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ABSTRACT
Predicting end-of-turn in multiparty conversations is crucial to
increase the usability and natural flow of spoken dialogue systems,
offering substantial enhancements to conversational agents. We
present a novel window-based method to predict end-of-turn mo-
ments in real-time in multiparty conversations, by leveraging the
capabilities of cutting-edge pre-trained language models (PLMs)
and recurrent neural networks (RNN). Our method fuses the dis-
tilBERT language model with a Gated Recurrent Unit (GRU) to
accurately predict end-of-turn points in an online fashion. Our ap-
proach can significantly outperform conventional Inter-Pausal Unit
(IPU)-based prediction methods that often overlook the nuances of
overlap and interruption during dynamic conversations. Potential
applications of this study are significant, particularly in the domains
of virtual agents and human-robot interactions. Our accurate online
end-of-turn prediction model can be facilitated to enhance the user
experience in these applications, making them more natural and
seamlessly integrated into real-world conversations.
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1 INTRODUCTION
There has been a growing fascination with comprehending and
modeling the intricate interplay and correlations among various
modes of multimodal multiparty communication in recent years.
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These encompass facial expressions, gaze, hand gestures, and lin-
guistic content. This growing interest has captured the attention
of researchers in diverse fields, including communication, human-
computer interaction, graphics, robotics, and the expansive realm
of multimodal interaction communities [18, 25, 33, 46].

In real world, characterized by the growing prevalence of con-
versational human-computer interactions, accurate prediction of
end-of-turn points in multiparty conversations has assumed central
importance [2]. The intricacies of turn-taking in dialogues have also
attracted the attention of scholars in various disciplines [45]. The
capacity to foresee when a participant will wrap up their statement
or seek a response essentially shapes the natural flow and rhythm
of a conversation.

Predicting the end of a turn in a multiparty conversation is not
just a technical detail; it has profound implications for the usabil-
ity and naturalness of spoken dialog systems [2]. Applying such
predictions can significantly improve the overall effectiveness of
conversational agents [32]: deciding when to interject, when to
wait, or when to facilitate a smooth exchange of ideas. Multiparty
interactions, as the name suggests, involve multiple participants
participating in a conversation. However, it is not only the number
of participants that makes these interactions intricate; it is the nu-
anced social dynamics that come into play [13]. In such dialogues,
a dialog system must navigate the challenge of detecting the con-
clusion of the utterances of the participants while deciphering the
complex web of social signals [10]. This involves determining the in-
tended audience of an utterance, understanding the current state of
the conversation, and predicting when a participant might interject
or remain silent.

To tackle these complex challenges, in this paper we present a
novel methodology to predict end-of-turn occurrences including
turn-taking, interruption, and speech-overlapping, in multiparty
conversations. This comprehensive approach considers various fac-
tors, including the evolving state of the conversation, participants’
gaze, prosody features, and textual cues. Significantly, it also ac-
counts for uncertainties originating from computational delays
inherent in dialog systems.

Contributions. The main contributions of this work include:
• We introduce a holistic PLM-GRU multimodal fusion sys-
tem designed to achieve accurate end-of-turn prediction in
multiparty conversations. Our approach stands as the first
continuous model supporting end-of-turn prediction in the
context of multi-party conversations.

• This work addresses a critical gap by introducing annotation
methods that encompass all categories of end-of-turn in mul-
tiparty conversations, including often overlooked aspects
such as interruption and overlapping.

https://doi.org/10.1145/3678957.3685742
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2 RELATEDWORK
IPU-based Models. Some previous studies have adopted an IPU
(Inter-Pausal Unit) [31] based approach to predict the end of a
turn in dialogues. Figure 1 (left) shows the paradigm of IPU-based
prediction. Specifically, in the data we first identify any silences
lasting longer than 200 milliseconds and then assign the utterance
preceding each such pause as an IPU.

Early approaches to turn-taking detection include rule-based
methods, such as the semantic parser [1] and data-driven tech-
niques like decision trees [42]. These models considered various
cues, such as semantics, syntax, dialogue state, and prosody, to
classify pauses longer than 750 ms. Later works [36, 43] explored
similar models but with shorter silence thresholds. In recent years,
Ishii and colleagues [22–24] conducted a series of research stud-
ies to understand of end-of-turn prediction in conversation. Their
works highlight the importance of analyzing intricate gaze transi-
tion patterns [24] as a more effective approach compared to relying
solely on a single line of gaze, incorporating human gaze and respi-
ratory behavior to forecast turn changes [22], and incorporating
head movements toward the end of an utterance [23]. Recently,
Lee et al. [34] proposed an IPU-based computational model to pre-
dict turns in multiparty conversations, based on a concept called
Relatively Engagement Level (REL).

Although these methods have provided valuable insights, they
are not without drawbacks. IPU-based prediction often suffers from
a noticeable delay in making predictions, which hinders the flow of
real-time interactions [32]. Additionally, these methods may strug-
gle to determine the exact moment of interruption in a conversation,
which could lead to less precise turn-taking decisions [32].
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Figure 1: (left) IPU-based models. (right) Continuous models.

