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ABSTRACT
In this paper we present a computational study to quantitatively
examine the task of predicting the next speaker in multi-party con-
versations using machine learning models. To accomplish this, we
create features that accurately represent information relevant to
speaker changes in such conversations. We utilize sentence-based
models, rather than the widely-used InterPausal Unit (IPU)-based
models, and extend the definition of verbal backchanneling to in-
clude additional reactions that signify listeners’ attention or inter-
est. Through extensive experiments with various machine learning
models and inputs, we show that our sentence-based models out-
perform existing IPU-based models, with the best model achieving
61.39% accuracy. Our study provides design implications and rec-
ommendations for the development of virtual agents or humanoid
robots with interactive social interaction capabilities.

CCS CONCEPTS
• Human-centered computing → Empirical studies in collab-
orative and social computing; Empirical studies in HCI.
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1 INTRODUCTION
Various machine learning models have been proposed for turn-
change detection and next speaker prediction in multiparty conver-
sations, typically using InterPausal Units (IPUs) [12, 13, 17]. These
IPU-based methods involve two stages: detecting a turn change

∗Meng-Chen Lee and Wu Angela Li contributed equally to this research. Wu Angela
Li did this research when did summer internship at University of Houston.
†The Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IVA ’24, September 16–19, 2024, GLASGOW, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0625-7/24/09
https://doi.org/10.1145/3652988.3673915

and then predicting the next speaker if a change is detected. Our
study approaches this problem at the sentence level to enhance pre-
diction accuracy and eliminate the need for two models, based on
the hypothesis that speaker changes are unlikely before a sentence
concludes.

Focusing on three-party conversations, our research suggests
that sentence-level models may outperform IPU-based models. Us-
ing only the last portion of an interval (e.g., the last 1.5 seconds)
provides sufficient information for accurate predictions. We also
introduce an extended notion of verbal backchanneling, encom-
passing a wider range of reactions to improve model performance.

Existing studies highlight the role of auditory and visual signals
in turn-taking, significantly impacting speech diarization and in-
spiring the integration of visual features to determine speaker turns
[3, 7, 8, 10]. Researchers have explored identifying speakers from
visual cues and using speech input to animate virtual conversations
[6, 11, 14, 15, 22]. Previous computational models for turn-taking
in dyadic conversations informed our approach [24, 26, 27, 32]. Lee
et al. developed an IPU-based model using Relatively Engagement
Level (REL) [21], while Kawahara et al. [17] and Ishii et al. [12, 13]
focused on multiparty settings, addressing class imbalance with
two-stage models. Kawahara et al. [17] achieved a first-stage accu-
racy of 70.6% and a second-stage accuracy of 69.7%, Ishii et al. [12]
achieved 76.2% and 55.2%, and Ishii et al. [13] achieved 69.5% and
48.8%. Our approach builds on these insights, focusing on sentence-
level data to streamline and enhance turn-change detection and
next speaker prediction.

2 DATA COLLECTION
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Figure 1: (Left) Illustration of the data acquisition configura-
tion. (Right) A snapshot of our data acquisition process for
three-party conversational motion capture.

In this study, we utilized a hybrid data acquisition system consist-
ing of a VICON optical motion capture system, HD video cameras,
and a high-quality microphone system to collect a multi-modal,
three-party conversational behavior dataset. The dataset includes
12 distinct conversation sessions with six participants (three males
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and three females) who did not know each other. Participants were
randomly assigned to two groups of three, and each group engaged
in six sessions discussing various topics. During data capture, par-
ticipants formed an equilateral triangle with one meter of distance
between them [3, 6, 15, 16], remaining stationary but allowed upper
body movement. This setup ensured comfort and equal interaction
among participants. We captured multimodal data including gaze,
head motion, audio, facial expressions, hand gestures, and upper
body motion using a ten-camera VICON system, high-quality mi-
crophones, and HD video cameras. Eye movements were recorded
with close-up HD video cameras [20], and all data were processed
at 30 frames per second for consistency (see Figure 1) .

3 FEATURES EXTRACTION
Initially, a language expert transcribed the audio, corrected the
system’s output, annotated verbal backchanneling, and adjusted
timestamps. We then used a forced phoneme alignment tool from
automatic speech recognition systems to time each word and sen-
tence in the audio. This process focused on sentence ends rather
than IPUs, defining an interval as a quadruple 𝐼 representing start
and end times, a speech transcript or backchannel category, and
an interlocutor ID. Only speech intervals of at least 1.5 seconds
were considered, averaging 4.12 seconds with a maximum of 20.28
seconds, significantly longer than IPUs in previous studies [1],
potentially reducing computational expenses. Intervals with inter-
ruptions were discarded to maintain data quality.

Prosody Features. We extracted pitch and intensity from acoustic
speech using a window size of 33.3 ms with the Praat tool [30],
creating a 1 × 2 prosodic feature vector for each frame.

