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Abstract Existing deep learning-based point cloud denois-
ing methods are generally trained in a supervised manner
that requires clean data as ground-truth labels. However,
in practice, it is not always feasible to obtain clean point
clouds. In this paper, we introduce a novel unsupervised point
cloud denoising method that eliminates the need of using
clean point clouds as ground-truth labels during training. We
demonstrate that it is feasible for neural networks to only
take noisy point clouds as input, and learn to approximate
and restore their clean versions. In particular, we generate
two noise levels for the original point clouds, requiring the
second noise level to be twice the amount of the first noise
level. With this, we can deduce the relationship between the
displacement information that recovers the clean surfaces
across the two levels of noise, and thus learn the displacement
of each noisy point in order to recover the corresponding
clean point. Comprehensive experiments demonstrate that
our method achieves outstanding denoising results across var-
ious datasets with synthetic and real-world noise, obtaining
better performance than previous unsupervised methods and
competitive performance to current supervised methods.

Keywords Point cloud denoising, Geometry processing,
Point cloud processing, Deep learning

1 Introduction
Point clouds are used in a wide range of scenarios, such
as autonomous driving, immersive reality, robotics, and
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remote sensing. Despite their notable advantages such as
intuitive representations and lightweight characteristics, raw
point clouds from sensors are usually corrupted with noise
which can degrade their positional accuracy. Such noise
comes in the form of displacement vectors that perturb the
points and prevent them from accurately representing the
objects’ surfaces. Noise contamination is often caused by the
sensors’ quality and precision limitations or by factors from
the environment, including material reflectivity and lighting
conditions.

As such, point cloud denoising is an essential and funda-
mental research problem. However, since point clouds are
unordered and lack connectivity information [1, 2], removing
noise from them has been a long-standing challenge over the
decades. Traditional point cloud denoising methods, based on
optimisation techniques [3–5], often need non-trivial param-
eter tuning and thus can be burdensome for users. Recently,
deep learning-based denoising methods [6–8] have alleviated
the burden of parameter tuning and enhanced the robustness
of the denoising performance. Most existing learning-based
methods require pairs of noisy data and the corresponding
ground-truth (i.e., clean) data to guide training. However, the
ground-truth point clouds are not always available, as it is
infeasible to obtain noise-free point clouds in some scenar-
ios due to scanners’ precision limitations or environmental
constraints. In recent years, unsupervised denoising methods
for images, including [9–11], have demonstrated desirable
results for noise removal without training the networks using
clean data. Motivated by this, we aim to design a new neural
network to denoise 3D point clouds that does not require
ground-truth data as training labels.

In this paper, we propose a novel unsupervised point cloud
denoising framework. The primary insight of our method
is that neural networks can learn to remove noise without
requiring clean points as labels. During training, we generate
two versions of point clouds: one with standard noise and
another with double noise. Then, we deduce the relationship
between the displacement information in these two noisy
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versions, enabling us to design an effective loss term for
minimisation. Our network leverages an encoder-decoder
architecture which takes in local neighbourhoods from the
doubly-noisy point clouds, learns their features, and subse-
quently outputs displacement vectors to restore clean point
positions. Notably, our training is accomplished using only the
noisy point clouds, without reference to clean data. Extensive
experiments on different datasets demonstrate that our method
can be generalised to both synthetic and real-world noise,
showing comparable performance with supervised methods.

In summary, the contributions of our approach are outlined
as follows:

• We propose an unsupervised point cloud denoising
network that eliminates the need of ground-truth point
clouds as labels during training.

• Our network is designed to learn noise residuals using
merely noisy data, without additional inputs beyond
point clouds during training and testing.

• Our approach can achieve outstanding denoising results
on synthetic and real-world noise compared to existing
unsupervised and supervised methods.

2 Related work
2.1 Point cloud denoising

2.1.1 Optimisation-based methods

Traditional point cloud denoising methods are typically
optimisation-based, removing noise by optimising a set of
geometrical constraints. A main category of existing methods
is based on moving least squares (MLS) which targets to ap-
proximate the clean underlying surfaces of the input shapes.
Based on the seminal work [12], Alexa et al. [3, 13] proposed
an MLS-based method to approximate the clean surfaces of
the input noisy point clouds. Several other relevant variants
were proposed later, including Point Set Surfaces [14], Robust
MLS (RMLS) [15], and Robust Implicit MLS (RIMLS) [16].
Another category of existing methods is based on locally
optimal projection (LOP) which projects noisy points onto
the optimal surfaces. The early work, proposed by Lipman
et al. [4], eliminates the burden of parameterisation. Subse-
quently, further works were proposed, including Weighted
LOP (WLOP) [17], Edge Aware Resampling (EAR) [18], and
Continuous LOP (CLOP) [19]. There are also other denois-
ing methods including jet fitting (Jet) [20], bilateral filtering
(Bilateral) [21], feature-preserving methods [22, 23], and the
method based on aligning non-local similar patches (denoted
as Non-local) [5].