Continuous Models. Recognizing the constraints of IPU-based
prediction, researchers have turned their attention to alternative
methodologies, particularly those centered on continuous predic-
tion techniques [19, 32, 39, 44]. Figure 1 (right) illustrates the frame-
work of a continuous model designed to predict end-of-turn events
continuously (e.g., at 500ms intervals). These approaches are geared
toward achieving real-time turn prediction, effectively mitigating
the latency challenges inherent in IPU-based methods.

Skantze [44] presented a comprehensive continuous turn-taking
model that uses various prosody features. They used an LSTM ar-
chitecture to predict speech activity for both speakers within a
future 3-second window. Roddy et al. [38] adopted a similar ap-
proach by exploring various characteristics of speech conducive
to prediction, and introduced a novel multiscale LSTM architec-
ture that integrates different modalities at different timescales [39].
These continuous prediction models have mainly focused on two-
party dialogues. They excel at predicting the end of a turn within
a dyadic conversation but face challenges when extended to mul-
tiparty interactions. The intricacies of multiparty conversations,

where multiple participants can engage concurrently or wait for
their turn, introduce additional complexities Note that the previ-
ous study in [7] that addressed multimodal end-of-turn prediction
in multiparty meetings has encountered significant difficulties in
achieving successful results, underscoring the inherent challenges
associated with this topic.

Since evaluations in previous studies were often conducted on
distinct internal datasets; therefore, direct comparisons of numerical
values should be approached with caution, as they may lack the
necessary contextual relevance. The critical insight from these prior
works is in demonstrating the viability of leveraging various verbal
and non-verbal cues to predict turn changes and the next speaker
during dynamic conversations spanning multiple participants.

End-of-turn Cues. Numerous studies have focused on identi-
fying cues at the end of IPUs. These cues serve as vital indicators
for listeners to distinguish turn-taking from turn-keeping. Duncan
and colleagues [14] systematically examined these cues within face-
to-face American English dyadic conversations. They discerned
several multi-modal cues denoting turn-completion, encompassing
phrase-final intonation, cessation of hand gesticulation, and com-
pletion of a grammatical clause. Subsequent studies have expanded
on these findings, using larger data sets, automated methodologies,
and robust statistical analyses [8, 17, 21, 31]. These investigations
generally affirm the additive nature of turn-taking cues despite
significant redundancy.

Verbal Cues. As dialogues progress, linguistic elements encom-
passing spoken words and their semantic and pragmatic subtleties
assume a central role in orchestrating turn transitions. The fulfill-
ment of a syntactic unit serves as a prerequisite for designating
a turn as “completed." For example, when confronted with an un-
finished phrase such as “I would like to order a...," the listener is
compelled to await the sentence’s conclusion. The predictability
of syntactic units, coupled with the ability to anticipate their cul-
mination within the conversational context, elucidates the precise
coordination of turn-taking [15, 40].

Prosody. The role of prosody has attracted considerable attention
in conversation analysis. Prosody encompasses nonverbal speech
elements such as intonation, loudness, speaking rate, and timbre,
serving various functions in conversation, includingmarking promi-
nence, disambiguating syntax, conveying attitudes, expressing un-
certainty, and signaling topic shifts [47]. Across different languages,
studies have revealed that level intonation, occurring near the end
of an IPU within the speaker’s fundamental frequency range, tends
to function as a turn-holding cue. This observation holds for dif-
ferent languages [14, 17, 31]. In English dialogues, Gravano and
Hirschberg [17] observed that speakers tend to lower their voices
when approaching potential turn boundaries, while turn-internal
pauses exhibit greater intensity. Similar patterns were found in
Japanese dialogues [31], where low or decreasing energy was as-
sociated with turn change. Compared to verbal cues, prosody may
play a more prominent role from the perspective of conversational
systems.

Gaze. The role of gaze in communication is undeniably crucial.
Previous research has revealed that when engaging in conversa-
tion, speakers tend to direct their gaze toward their conversation
partners more frequently towards the conclusion of their speaking
turns rather than at the outset [9]. Direct gaze, where speakers
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maintain eye contact, can signal their readiness to yield the floor to
their interlocutors, signaling end-of-turn transitions. On the other
hand, averted gaze may convey the desire to retain control over the
ongoing conversation, subtly expressing the desire to maintain the
current conversation turn [20].

3 DATA ACQUISITION
For this study, we developed a comprehensive conversational be-
havior dataset involving three participants. As outlined below, our
approach involved an in-house built data acquisition system, com-
bining advanced technologies such as optical motion capture, eye
trackers, and high-definition microphones. Figure 2 offers a snap-
shot of the actual data acquisition process in action.

VICON Camera
Eye tracker glasses

Microphone

Eye tracker receiver

Figure 2: A snapshot of our three-party conversational mo-
tion data acquisition experiment

Motion Capture. A state of the art optical motion capture sys-
tem, comprising eight strategically positioned cameras, was metic-
ulously installed within a controlled laboratory setting. The system
consisted of four upper and four lower cameras, ensuring compre-
hensive coverage to capture intricate details. To capture the com-
plete spectrum of body movements, each participant was outfitted
with a motion capture (mocap) suit embellished with optical mark-
ers, meticulously recording their motions spanning head, hands,
torso, and lower body actions (refer to Figure 2).