Verbal Backchanneling. We categorized verbal backchannels into
non-lexical (e.g., uh-huh, mhm) and phrasal backchannels, con-
sidering only those shorter than 1.5 seconds. Our term "verbal
backchannel" includes both non-lexical backchannels and reactions
like laughing, sighing, or gasping. We identified six common types
of reactions: (hum), (laughter), (gasp), (sigh), (surprise), and (ac-
knowledgment), resulting in 1012 instances. We constructed a 1 × 3
verbal backchanneling vector for each frame to indicate whether an
interlocutor gave a verbal backchanneling response.

Gestural Backchanneling. Nonverbal gestures like nodding or
shaking the head signal listener attention. Using an algorithm by
Kawato and Ohya [18], we detected head movements with 86.2%
accuracy. Frames were categorized into stable, extreme, and transient
states based on yaw angle variations. A headshake is detected
between two stable frames if there are at least two extreme frames
between them and the yaw angle difference exceeds 3 degrees. We
constructed a 1 × 6 gestural backchanneling vector for each frame
to indicate head movements. Figure 2 illustrates this process, which
is also used for head nods based on pitch angle.

Gaze Targets.Gaze target features are represented as a 1×6 vector
for each frame, indicating whether the i-th interlocutor is looking
at the j-th interlocutor. Based on our equilateral triangle setup, we
determine gaze targets as follows: an interlocutor is considered to
be looking at another if their horizontal gaze angle is between -45
and -15 degrees or 15 and 45 degrees, and their vertical gaze angle
is between -30 and 30 degrees. This is illustrated in Figures 3.

Figure 2: A simplified illustrative example to show the detec-
tion of a headshake motion. The states of the labeled points
from 𝑎 to 𝑓 are: stable, transient, extreme, extreme, transient,
and stable, respectively.

Figure 3: (Left) Illustration of the valid horizontal range of an
interlocutor’s gaze angle when looking at another interlocu-
tor. Recall that the three interlocutors form an equilateral
triangle. (Right) Illustration of the valid vertical range of an
interlocutor’s gaze angle when looking at another interlocu-
tor.

Current and Next speaker. The current speaker is indicated by
a 1 × 3 binary-valued current speaker vector for each frame. After
processing speech overlaps, each current speaker vector will have
exactly one component with a value of 1. Labels for supervised
learning are represented by a 1 × 3 binary-valued next speaker
vector.

In our analysis, we focused on the final 45 frames of each data
observation, corresponding to 1.5 seconds. This deliberate choice
was guided by insights gleaned from prior psycholinguistic investi-
gations, particularly those articulated by Sacks et al. [25]. For each
frame, we constructed a 1× 20 vector by concatenating the features
mentioned above. These vectors were horizontally concatenated
across all 45 frames, resulting in a 1 × 900 vector for each data ob-
servation. The labels for these feature vectors were the next speaker
vectors (1 × 3).

4 METHODOLOGY
To evaluate the performance of the next speaker prediction task,
we conducted experiments using various popular machine learning
(ML) models, including Support Vector Machine (SVM), Logistic Re-
gression (LR), Gradient Boosting (GB), K-Nearest Neighbors (KNN),
Decision Tree (DT), Naive Bayes (NB), and Random Forest (RF). Our
processed data included input feature vectors and corresponding
labels. Due to the small dataset size, we used a 90-10 train-test split
strategy with ten trials, each with a different split. We fine-tuned
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all ML models using an exhaustive hyperparameter grid search
with 5-fold cross-validation [23]. This approach ensured robust
and convincing results, providing insights into model performance
variance across splits. Additionally, ensemble learning algorithms
like Random Forest were used for their robustness to overfitting
[2].

We also developed and evaluated four deep neural networks:
one based on Recurrent Neural Networks (RNN), another on Gated
Recurrent Units (GRU), a third on Long Short-TermMemory (LSTM)
networks [28], and the fourth on the Transformer architecture
[31]. The LSTM-based network consisted of two stacked LSTM
layers, each with 128 units, 0.2 dropout, 0.2 recurrent dropout, one
hidden layerwith ReLU activation, and an output layer with softmax
activation. The Transformer-based network included a positional
embedding layer, 8 transformer blocks with 4 attention heads of size
256, and a multi-layer perceptron with ReLU and dropout layers.
Four networks were trained with categorical cross-entropy loss, a
batch size of 16, and early stopping with a patience of 3 epochs.
Features for deep learning models were vertically concatenated,
shifting from a 1 × 900 data format to a 45 × 20 matrix. To mitigate
overfitting, we employed hyperparameter tuning, dropouts, and
designed generalizable model features [29].