2.1.2 Supervised learning-based methods

As deep learning techniques have been increasingly used to
handle point clouds [1, 24], data-driven point cloud denoising
methods, most of which are supervised, have demonstrated
their robustness and generalisability. One of the early works
is PointCleanNet (PCNet) [6] which requires pairs of noisy
and clean point clouds for training. Luo and Hu [7] pro-
posed Differentiable Manifold Reconstruction (DMR), an
autoencoder-like network that reconstructs manifolds and
re-samples denoised points. Nevertheless, the resampling
process may blur details on the shapes. To address this lim-
itation, Score-based Denoising (Score) [8] utilises gradient
ascent to guide the denoising process. In recent years, other
supervised methods have also been proposed [25–28].

2.1.3 Unsupervised learning-based methods

While supervised methods have demonstrated superior capa-
bilities, ground-truth labels are not always available during
training. To address the issue, unsupervised point cloud de-
noising methods have emerged over the years. Hermosilla et
al. [29] proposed Total Denoising (TotalDn) which achieves
noise removal by converging noisy points to their unique
modes. However, it usually requires multiple denoising itera-
tions to effectively remove noise. In the aforementioned DMR
denoising method [7], Luo and Hu observed that points with
denser neighbourhoods are typically closer to the ground-
truth surfaces. Thus, these points can be treated as denoising
objectives. With that in mind, they designed an unsupervised
version of DMR which trains the network using an altered
unsupervised loss function. Similarly, Score [8] exploits an
unsupervised loss that shares the same training objective as
the supervised one. However, the unsupervised loss tends to
cluster points together, resulting in denoised point clouds that
are distributed unevenly.

2.2 Unsupervised image denoising

Conventional image denoising operations, such as Non-local
Means [30] and Bilateral Filter [31], as well as supervised
methods [32, 33], have demonstrated promising capabilities
and have been widely adopted. However, noise-free images
are not always available as ground-truth labels during the
training process. Over the years, a range of unsupervised
image denoising methods have been proposed, demonstrating
results comparable to those of conventional and supervised
methods. For instance, Deep Image Prior [34] can learn
image priors and produce high-quality images without taking
ground-truth data as input. Lehtinen et al. [9] proposed
Noise2Noise where the network only observes noisy images
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and learns to restore their clean versions. Krull et al. [10]
proposed Noise2Void where the objective pixels’ values are
masked, and the network attempts to predict those values
from neighboring patches. Similarly, Batson and Royer [35]
proposed Noise2Self which aims to predict residual noise from
noisy images alone. Moran et al. [11] proposed Noisier2Noise
to restore clean images from additional noise that is added to
noisy images. In summary, the aforementioned unsupervised
methods showcase superior noise removal capabilities on
images.

3 Our method
3.1 Problem formulation

In this section, we formulate the relationship of displacement
information across different versions of noisy point clouds,
and establish a structured approach to approximate the clean
points that is inspired by unsupervised image denoising [11].
We start with the basic definitions: a clean point cloud P with
T points can be defined as a set of 3D coordinates as

P = {pi | i = 1, . . . , T}, (1)

where pi = (xi, yi, zi) stands for each point in P . We also
define the noisy version of P (denoted as P̂) as

P̂ = {p̂i | i = 1, . . . , T} = P +N , (2)

where p̂i stands for each noisy point in P̂ , N is the noise
component that perturbs each point, and we denote N ∼ A
where A stands for the noise distribution.

We then define another noise component M sampled from
the same noise distribution, such that M ∼ A. Note that
the two noise components M and N are independent and
identically distributed (i.i.d.), but are NOT identical to each
other. We add M to P̂ to obtain another noisier point cloud
P̂ ′ where

P̂ ′ = {p̂′
i | i = 1, . . . , T} = P̂ +M

= P +N +M,
(3)

such that P̂ ′ is doubly-noisy and contains twice the amount
of noise in P̂ . The concepts of clean, noisy and doubly-noisy
point clouds are shown in Fig. 1. Our network has no access
to the ground-truth point clouds during training.