Gaze and Audio. We employed three Ergoneers Dikablis Glass
3 eye trackers for eye tracking. We evaluated their impact on par-
ticipants’ natural conversational behavior, including their gazes,
by soliciting their feedback. The consensus among the participants
was that the eye trackers had a minimal influence on their behavior.
Notably, the eye trackers used in our research closely resembled
conventional eyeglasses in terms of size and weight, ensuring its
unobtrusive presence during our data capture experiments. Addi-
tionally, we equipped each participant with a wireless microphone
discreetly attached to their necklines for audio recording.

Capture Design. We recruited 21 volunteers from a university
campus for our data capture experiment, randomly dividing them
into seven groups each of which comprises three participants. Note
that the 21 participants were unfamiliar with each other prior to
our experiment. Among them, 12 were men and 9 were women,
20 to 30 years old. Most of the participants (70%) had a major in
computer science and were native English speakers. In our study,
we recorded 3-5 sessions of three-party conversations for each
group. The recorded session lengths for the seven groups were as
follows: 46 minutes and 18 seconds (46’18”), 44’47”, 46’17”, 42’49”,

46’31”, 44’27”, and 48’19”, totaling 319 minutes and 28 seconds of
recorded data.

During the data collection process, we instructed the three par-
ticipants in each conversation to maintain fixed positions, forming
an equilateral triangle with approximately 1 meter of separation
between them. This spatial configuration for interlocutors aligns
with similar setups used in previous studies that focused on three-
party conversations, such as [4, 12, 26–28], and has similarities with
the setup in [37], which ensured that all five participants formed
a regular pentagon. Participants were allowed to discuss topics
of interest during the data collection process. To synchronize the
start times of different data sources, a clapperboard was used. As a
result, all collected data, including 3D motion capture, eye track-
ing, and speech data, were temporally aligned and subsequently
downsampled to a rate of 60 frames per second.

4 FEATURES EXTRACTION
Interlocutor States. We derived interlocutor state feature vec-
tors from each frame through the following procedure. Initially,
audio content was transcribed into texts using Google’s speech-
to-text technology. Subsequently, a manual review and necessary
corrections were performed. To detect instances of back-channeling
utterances, we adopted the criteria established in [29], encompass-
ing expressions such as “Yeah," “Um," “Cool," “Oh," “Okay," "Right,"
and "Uh." These expressions were then marked within the transcrip-
tions. Consequently, for every frame, a 1 × 3 vector with ternary
variables was generated. This vector, referred to as the Interlocutor
State Vector (ISV), was created to depict the conversational states of
the three interlocutors involved: the i-th element’s value (𝑖 ranging
from 1 to 3) signifies whether the i-th interlocutor was actively
speaking (=2), engaging in back-channeling (=1), or experiencing
silence (i.e., neither speaking nor back-channeling) (=0).

Prosody Features.We extracted prosody features, specifically
pitch and intensity, from the aforementioned audio data. In each
frame, which spans approximately 16 milliseconds, we generated a
distinct feature vector to serve as input for our neural networks. Our
focus is primarily on capturing momentary prosodic characteristics,
with an emphasis on the prevailing pitch level and intensity, both
of which are highly interpretable. Consequently, for every frame
in the audio data involving three interlocutors, we generated a
numerical vector of dimensions 1 × 6.

Gaze Targets. Drawing inspiration from prior research [27], we
extended our exploration to include the computation of an interlocu-
tor’s Direction-of-Focus (DFoc), achieved through the integration
of both torso-head orientation and eye gaze direction vector (𝑉𝐸 ).
Specifically, given the representations 𝑅ℎ𝑖𝑝𝑠 , 𝑅𝑆 , and 𝑅𝐻 for the 3D
rotations of the hip, spine, and head, and using 𝐺ℎ , 𝑂𝑆 , 𝑂𝐻 , and
𝑂𝐸 to symbolize the global positioning of the hip along with the
offsets of the spine, head, and eyes, respectively, we formulated the
following equation to derive DFoc. Notably, to ensure accuracy, we
addressed anomalies and filled in the gaps by employing shape-
preserving cubic interpolations in piecewise order for all instances
of 𝑉𝐸 .

𝐷𝐹𝑜𝑐 = 𝐺ℎ𝑅ℎ𝑖𝑝𝑠𝑂𝑆𝑅𝑆𝑂𝐻𝑅𝐻𝑂𝐸𝑉𝐸 . (1)
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Incorporating the aforementioned DFoc calculation, we per-
formed an additional step of generating a higher order feature
called Focus of Attention (FoA). This distinctive attribute serves to
indicate which of the other interlocutors an individual interlocutor
is directing their attention to. To this end, we devised a 1× 3 vector
with ternary variables for every frame, known as the Gaze Target
Vector (GTV). This vector succinctly encapsulates the FoA for the
three interlocutors. Specifically, the value of its i-th component cor-
responds to the index of the interlocutor who captures the attention
of the i-th interlocutor during that specific frame.

