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Abstract
In this paper we propose a novel density/trend map based method to predict both group behavior and individual pedestrian
motion from video input. Existing motion prediction methods represent pedestrian motion as a set of spatial-temporal trajec-
tories; however, besides such a per-pedestrian representation, a high-level representation for crowd motion is often needed in
many crowd applications. Our method leverages density maps and trend maps to represent the spatial-temporal states of dense
crowds. Based on such representations, we propose a crowd density map net that extracts a density map from a video clip, and
a crowd prediction net that utilizes the historical states of a video clip to predict density maps and trend maps for future frames.
Moreover, since the crowd motion consists of the motion of individual pedestrians in a group, we also leverage the predicted
crowd motion as a clue to improve the accuracy of traditional trajectory-based motion prediction methods. Through a series of
experiments and comparisons with state-of-the-art motion prediction methods, we demonstrate the effectiveness and robustness
of our method.
CCS Concepts
• Computing methodologies ! Neural networks; Tracking;

1. Introduction

In recent years, significant advances in various fields, including au-
tonomous driving, traffic monitoring, and robotic navigation, have
led to a surge in research interest surrounding pedestrian motion
prediction within computer graphics, computer vision, and robotics
communities. This endeavor aims to forecast the future positions of
pedestrians based on their previous movements.

Traditional motion prediction techniques focus on per-pedestrian
positions at a specific time represented by coordinate data. Such
coordinate-based motion representation serves as the cornerstone
for numerous methods designed to capture the spatio-temporal pat-
terns of pedestrian motion [AGR⇤16, GJFF⇤18, HBL⇤19, SICP20,
CCLM21]. On the other hand, considering the inherently stochas-
tic nature of human motion in real-world scenarios characterized
by intricate and diverse interactions, some existing methods adopt
a strategy of predicting multiple coordinate sequences as poten-
tial future trajectories for a single pedestrian [GJFF⇤18, HBL⇤19,
SICP20, XHK22]. Furthermore, some techniques incorporate ad-
ditional contextual features, such as background images, to bet-
ter model the complex interactions between pedestrians and their
surroundings. Such approaches can enhance the accuracy of pre-
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dicted pedestrian trajectories, bringing them closer to ground truth
[MZC⇤20, SICP20, BZM⇤20].

Although generative models can now produce future pedestrian
movements based on historical frames, ensuring content consis-
tency remains challenging for these models. As a result, traditional
motion prediction methods continue to be the most critical solu-
tion for tasks involving pedestrian behavior prediction in surveil-
lance videos and autonomous driving scenarios. However, the de-
mands of run-time pedestrian motion prediction pose challenges in
applying these trajectory-based methods effectively across various
real-world applications. First, the input frames in trajectory-based
methods require accurately tracked or labeled trajectories, leading
to tedious data labeling tasks or additional computation. Second,
for most trajectory-based methods that focus on per-pedestrian co-
ordinates, the computation overhead and complexity increase with
the growth of the number of pedestrians. Last, due to accumulated
errors, the accuracy of predictions decreases as the length of pre-
dicted frames increases. To tackle the above challenges, a high-
level representation for a group of pedestrians that have consistent
motion behavior needs to be investigated.

In this paper, we propose a novel representation method for
dense crowd motion, and further leverage it for crowd behav-
ior prediction including individual pedestrian trajectory prediction.
Specifically, to represent the high-level characteristics of crowd
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Figure 1: For a video frame with a dense crowd (a), our method
employs a density map (b) as well as the motion trend (red arrows)
to represent dense crowd motion (c). The predicted crowd motion
can promote the trajectory prediction of individual pedestrians (d).