We argue that it is feasible to estimate the clean point cloud
P based on the noisy inputs. Given P̂ ′ as the prior, which
represents the observed doubly-noisy point cloud, we denote
the estimation of the overall surface of the noisy point cloud
P̂ in an expected value format E(P̂|P̂ ′). Based on Eq. (2),
we have

E(P̂|P̂ ′) = E(P +N|P̂ ′)

= E(P|P̂ ′) + E(N|P̂ ′).
(4)

Accessible 

by Network

Inaccessible 

by Network

Fig. 1 Point cloudsP , P̂ and P̂ ′ and their corresponding visibilities
to the network. Our network can only access the noisy versions of
the point clouds.

Since M and N are i.i.d. and are both sampled from the
distribution A, their expectation values are equivalent, i.e.,
E(M|P̂ ′) = E(N|P̂ ′). With that established, we can derive
the following:

2E(P̂|P̂ ′) = 2E(P|P̂ ′) + 2E(N|P̂ ′)

= E(P|P̂ ′) + E(P|P̂ ′) + E(N|P̂ ′) + E(N|P̂ ′)

= E(P|P̂ ′) + E(P|P̂ ′) + E(N|P̂ ′) + E(M|P̂ ′)

= E(P|P̂ ′) + E(P +N +M|P̂ ′)

= E(P|P̂ ′) + E(P̂ ′|P̂ ′),
(5)

which thus leads to
E(P|P̂ ′) = 2E(P̂|P̂ ′)− E(P̂ ′|P̂ ′)

E(P|P̂ ′)− E(P̂|P̂ ′) = E(P̂|P̂ ′)− E(P̂ ′|P̂ ′).
(6)

Here, we denote E(P|P̂ ′) = P̄ , E(P̂|P̂ ′) =
¯̂P and

E(P̂ ′|P̂ ′) =
¯̂P ′, where P̄ , ¯̂P and ¯̂P ′ stand for the predictions

of P , P̂ and P̂ ′, respectively. We substitute the notations back
to Eq. (6) and have

P̄ − ¯̂P =
¯̂P − ¯̂P ′. (7)

It is worth noting that ¯̂P ′ = E(P̂ ′|P̂ ′) is equivalent to P̂ ′

itself based on the rules of conditional expectation and point
clouds’ discrete characteristics. We also assume the points
in P̄ , ¯̂P and P̂ ′ have one-to-one correspondences. Based
on this assumption, we can estimate a noise displacement
vector for each point in P̂ ′, and use these vectors to build
the approximated clean point cloud P̄ . Here, we denote the
relationship as

P̄ = {p̄i | i = 1, . . . , T} = {p̂′
i + d̄′

i | i = 1, . . . , T}, (8)

where d̄′
i represents the predicted displacement vector for

point p̂′
i and directly estimates the position of the correspond-

ing clean point.
The prediction ¯̂P can also be obtained by adding another



4 W. Wang, X. Liu, H. Zhou, et al.

MLP Layer Maxpooling Normalisation

Noisier Point Cloud

𝑁
×
3 Point Cloud 

Encoder
Point Patch 

Feature

Output

Displacement

Denoised Point Cloud

De-normalisation

Noisy Point Cloud

TestingTraining Clean Noisy

Fig. 2 The network architecture of our method. We employ normalisation before inputting the patch into our encoder, and do de-
normalisation during testing phase.

set of displacement vectors on P̂ ′. We denote that as
¯̂P = {¯̂pi | i = 1, . . . , T} = {p̂′

i + d̄i | i = 1, . . . , T}. (9)

Based on our one-to-one correspondence assumption, we
finally demonstrate that the direct estimation d̄′

i is equivalent
to twice d̄i by substituting the values back into Eq. (7):

p̄i − ¯̂pi = ¯̂pi − p̂′
i

(p̂′
i + d̄′

i)− (p̂′
i + d̄i) = (p̂′

i + d̄i)− p̂′
i

d̄′
i − d̄i = d̄i

d̄′
i = 2d̄i,

(10)

which guides us in designing our loss function for training.