4.1 Gestural Backchanneling
Besides verbal backchanneling, nonverbal gestures can indicate

listeners’ attention and sentiments toward speech. Our study fo-
cuses on backchanneling gestures in American culture, considering
participants from the United States.We identify a gestural backchan-
neling response when a listener nods or shakes his/her head. We
use head movement data, including roll, pitch, and yaw angles, and
employ an algorithm inspired by previous work for detection.

Following the concept from [30], we classified frames as stable,
extreme, or transient, based on the change of the yaw angle. Sta-
ble frames indicate minimal headshake, extreme frames indicate
significant movement, and transient frames indicate ongoing head
movement. To detect headshaking, we require at least two extreme
frames with a yaw angle difference exceeding 3 degrees between
them between two stable frames. To this end, for each frame in
a data observation, we create a 1 × 6 gestural back-channeling
vector by combining two 1 × 3 binary-valued sub-vectors. The
first sub-vector indicates whether each participant is shaking their
head, and the second sub-vector represents nodding. Gestural back-
channeling responses are exclusive to listeners, signifying their at-
tention to ongoing speech. The current speaker does not contribute
to these responses, even if our algorithm detects the corresponding
head motions.

5 METHODOLOGY
Label Annotations. Compared to IPU-based annotations, which
typically annotate at the end of an IPU, our approach provides
annotations at much finer temporal granularity. Specifically, we set
the step size to 100 milliseconds, that is, we predict a label every
100 milliseconds. In our work, we categorize the end-of-turn event
into three distinct sub-categories: “interruption," “overlapping," and
“turn-taking." From a technical standpoint, our objective involves
predicting the moment when the speaker finishes his/her speech.
However, framing it this way would result in a significant class
imbalance within the labels. To mitigate this imbalance and forecast
possible ends, we adopt a strategy aligned with previous research
[32], where we classify an end-of-turn instance as a time point
indicating that the end of the speaker’s turn will occur within the
next 500 milliseconds.

Figure 3 illustrates all three sub-categories. (i) Interruption, also
called “barge-in," is a prevalent phenomenon frequently occurring
in fast-paced dialogues, where the next speaker anticipates the
conclusion of the current speaker’s turn and initiates his/her re-
sponse before the current speaker finishes. This phenomenon is
particularly common in rapid exchanges. Note that apart from the
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Figure 3: Illustration of three categories for end-of-turn: in-
terruption, overlapping, and turn-taking.

500 milliseconds before the exact end-of-turn, we have also des-
ignated the intersection of interruption as a positive instance. (ii)
Overlapping, on the other hand, is common in multiparty conversa-
tions, characterized by simultaneous contributions from multiple
interlocutors following extended silences, resulting in segments of
speech that overlap. It is important to note that back-channeling,
while a common feature, does not signal the end of a speaker’s
turn, as it typically does not prompt the current speaker to yield
the floor. Overall, the label “overlapping" not only denotes the turn
before overlap but also specifies when the overlapping is expected
to conclude. (iii) Lastly, turn-taking, a broader category within tra-
ditional IPU-based annotations, refers to instances where a shift in
the conversational floorholder occurs, typically defined by a change
before and after a silence period lasting more than 200 milliseconds.

Our approach not only provides a more precise and comprehen-
sive method for predicting end-of-turn events, covering all types of
turn changes, but also overcomes a major limitation of traditional
IPU-based approaches, which frequently experience delays in real-
time prediction. Furthermore, compared to conventional IPU-based
annotation, our approach significantly enhances the dataset, elevat-
ing the label count from 4,248 (if IPU-based approaches are used)
to 167,042. This substantial dataset expansion proves especially ad-
vantageous for training deep learning models. Instead of adhering
to a binary classification paradigm (“end-of-turn" vs. “not end-of-
turn"), we design a four-fold classification system by considering the
following distinct categories: “Interruption", “Overlapping", “Turn-
taking", and "Not end-of-turn." The statistics of these sub-categories
in our dataset are presented in Table 1.

Table 1: Statistics of end-of-turn sub-categories in our dataset

Categories Not End-of-Turn End-of-Turn
Interruption Overlapping Turn-Taking

Instances 134,715 18,509 6,992 6,826
Ratio 80.6% 11.1% 4.2% 4.1%

5.1 Window-based Prediction Model
Our primary objective is the design of an efficient approach for on-
line (or even real-time) end-of-turn prediction in multiparty conver-
sations. To accomplish this, we design a window-based continuous
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model tailored for handling multi-modal features. For text-based
features, we choose to use DistilBERT [41] as an alternative to
the larger BERT model [11] due to its smaller size and faster in-
ference capabilities. Instead of the commonly used LSTM model
for other time series features, we opt for GRU (Gated Recurrent
Unit) as a more efficient alternative, benefiting from its reduced
number of gates and parameters, leading to faster processing while
maintaining comparable performance [6].

