Em : only removing Em ;
k) w. Supervised-attention: adding the attention map

supervision based on landmarks following [32]. To
further explore the effect of AU attention based on land-
marks during training.

It is worth noting that incorporating Ea alone (w/o Em)
resulted in an improvement of 0.7% (from 63.3% to 64.0%)
when compared to the case of w/o Em&Ea . Furthermore,
with the addition of the Em module (GTLE-Net), the F1-
Score increased by 2.3%, thereby validating the effectiveness
of our AU mask and local feature learning. In addition, the
training and validation losses plot in Fig. 5 reveal that, despite

Fig. 5 Training (up) and validation (down) loss for GTLE-Net, w. GEE
Emotion and w/o Em on the third fold of BP4D dataset

having higher training loss, GTLE-Net produced lower vali-
dation loss values when compared to w/o Em . This signifies
that the local AU features learning (Em) effectively alleviates
overfitting.

In addition, the F1-score of w. Supervised-attention
reduced by 1.6% upon the addition of landmark-based AU
attention map supervision on the Em . This suggests that
our self-adaptive attention map learning is more effec-
tive, while the performance of AU detection is affected by
the suboptimal performance of landmark detection in w.
Supervised-attention.

4.5 Visual analysis

To further substantiate the efficacy of our framework, we
visualize the features and mask results obtained from it.
GEE feature Firstly, Fig. 6 displays the global expression rep-
resentations generated by GEE using BP4D samples, where
each color represents a different kind of AU combination
(i.e., similar expressions) from various identities. Notably,
the expression embeddings of samples with similar expres-
sions but different identities are well-clustered, indicating
that our GEE is effective in producing identity-invariant
expression representations. Moreover, to validate the effec-
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Fig. 6 Examples of GEE
representation distribution on
the BP4D dataset

tiveness of disentanglement fromother factors like headpose,
background, hair, and so on, we conduct image retrieval on
the in-the-wild RAF-AU dataset. The retrieval results illus-
trated in Fig. 7 show that GEE can effectively disentangle
expression from other factors. Additionally, the training and
validation losses depicted in Fig. 5 demonstrate that GTLE-
Net(Full) with GEE outperforms w. GEE Emotion in terms
of lower validation loss, indicating that GEE can help miti-
gate the issue of over-fitting.

Mask attention learning As per its anatomical definition,
each AU is associated with a particular region on the face and
requires the activation of a group of muscles. For instance,
AU1 involves inner brow raising, while AU9 involves nose
wrinkling. Therefore, theoretically, our framework should
be able to learn a regional mask activation map for each AU,
which corresponds to its respective muscle actions.

The attention mask maps learned by our network for var-
ious examples from BP4D, RAF-AU, DISFA, and BP4D+
are illustrated in Figs. 8, 9 and 10. The figure showcases
that our method is able to capture distinct attention masks

for the different AUs. Specifically, for AU4 (brow low) and
AU17 (chin raise), the learned spatial masks were concen-
trated around the brows and chin respectively, indicating that
our suggested AU mask extractor is adequate for learning
AU-related local regional attention.

The muscle regions associated with each AU are closely
related, as depicted in Fig. 8, even for various expressions
such as happy, sad, and fear. It is noteworthy that some AUs
may overlap in their coverage of the same or similar areas.
This is due to the similarity in the muscle distributions of
different AUs. For instance, the forehead is involved in AUs
1, 2, and 4, while the mouth area is closely linked to AUs 14,
15, 17, 23, and 24. Additionally, the masks learned through
AU labeling supervision may include other facial regions of
correlated AUs due to the potential mutual relations among
different AUs. For example, the masks of AUs 1, 2, and 4 not
only cover the brow regions but also include the mouth area.
Additionally, Fig. 9 demonstrates that the learnedAU-related
mask maps are also evident on the in-the-wild dataset RAF-
AU.

Fig. 7 Examples of image
retrieval on the in-the-wild
RAF-AU dataset. This figure
shows the top-7 images retrieved
using GEE representation.
Observing each row, the facial
expressions of the retrieved
results are closely similar to the
query images framed with the
green box. As observed, the
GEE representation is largely
disentangled from other factors
like head pose, background,
hair, and so on

Query Results from RAF-AU
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AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24
1.0

0.8

0.6

0.4

0.2

0.0

Fig. 8 Visualization of the mask attention maps overlaid onto the cor-
responding input images in BP4D. The first column shows face images
with different expressions.We can observe that similar AU-related local

mask distributions can be learned by our framework even though the
identities and expressions vary significantly

5 Discussion and conclusion

The proposed framework in this paper involves a unique
approach to detect AUs. It involves two learning compo-
nents, global fine-grained facial expression representation,
and local facial attention. The goal of expression represen-
tation learning is to obtain strong and reliable latent features
that can detect subtle transformations in expressions. Mean-
while, a local AU feature module (LAM) is created to
generate local attention maps that highlight spatial signifi-
cance and extract local AU representations.

The proposed framework was extensively tested against
state-of-the-art methods on widely-used benchmark datasets
(BP4D, DISFA, BP4D+, and RAF-AU) for the AU detec-
tion task. The results of our experiments demonstrate that
our framework outperforms all other methods significantly.
The ablation studies confirm the effectiveness of both fine-

grained global expression representation and the LAM.
Moreover, we demonstrate the robustness and generalization
capability of our method through cross-dataset validation,
partial dataset experiments, and analysis of the training and
validation losses.

Although our method has demonstrated superior perfor-
mance on four widely-used datasets, there is still room for
improvement in detecting AUs. Additionally, due to the limi-
tations of AU annotation, ourmethod can only detect a subset
of AUs in FACS. Moreover, our method does not take into
account the correlation between AUs, which may affect per-
formance. Although our method is primarily designed for
AU detection, it has the potential to be applied to other facial
analysis tasks, such as expression recognition and micro-
expression detection. In the future, we plan to explore these
research directions and extend our current framework.

Input AU1 AU2 AU4 AU5 AU6 AU9 AU10 AU12 AU16 AU17 AU25 AU26 AU27

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 9 Visualization of the mask attention maps overlaid onto the corresponding input images in RAF-AU
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AU1 AU4 AU7 AU17 AU24AU1 AU4 AU9 AU26

a) Samples from DISFA b) Samples from BP4D+

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 10 Subfigures a) and b) are visualization of the produced mask
attention maps: a) samples from DISFA, and b) samples from BP4D+.
The learned masks in (odd rows) are also visualized and overlaid on the

corresponding face images (even rows). The colors covering the face
images from blue to red indicate the attention values from low to high
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