3.2 Denoising framework

Our network architecture is shown in Fig. 2. Similar to previ-
ous literature [6, 25, 27], we design a point cloud denoising
pipeline based on local neighbourhoods as patches. The nois-
ier point cloud P̂ ′ is the input source of our network, and we
define the local patch P̂ ′

i around each query point p̂′
i as

P̂ ′
i = {p̂′

j |
∥∥p̂′

j − p̂′
i

∥∥
2
< r, p̂′

j ∈ P̂ ′}, (11)

where r is the query ball’s radius, ∥ · ∥2 represents L2-norm,
and p̂′

j stands for the neighbour points within the radius r.
During training, we empirically set r to be equivalent to 5% of
the bounding box diagonal length of P̂ ′, which is a common
setting in prior literature [25, 27]. Meanwhile, we also obtain
p̂i, the point with the corresponding index i in point cloud
P̂ , for training purposes.

We then perform the normalisation process to minimise
the arbitrary degrees of freedom in the queried patches and
facilitate effective training. We first centre P̂ ′

i by translating
it to its query point and normalise its size using r, such that
P̂ ′
i = (P̂ ′

i−p̂′
i)/r. Then, we align P̂ ′

i with the canonical space
using the rotation matrix R which was obtained via Principal
Component Analysis (PCA) decomposition on P̂ ′

i . We also

process p̂i following the same transformation procedure for
P̂ ′
i . Next, as the number of points may be inconsistent with

each other in raw patches, we set an empirical threshold
N = 500 to regularise the patch size for P̂ ′

i and ensure they
can be grouped into mini-batches. Specifically, following
previous works, we downsample patches with more than N

points, and fill extra points for patches with fewer points than
N . Note that during testing phase, we require the inverse
of the aforementioned transformations (rotation, scaling and
translation) to map the denoised point back to its original
position.

We input the normalised patch P̂ ′
i (as an N × 3 matrix)

into our point cloud encoder. It uses graph-based Dense
Block modules [36] as backbone and encodes each point
with its neighbours’ information. To further enhance the
network’s generalisation performance, we adopt the Global
Shift module in [37] to fuse patch features into fewer points,
in order to improve the robustness of our network and increase
the inference efficiency. The output of our encoder is a feature
matrix which goes through our output module to form the final
predicted displacement d̄′

i, a 1× 3 vector. During training,
we utilise the noisy point p̂i to train the estimation of the
displacement vector.

3.3 Loss functions

We exploit d̂i = p̂i − p̂′
i, the actual value of prediction d̄i

in Eq. (10), to guide the estimation of displacement d̄′
i. We

design a Mean Squared Error (MSE) loss function which is
defined as

Lmse =
∥∥∥d̄′

i − 2d̂i

∥∥∥2
2
, (12)

and we further discuss our choice regarding noise prediction
in Sec. 5.

We also require our denoised point cloud to be spaced out
to avoid potential clustering issues. To achieve this, we design
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Table 1 Quantitative results on PUNet’s test set, where the best results are marked in bold. The abbreviations Op., Sup. and Unsup.
represent optimisation-based, supervised, and unsupervised denoising methods, respectively. CD and P2M are both multiplied by 104.

Type
Density 10k 50k

Noise level 1% 2% 3% 1% 2% 3%
Method name CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Op.
Bilateral 3.646 1.342 5.007 2.018 6.998 3.557 0.877 0.234 2.376 1.389 6.304 4.730

Jet 2.712 0.613 4.155 1.347 6.262 2.921 0.851 0.207 2.432 1.403 5.788 4.267
Non-local 3.506 1.331 4.720 1.985 7.405 4.489 0.966 0.337 2.240 1.317 3.623 2.566

Sup.
PCNet 3.515 1.148 7.467 3.965 13.067 8.737 1.049 0.346 1.447 0.608 2.289 1.285
DMR 4.482 1.722 4.982 2.115 5.892 2.846 1.162 0.469 1.566 0.800 2.432 1.528
Score 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041

Unsup.

TotalDn 3.390 0.826 7.251 3.485 13.385 8.740 1.024 0.314 2.722 1.567 7.474 5.729
DMR-U 5.313 2.522 6.455 3.317 8.134 4.647 1.226 0.521 2.138 1.251 2.496 1.520
Score-U 3.107 0.888 4.675 1.829 7.225 3.762 0.918 0.265 2.439 1.411 5.303 3.841

Ours 2.204 0.354 3.449 0.930 4.153 1.554 0.700 0.134 1.056 0.374 1.282 0.563

a repulsion loss that is inspired by prior literature [6, 25, 27]
to assist with the distribution of the denoised points. First of
all, we define a pseudo-clean point cloud P̃ as

P̃ = {p̂′
i + 2d̂i | i = 1, . . . , T}, (13)

where P̃ does not actually have a clean appearance. Next,
we query pseudo-clean patches from it where the process is
defined as

P̃i = {p̃j | ∥p̃j − p̂i∥2 < r, p̃j ∈ P̃}. (14)

Here, we use p̂i ∈ P̂ to perform queries for P̃i as we assume
p̂i is less impacted by noise, and normalise patch P̃i using
the same normalisation process introduced in Sec. 3.2. Then,
we use these patches to formulate our repulsion loss as

Lrep = max
p̃j∈P̃i

∥∥(p̂′
i + d̄′

i)− p̃j

∥∥2
2
. (15)

Our final loss L is thus formulated as

L = Lmse + γLrep, (16)

where γ is the factor controlling the repulsion loss and is set
to 0.0005. We discuss the setting of γ in Sec. 5.