We empirically set the window size to be 500 milliseconds (ms),
and set the step size to 100 ms, which implies that our approach
makes predictions for the end-of-turn moment every 100 ms us-
ing the features within a 500 ms window. However, to extract text
features, we extend the window to include texts from 100 seconds
before the exact prediction time. This extension allows us to cap-
ture a more comprehensive history of the dialogue content. We
empirically choose 100 seconds based on our observation: Select-
ing shorter time frames for text features could result in higher
probabilities of missing words or encountering silence. Such in-
stances are not conducive to our system’s ability to comprehend
the contributions and mechanisms between interlocutors.

Prosody
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Figure 4: The architecture of our window-based prediction
model

Figure 4 provides a pipeline overview of our approach, in which
we employ DistilBERT for the extraction of semantic features with-
out fine-tuning its parameters during training. Our rationale for
this decision lies in the multi-modal nature of our approach, as
fine-tuning solely on text data could potentially lead to overfitting.
The input texts are transformed into embedding vectors that rep-
resent a word in the sequence. DistilBERT with its transformer
encoder captures contextual information for each word. These con-
textual embeddings are consolidated into a single vector, effectively
encapsulating the conversation’s semantic information. By avoid-
ing fine-tuning, we aim to guard against overfitting, recognizing
the richness of features introduced by including multiple modali-
ties, such as visual and gestural cues, which collectively enhance
our method’s adaptability and generalizability across diverse data
sources.

In our approach, the treatment of additional features entails
a well-defined process. Initially, we employed a Min-Max Scaler
to normalize numerical features, ensuring that they conform to a
consistent and manageable range. Based on this, we embrace the
concept of early fusion, in which information from various modali-
ties is integrated at the initial stage of processing. Specifically, we
employed a range of fusion techniques to enhance the integration of
modalities. Initially, we adopted a straightforward approach by con-
catenating all modalities into a single vector. Subsequently, drawing
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Figure 5: The architecture of cross-modal fusion

inspiration from [16], we implemented a more intricate strategy.
This involved combining all representations through addition and
L2 normalization. Let us consider a fused representation, denoted
as F𝑛 , with a total of 𝑛 frames. We have four modalities:𝑀𝐼

𝑛 for ISV
(Interlocutor State Vector),𝑀𝑃

𝑛 for prosody features,𝑀𝐺
𝑛 for GTV

(Gaze Target Vector), and 𝑀𝐵
𝑛 for gestural back-channeling, each

corresponding to a frame. We employ separate frame embedding
layers for each modality, namely E𝐼 , E𝑃 , E𝐺 , and E𝐵 . The fused
representation is calculated using the following equation:

F𝑛 =
E𝐼 (𝑀𝐼

𝑛) + E𝑃 (𝑀𝑃
𝑛 ) + E𝐺 (𝑀𝐺

𝑛 ) + E𝐵 (𝑀𝐵
𝑛 )E𝐼 (𝑀𝐼

𝑛) + E𝑃 (𝑀𝑃
𝑛 ) + E𝐺 (𝑀𝐺

𝑛 ) + E𝐵 (𝑀𝐵
𝑛 ))


2
. (2)

This method, referred to as the ‘addition-embedder,’ derives its
name from its core principle of summing up the contributions from
various modalities. Moving on to a third technique shown in Figure
5, we introduced cross-modal attention, further enriching the fusion
process. These diverse approaches were systematically investigated
to provide a comprehensive evaluation of their influence on both
the overall model performance and fusion efficacy. Comparative
results are presented in Section 6.5. The fusion process precedes
the input into a one-layer GRU network, configured with a hidden
size parameter set to 256. The utilization of the GRU architecture,
renowned for its update and reset gates, is essential in our design.
This architecture excels in its capacity to capture intricate sequen-
tial data patterns, making it an effective tool for our model’s overall
functionality. By integrating numerical and categorical features
through early fusion and processing them with the GRU network,
our model gains the ability to uncover nuanced patterns and de-
pendencies within the data, contributing to its robust performance.

Following the feature extraction phase, we seamlessly integrate
the features derived from the language model with the ultimate
hidden states originating from the GRU layer. These combined fea-
tures undergo further refinement as they traverse a fully connected
layer, ultimately culminating in generating probabilities facilitated
by applying a sigmoid activation function. To fortify the model’s
generalization capacity and preempt overfitting, we prudently im-
plement a dropout rate of 0.1 during the training process, coupled
with the deployment of an early stop technique for vigilant overfit-
ting monitoring and prevention. Additionally, we employ Binary
Cross Entropy Loss (BCELoss) as our designated loss function. Our
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initial learning rate, thoughtfully set at 0.001, is complemented by
the use of the Adam optimizer, which guides the training process.

Table 2: Distribution of IPU instances.