5 EXPERIMENTAL RESULTS
We conducted a comprehensive set of experiments, encompassing
the comparative analysis of eleven distinct machine learning mod-
els, outcomes associated with utilizing the entire interval, results fol-
lowing the truncation of interruptions, effects of employing simpler
verbal backchanneling, and ablation studies Our task involves ad-
dressing a multiclass classification problem, and we computed key
performance metrics, including accuracy, precision, and F-measure,
using a weighted-average methodology. This approach ensured
that each class or conversational behavior was afforded equal sig-
nificance during the evaluation process, providing a thorough and
equitable assessment of our model’s overall performance.

Table 1 shows that the LSTM outperformed all seven traditional
models across all metrics, though its performance variance across
different trials was less than optimal, possibly due to the small
dataset size. The Transformer-basedmodel (TransF) showed notably
sub-par performance, particularly in precision, likely affected by the
small training set, as LSTM networks tend to perform better than
BERT for small datasets in NLP applications [9]. The LSTM model
achieved an average accuracy of 61.17%, significantly improving
over the random-guess baseline of 33.33% (an increase of 183.53%).
This compares favorably with the best models in previous related
works, which achieved accuracies of 48.8%, which is 146.55% of
the baseline of 33.33%, and 69.7%, which is 139.40% of the baseline
of 50.00%, respectively.

We performed additional experiments considering the entire
speech interval rather than just the last 45 frames, using zero-
prepadding to handle variable input sizes. Our empirical results,
aligned with previous research in psycholinguistics and machine
learning [4, 5, 16, 19, 25], support that the final portion of an in-
terval is critical for detecting speaker changes. We also explored
truncating interrupted speech intervals while leaving interrupting
intervals unchanged. Although this increased our dataset size by

Table 1: Experimental results (average ± standard deviations)
by the seven traditional machine learning models and the
four deep learning models

Model Accuracy Precision F1-Score
SVM 55.64 ± 3.23 57.15 ± 3.95 56.01 ± 3.35
LR 48.40 ± 6.42 49.10 ± 7.05 48.28 ± 6.70
GB 58.40 ± 5.27 59.45 ± 4.71 58.49 ± 5.23
KNN 39.15 ± 6.71 40.38 ± 7.37 39.15 ± 6.64
DT 56.06 ± 4.09 59.89 ± 4.54 56.41 ± 4.03
NB 51.28 ± 6.22 51.78 ± 8.39 48.36 ± 8.74
RF 57.13 ± 4.51 57.37 ± 7.13 56.64 ± 6.39
simple RNN 52.45 ± 7.20 54.82 ± 6.26 49.08 ± 8.55
GRU 59.57 ± 4.68 61.06 ± 4.82 58.62 ± 5.50
LSTM 61.17 ± 2.80 62.13 ± 3.72 61.03 ± 3.13
TransF 47.02 ± 6.74 42.13 ± 13.03 41.47 ± 11.02
LSTM (Entire) 60.74 ± 2.94 61.22 ± 3.58 59.74 ± 3.31
LSTM (w/ Overlap) 45.00 ± 4.66 46.05 ± 6.01 41.80 ± 5.16
LSTM (Less VBack) 55.85 ± 4.58 56.47 ± 4.77 55.12 ± 4.23
LSTM (No Prosody) 59.89 ± 5.72 60.38 ± 6.60 59.58± 6.00
LSTM (NO GBack) 59.47 ± 3.63 59.68 ± 4.15 59.12 ± 3.77
LSTM (No VBack) 54.15 ± 4.66 54.56 ± 4.94 53.67 ± 4.78
LSTM (No GTV) 47.34 ± 3.22 49.40 ± 4.76 43.95 ± 3.35

20.43%, it significantly degraded model performance, indicating that
the trade-off was not worthwhile. We further assessed the impact of
the expanded verbal backchanneling definition, showing its impor-
tance for model performance compared to traditional definitions.
Last, in our ablation studies using the LSTM model, we examined
the impact of removing specific features on performance metrics.
Removing prosody features led to a modest decline, while exclud-
ing gestural or verbal backchanneling features resulted in more
significant performance reductions. Omitting gaze target vector
(GTV) features caused the most substantial decrease, highlighting
the importance of each feature.

6 DISCUSSION AND CONCLUSION
Our experiments with various models and feature formulations
identified that LSTM-based models achieve the best performance.
This suggests that sentence-level models often outperform IPU-
based models in predicting the next speaker. Utilizing only the
last portion of an interval, such as 45 frames, provides sufficient
information and yields comparable model performance. Addition-
ally, incorporating our extended notion of verbal backchanneling,
encompassing a broader range of reactions, enhances machine
learning model performance for next speaker prediction. However,
our work has some limitations. We did not account for the differ-
ent heights of participants when classifying gaze targets, which
could affect prediction accuracy. Additionally, while interruptions
in speech are common in natural conversations, our model’s current
handling of interruptions may not yield satisfactory performance.
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