4 Experimental results

4.1 Training configurations

We carried out our experiments on an NVIDIA RTX 3080
GPU with 10 GB memory. We implemented our network
model with PyTorch, and set the batch size for training to
128. We trained the network for 200 epochs with a single
Adam optimiser. The learning rate was set to 0.0001 and was
multiplied by a factor of 0.1 in the 40th, 80th, 120th, 160th,
and 180th epochs, respectively.

4.2 Training dataset

We adopted PUNet [38] for training, which contains 40 clean
triangular mesh shapes and the corresponding noise-free
point clouds in three different resolutions (10k, 30k and 50k,
respectively). All clean point clouds were taken from the
surfaces of the mesh shapes, and we sampled 1,000 patches
per point cloud in each epoch. During training, we followed
the noise addition method in [8, 26], i.e., the additive noise is
zero-mean Gaussian noise with a standard deviation ranging
from 0.5% to 2.0% of each shape’s bounding sphere radius. To
achieve this, the clean point cloud should first be normalised
into a unit sphere, and then added with noise Z ∼ D(µD, σ

2
D)

where D is the objective noise distribution, µD = 0, and
σD ∈ [0.005, 0.02].

We define the distribution of each level of the additive noise
during training as A(µA, σ

2
A), and recall that N ∼ A and

M ∼ A. To ensure N +M = Z holds, we need 2µA = µD

and 2σ2
A = σ2

D. Thus, we set µA = 0 and σA ∈ [ 0.005√
2
, 0.02√

2
]

for noise sampling during our training process.

4.3 Quantitative results
4.3.1 PUNet dataset
First, we evaluated the performance of our method on the
PUNet test dataset. It contains point clouds sampled from 20
mesh shapes in 2 resolutions (sparse, 10k points per shape;
and dense, 50k points per shape), and has 3 Gaussian noise
levels (1%, 2% and 3% of the bounding sphere’s radius)
for each resolution. Following prior works [8, 26], we ran 1
denoising iteration for 1% and 2% noise and ran 2 denoising
iterations for 3% noise. We employed two metrics, Chamfer
Distance (CD) and Point-to-mesh Distance (P2M), to measure
the quality of the denoised point clouds. For both metrics,
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Noisy PCNet Non-local TotalDn DMR-U Score-U Ours Clean

Fig. 3 The visual comparison results on a shape from PUNet dataset (1% noise) where yellow points are further from the ground-truth
mesh surfaces. The top row shows the sparse (10k) configuration and the bottom row shows the dense (50k) configuration.

Noisy PCNet Non-local TotalDn DMR-U Score-U Ours

Fig. 4 The visual denoising effects on Kinect dataset where yellow points are further from the ground-truth mesh surfaces.

smaller values indicate more accurate results. We denote the
unsupervised versions of DMR and Score using DMR-U and
Score-U, respectively. The denoising results are shown in
Table 1 where our method outperforms all others on each
setting.

4.3.2 Kinect dataset

We also tested our method on real-world scanned data captured
by Kinect v1 and v2 [39], which is inherently noisy. The
datasets provide reconstructed clean data for quantitative
measurement. We present the results in Table 2 where our
method outperforms other unsupervised denoising techniques
as well as the supervised method PCNet and the optimisation-
based method Non-local in terms of CD and P2M errors.

Table 2 Results on Kinect dataset. CD and P2M are both multiplied
by 104.