Categories Not End-of-Turn End-of-Turn (Turn-Taking)

Instances 5,975 1,105
Ratio 84.4% 15.6%

5.2 IPU-based Prediction Model Baseline
The IPU-based model shares the same architecture and features
as the window-based model. The primary distinctions between
the two models lie in the annotation method and the length of
each instance, as discussed in Section 5. First, the process involves
segmenting only the clauses preceding a 200-millisecond silence,
resulting in relatively smaller instances. Second, unlike the window-
based method that employs a fixed window size for each sample,
the extracted IPUs exhibited a range of durations, with the shortest
IPU spanning 32 frames (equivalent to 0.53 seconds) and the longest
extending to 1,755 frames (29.25 seconds). On average, IPUs had
a length of 201 frames (3.35 seconds). For consistency in model
training, we applied padding to all IPUs, extending them to the
maximum length of 1,755 frames.

From the identified IPUs, we further categorize them into two
different types: those marked as end-of-turn (indicating a turn-
taking event resulting in a speaker change) and those categorized
as not end-of-turn, indicating a scenario where the speaker remains
the same. In total, we extracted 7,080 IPUs from seven groups of
three-party conversations in our dataset. Among these, 5,975 IPUs
corresponded to turn-taking instances, while 1,105 IPUs represented
scenarios where the turn did not conclude. It is crucial to note that
the IPUs were carefully processed to ensure no temporal overlap,
since any instances of overlapping speech segments were discarded.
A detailed breakdown of the extracted IPUs is provided in Table 2.

6 RESULTS AND EVALUATIONS
To gauge the effectiveness of our model, we meticulously designed
and executed a rigorous evaluation methodology that ensures the
reliability and completeness of our assessment. This methodology
is pivotal in ascertaining our model’s performance under diverse
scenarios and across various conversational groups. First, we em-
ployed a 10-fold cross-validation procedure on our training dataset.
This approach is renowned for providing a robust evaluation by
systematically partitioning the data into ten equally sized subsets.
In this process, nine subsets are used for training, while the remain-
ing one is reserved for testing. This cycle repeats ten times, each
time using a different subset as the test set. By aggregating the re-
sults from these iterations, we calculated key performance metrics,
including precision, recall, and F-measure, using a macro-average
approach. This method ensures that every class or conversational
behavior receives equal weighting in the evaluation, offering a com-
prehensive view of our model’s overall performance. Note that,
in all presented results, only those in Section 6.1 involve 4-class
classifications (Table 4). In contrast, all other results are based on
binary classifications.

Table 3: Quantitative comparison of turn prediction between
our window-based prediction model and the IPU-based pre-
diction model. The bottom table displays the results of a
two-sample t-test.

Metrics
Model Precision Recall F-Measure

IPU-based model 0.513 0.521 0.406
Window-based model 0.874 0.872 0.873

Metrics t p-value

Precision 112.164 1.505e-27 **
Recall 114.730 3.065e-27 **
F1 154.145 1.514e-29 **

In Table 3, we provide a detailed quantitative comparison be-
tween our window-based prediction model and the conventional
IPU-based baseline model, in the context of predicting end-of-turn
events in multiparty conversations. Besides, we applied a two-
sample t-test between the two models to rigorously assess and
quantify the statistical significance of observed differences in their
performances. This evaluation serves as a critical benchmark for
evaluating the effectiveness of our proposed approach. It is impera-
tive to recognize that the IPU-based model shares the same archi-
tecture as the window-based model but is trained on a relatively
smaller dataset, constrained by the IPU definition that segments
based only on the clause preceding a 200-millisecond silence (refer
to Section 5). However, during testing, both models were evaluated
within the same window-based framework, predicting the results
every 100 milliseconds. This way ensures a fair comparison, par-
ticularly in the context of real-world applications. As revealed in
Table 3, our window-based approach demonstrates a remarkable
superiority over the IPU-based model in terms of all the metrics
studied, including precision, recall, and the F-measure. Specifically,
our model achieves a precision score of 0.874, indicating a high
accuracy in correctly identifying actual end-of-turn instances. The
recall rate of 0.872 highlights our model’s capability to effectively
capture a substantial portion of the actual end-of-turn events in
multiparty conversations. The F-measure, which balances precision
and recall, achieves an impressive value of 0.873, underlining the
well-rounded performance of our window-based prediction model.
Moreover, the obtained p-values: 1.505e-25, 2.633e-27, and 3.015e-
30, indicate strong statistical significances of our window-based
model over the IPU-based model in all metrics evaluated.

Table 4: Performance metrics for the four-class categoriza-
tion, highlighting individual category performance.

Metrics
Class Precision Recall F-Measure

Not End-of-Turn 0.957 0.950 0.954
Interruption 0.782 0.849 0.814
Overlapping 0.687 0.607 0.645
Turn-Taking 0.606 0.613 0.610

Macro-Average 0.758 0.755 0.756
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6.1 End-of-turn Sub-category Prediction
In Table 3, end-of-turn events cover three subcategories (i.e., turn-
taking, interruption, and overlapping). A binary classificationmethod
would be insufficient to capture the nuanced intricacies inherent in
conversational dynamics, including interruption, overlapping, and
standard turn-taking. In recognition of this constraint, we imple-
mented a four-class categorization framework. In this framework,
we adjusted the activation function to the softmax function and the
loss function to CrossEntropyLoss. The results of this modification
are presented in Table 4.