Dataset Kinect v1 Kinect v2
Method name CD P2M CD P2M

PCNet 1.540 0.780 2.304 1.234
Non-local 1.442 0.750 2.264 1.305
TotalDn 1.356 0.703 2.094 1.200
DMR-U 1.668 0.743 2.997 1.494
Score-U 1.664 0.738 2.547 1.092

Ours 1.213 0.623 1.918 1.088

4.4 Qualitative results

4.4.1 PUNet dataset

We first demonstrate the visual denoising effects on PUNet
dataset. We use a colour scale to indicate the distances of
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Noisy PCNet TotalDn

DMR-U Score-U Ours
Fig. 5 Comparison of the denoising results on Paris-rue-Madame dataset.

the denoised points from the ground-truth mesh surfaces,
where blue indicates more accurate positions and yellow
indicates inaccurate positions. The results are listed in Fig. 3
which includes both the sparse and the dense resolutions. As
illustrated, the downsampling-resampling strategy of DMR-U
does not effectively remove the residual noise, leading to
substantial noisy points that are marked in yellow. Score-
U tends to cluster the points together, resulting in uneven
distributions. Other methods cannot effectively preserve small
details, resulting in yellow regions in those areas. By contrast,

our method achieves more accurate results overall on both
sparse and dense configuration settings.

4.4.2 Kinect dataset

We also present the visual denoising effects on Kinect dataset
in Fig. 4 where the denoised shapes are taken from the results
presented in Table 2. It demonstrates that our method can
produce smoother point cloud surfaces compared with other
methods.
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Noisy PCNet Non-local TotalDn DMR-U Score-U Ours

Fig. 6 Mesh reconstruction results on the denoised point clouds.

4.4.3 Paris-rue-Madame dataset
We show denoising results on Paris-rue-Madame [40], a
street scene point cloud dataset collected by laser scanners.
It is contaminated with severe noise due to outdoor envi-
ronmental factors. No ground-truth data is associated with
this dataset, so we compare the visual denoising effects in
terms of smoothness and feature preservation. The results are
shown in Fig. 5 where our method outputs smoother point
clouds and effectively restores small details, as illustrated in
the close-up windows.

5 Ablation study
We performed our ablation study on the validation dataset
following the settings in [8] and measured CD and P2M
metrics. In this section, we explore the effect of repulsion loss
and our displacement regression technique.

5.1 Repulsion loss

We first validated the effects with and without the repulsion
term Lrep, and additionally evaluated with different γ values.
The results are shown in configuration number 1 to 6 in
Table 3, where setting γ = 0.0005 achieves the best results
among the options.

5.2 Displacement regression technique

An alternative training technique is regressing the displace-
ment for noise M only and doubling it during the evaluation
phase. Consequently, we should regress d̄i in this setting and
the altered training objective becomes

L′ = L′
mse + γL′

rep, (17)

where we define L′
mse as

L′
mse =

∥∥∥d̄i − d̂i

∥∥∥2
2
, (18)

Table 3 Ablation study on validation set with different training
configurations. CD and P2M are both multiplied by 104.

Config. Loss γ CD P2M
1 L 0.0 2.923 0.619
2 L 0.0001 2.916 0.615
3 L 0.0005 2.880 0.606
4 L 0.001 2.903 0.610
5 L 0.01 2.909 0.617
6 L 0.05 2.977 0.673
7 L′ 0.0005 3.056 0.668

and define L′
rep as

L′
rep = max

p̃j∈P̃i

∥∥(p̂′
i + 2d̄i)− p̃j

∥∥2
2
. (19)

We set γ to be consistent with our experiments. The results,
displayed in configuration number 7 in Table 3, cannot achieve
comparable results on the validation dataset.

6 Application
Denoised point clouds can be utilised for mesh reconstruc-
tion. To achieve this, we first exploited HSurf-Net [37] to
estimate normals for the denoised point clouds produced
by different methods, and then performed Poisson surface
reconstruction [41]. The denoised point clouds and the re-
constructed meshes are shown in Fig. 6 where our method
achieves smoother results on the mesh surface.

7 Discussion and conclusion
In this paper, we presented a novel unsupervised point cloud
denoising framework that learns to restore clean point clouds
from noisy inputs only. During training, we leverage two levels
of noise, where the second noise level is twice that of the first,
and train our network to predict clean points without using
ground-truth data as labels. Extensive experimental results
demonstrate that our method generalises well across synthetic
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and real-world noise, outperforming state-of-the-art unsu-
pervised methods and achieving comparable performance to
supervised methods.

Our method unavoidably demonstrates some limitations
during denoising. For instance, since our method is trained
using point-based loss functions only, it may occasionally blur
the sharp features and produce smooth edges and corners. In
order to enhance the capability of preserving sharp features,
it is necessary to utilise normal information as demonstrated
in the prior literature [25, 42]. For our future works, we aim
to explore further in terms of sharp feature preservation by
incorporating normal information in our denoising process.
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