The results in Table 4 provide a detailed breakdown of our
model’s performance for each category. Notably, we observe varia-
tions in precision, recall, and F1-score across categories. For exam-
ple, our model exhibits higher precision (0.782) and recall (0.849)
for the Interruption category, indicating its ability to identify in-
stances of interruption events correctly. However, when dealing
with other conversational dynamics, such as overlapping and turn-
taking, our model had sub-optimal performances, as evidenced by
slightly lower precision and recall values. The macro-average per-
formance metrics, which consider our model’s effectiveness across
all classes, comprehensively evaluate its ability to handle diverse
conversational dynamics. In this case, the precision is 0.758, the
recall is 0.755, and the F1 score is 0.750. These values provide a
holistic assessment of our model’s performance, highlighting the
challenges in distinguishing the sub-categories of end-of-turn.

Table 5: Quantitative cross-group validations by our model

Metrics
Test Group Precision Recall F-Measure

1 0.835 0.776 0.801
2 0.812 0.775 0.791
3 0.887 0.844 0.863
4 0.844 0.775 0.802
5 0.871 0.813 0.837
6 0.873 0.882 0.878
7 0.886 0.822 0.849

6.2 Cross-group Validation
We also conducted cross-group validation in seven distinct con-
versational groups, adhering to a structured 5-1-1 format. This
arrangement designated five groups for training, one for validation,
and one for testing. This systematic cross-group validation method
yielded valuable insights into our model’s generalizability and its
robustness across a spectrum of conversational behaviors. Notably,
it safeguarded against potential bias towards any specific subset of
the data, thereby bolstering the reliability of our research findings.
Table 5 presents the quantitative results of our cross-group valida-
tion. The results shown in Table 5 underscore the robustness of our
model, indicating its capacity for effective generalization to new
multiparty conversations involving novel participants, compared
to the results presented in Table 3.

6.3 Ablation Study
To gain profound insights into the integral components and features
that influence our model’s performance, we conducted an ablation

study. Figure 6 (left) presents the results of this study, which mainly
focused on assessing the impact of various input features on our
model’s predictive capabilities regarding end-of-turn instances. The
“All features" configuration, encompassing a fusion of gestural back-
channeling, prosody, gaze target (GTV), interlocutor state (ISV),
and textual information, yielded the highest precision (0.874), re-
call (0.872), and F-measure (0.873). This outcome underscores the
critical importance of an integrated approach involving all these
features to achieve optimal predictive performance. Our results
consistently demonstrate that the exclusion of specific features
leads to a noticeable performance decline. For example, the removal
of GTV or prosody resulted in a reduction in precision, recall, and
F-measure, highlighting the pivotal role played by gaze-related and
prosodic cues in end-of-turn prediction. Similarly, the omission of
gestural back-channeling or textual information led to a decrease in
performance metrics, indicating the greater importance of contex-
tual cues and textual content in improving model accuracy. Notably,
the exclusion of the ISV feature yielded the poorest performance
when compared to other single-feature-exclusion approaches. This
observation firmly underscores the pivotal role played by the ISV
feature among all the considered features, as the ISV feature di-
rectly provides invaluable insights into conversational dynamics
and status. Remarkably, the “Text Only" configuration exhibited the
least favorable performance. This finding accentuates that relying
solely on textual information may prove insufficient in providing
the necessary cues for accurate end-of-turn prediction in multi-
party conversational contexts, reinforcing the critical need for a
multimodal approach.

Figure 6: (left) Ablation study results by our model. Here ISV
refers to the Interlocutor State Vector, GTV refers to the Gaze
Target Vector, GBack refers to Gestural Back-Channeling;
(right) ROC curves for different feature combinations

The ROC curves in Figure 6 (right) further show the discrimina-
tive powers of these feature combinations. The area under the ROC
curve (AUC-ROC) provides a quantitative measure of our model’s
ability to distinguish between true positives and false positives.
The “All features" configuration achieved the highest AUC-ROC
of 0.94, indicating strong discriminatory capabilities. Notably, the
“No GTV," “No Prosody," “No GBack," and “No Text" configurations
also displayed competitive AUC-ROC values of 0.89, 0.86, 0.85, and
0.85, respectively, suggesting that while these features contribute
to our model significantly, their exclusion does not severely affect
our model’s overall discriminative ability.

In summary, these results underscore the importance of a multi-
modal approach, incorporating linguistic, prosodic, gaze-related,
and contextual information for robust end-of-turn prediction in
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multiparty conversations. While individual feature exclusions have
a negative impact on performance, ISV plays a particularly impor-
tant role.

Table 6: Runtime statistics of our approach for different ar-
chitecture combinations

Language model RNN Inference time (ms) Precision Recall F-Measure

DistilBERT
RNN 1.6 ± 0.20 0.816 0.724 0.756

GRU (selected) 2 ± 0.06 0.874 0.872 0.873
LSTM 2.12 ± 0.15 0.886 0.849 0.866

BERT
RNN 7.54 ± 0.86 0.810 0.728 0.758
GRU 8.04 ± 0.15 0.874 0.882 0.877
LSTM 8.22 ± 0.21 0.887 0.844 0.863

RoBERTa
RNN 7.92 ± 1.06 0.844 0.888 0.815
GRU 8.29 ± 0.19 0.893 0.879 0.886
LSTM 8.92 ± 1.07 0.898 0.883 0.890

GPT-3
RNN 355.82 ± 53.08 0.853 0.733 0.771
GRU 355.86 ± 53.07 0.903 0.843 0.872
LSTM 355.91 ± 53.07 0.918 0.902 0.910

PaLM
RNN 503.89 ± 30.85 0.826 0.728 0.762
GRU 503.92 ± 30.83 0.893 0.854 0.873
LSTM 504.03 ± 30.85 0.916 0.897 0.907

6.4 Comparisons with Alternative Models
To demonstrate both the effectiveness and the real-time prediction
capabilities of our model, we conducted an in-depth analysis of its
runtime performance. This analysis extends beyond our model’s
predictive performance and delves into its computational efficiency
compared to other prominent large language models (LLMs) and
RNNs. In our evaluation, we have benchmarked our model against
some of the most renowned large language models, including both
open-sourced (BERT, RoBERTa [35]) and closed-sourced (OpenAI
GPT-3 [3], and Google PaLM [5]) LLMs. These comparisons offer
insights into how our model performs in terms of runtime effi-
ciency when compared to heavyweight language models that are
known for their language understanding capabilities. Addition-
ally, we have assessed our model’s runtime performance against a
more complex recurrent neural network architecture, specifically
simple RNN and LSTM (Long Short-Term Memory) models. By
doing so, we aim to provide a comprehensive view of our model’s
computational efficiency concerning different neural network ar-
chitectures. In this experiment, we conducted tests on open source
LLMs using our system, running on a standard desktop computer
with the following specifications: an Intel i9-10850K CPU operating
at 3.6 GHz, 40GB of memory, and an NVIDIA GeForce RTX 3070
GPU. For closed-source LLMs, we chose a local implementation
but accessed the LLM through cloud servers using provided APIs,
resulting in significant delays. This delay is noteworthy, especially
in real-time applications, where the system’s inability to achieve
real-time implementation becomes a considerable limitation. The
inference times and performance metrics for various combinations
of LLMs and RNNs are reported in Table 6. Notably, the combination
of GPT-3 and LSTM exhibited the highest performance; however,
it is crucial to emphasize that this configuration led to increased
inference time. The choice of configuration should be influenced by
the user’s specific needs and the trade-off between inference time
and performance, taking into account the constraints imposed by
available hardware. Future research can explore different setups to
align with their particular research goals and hardware limitations.

Table 7: Runtime statistics for different fusion methods

Fusion method Inference time (ms) Precision Recall F-Measure

Simple Concate. 2 ± 0.06 0.874 0.872 0.873
Addition-embedder 2.37 ± 0.06 0.875 0.854 0.864
Cross attention 2.40 ± 0.09 0.873 0.856 0.864

6.5 Comparison of Early Fusion Methods
As described in Section 5.2, in order to harness the full potential
of multi-modal capabilities, we implemented a range of early fu-
sion techniques. Table 6 presents a detailed breakdown of runtime
and performance metrics for each method. Despite the simplicity
of the “Simple Concate." method, it consistently emerges as the
most effective approach among the explored fusion techniques.
The efficient inference time of 2 ± 0.06 ms, coupled with superior
precision, recall, and F-measure values, underscores the robust
performance of this straightforward fusion method. While more
complex techniques like “Addition-embedder" and “Cross atten-
tion" introduce nuanced variations in trade-offs and performance
metrics, the straightforward nature of “Simple Concate." showcases
its remarkable efficacy in optimizing multi-modal integration for
the given task. This underscores the importance of considering
both simplicity and performance when selecting an early fusion
technique, with “Simple Concate." standing out as a pragmatic and
high-performing choice in this context.

7 CONCLUSION AND DISCUSSION
In this paper, we present a novel deep window-based approach
for predicting end-of-turn events, including the moment of inter-
ruption and overlapping, within three-party conversations. Our
key contribution lies in the use of an PLM-GRU-based multimodal
model with early fusion designed to accurately predict the end-of-
turn. Extensive experiments have demonstrated the effectiveness of
our approach in generating accurate predictions for such complex
multiparty conversations.

Although our current approach marks a significant step in this
research direction, it is essential to acknowledge its limitations.
First, we employ relatively straightforward fusion techniques for
handling multimodal inputs, rather than fully harnessing the potent
attention mechanism of the transformer model. Future work can
be explored to design more intricate architectures, such as cross-
attention mechanisms, to integrate each modality’s information
seamlessly. Second, we have not yet incorporated other impor-
tant features, such as facial expressions and hand gestures, into
our prediction model, which could further improve the prediction
accuracy.

Looking ahead, our research agenda encompasses several promis-
ing avenues. We aim to extend and generalize our current three-
party conversation model to accommodate more complex multi-
party interactions. Lastly, although our current approach has the
capability of an online approach for existing data, we have not yet
developed a comprehensive top-down system that can seamlessly
integrate all modalities while making predictions in real time.
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