motion, we introduce density maps, whose pixel values show the
number of pedestrians in each pixel (Figure 1-(b)) to depict how a
group of pedestrians is distributed. We also introduce trend maps
(illustrated with red arrows in Figure 1) to represent how the mo-
tion trends of pedestrians evolve within crowded scenes, which
prioritize capturing the collective spatial-temporal characteristics
of a dense crowd over individual pedestrian movements (Figure
1-(c)). To this end, we design novel neural network architectures
that use previous frames to predict future pedestrian distributions.
Our model excels in predicting dense crowd scenes, even for those
cases where annotated pedestrian coordinates are unavailable. Even
though such a representation focuses more on the crowd motion
of pedestrians in a group, it can promote the trajectory prediction
of individual pedestrians as a constraint. For example in Figure 1-
(d), for the input historical pedestrian coordinates of an individual
pedestrian, we use the trajectory-based method to generate 20 po-
tential trajectories first, and then use the relation vector from the
group center to pedestrians (+Ours-R) and the density values of
pedestrians (+Ours-D) as constraints to select pedestrian coordi-
nates from the predicted trajectories.

The main contributions of this work include:

• We introduce a novel method for representing pedestrian motion
in crowd videos, and a two-stage framework that harnesses such
representations to achieve accurate motion prediction of dense
crowds in various in-the-wild videos.

• We propose an approach that leverages the predicted crowd mo-
tion of a group of pedestrians to refine the trajectory prediction
of individual pedestrians in the group.

2. Related Work

In this section, we will first review previous work related to pedes-
trian trajectory prediction. Then, we delve into existing work that
employs density maps and optical flow for representing crowd mo-
tion. Finally, we review recent advances in the realm of convolu-
tional LSTM networks, which play a pivotal role in our method.

Pedestrian Trajectory Prediction. Most previous research efforts
in pedestrian trajectory prediction, including [AGR⇤16, GJFF⇤18,
HBL⇤19,CCLM21,GCL⇤22,XMZC22,SICP20,XPG18,XHK22],
revolve around the accurate prediction of pedestrian position se-
quences. Broadly, these methods utilize historical pedestrian po-
sition sequences as input to forecast future pedestrian positions.
To enhance the accuracy and plausibility of these predictions, var-
ious strategies have been employed. These strategies include mod-
eling pedestrian interactions [AGR⇤16], predicting multiple poten-
tial pedestrian trajectories [GJFF⇤18, HBL⇤19, XHK22], and in-
corporating contextual scene information [SICP20], among others.
Besides, the transformer model has also been effectively applied
to motion prediction [SJDS22] and even to multimodal motion of
multiple agents [SJDS24]. In computer graphics, particle simula-
tion methods (i.e., [vTCB⇤21]) can model the movement of large
crowds, which can be used to generate realistic crowd motion data.

Recent endeavors have sought to address this limitation by fo-
cusing on predicting pedestrian trajectories at the image level. In
one category of approaches, images rather than coordinates serve
as the input data. Ma et al. [MZC⇤20], for example, bypass the
annotation process and directly derive pedestrian coordinates from
input images. Similarly, Su et al. [SPSC19] introduce the concept
of potential fields as input data. However, it should be noted that de-
spite these innovations, the output remains in the form of pedestrian
coordinates. In another category of approaches, the output aims
to represent pedestrian trajectories as images, as demonstrated in
[MICB19]. Nevertheless, these methods continue to rely on pedes-
trian coordinates as their input data. While our method mainly ad-
dresses the description and prediction of group movements, it also
enhances per-pedestrian trajectory prediction using group motion
information. This proves particularly beneficial in densely crowded
scenes within target videos, where traditional methods for per-
pedestrian trajectory prediction often fall short due to occlusions
among pedestrians. As a result, we propose a candidate set recom-
mendation strategy that utilizes density map predictions to improve
per-pedestrian trajectory prediction. This endows our method with
generalizability, making it applicable to various trajectory predic-
tion models. Additionally, compared to directly using the predicted
density map to optimize trajectory positions, candidate sets can re-
duce the scope of the optimization solution space and minimize the
impact of density map prediction errors on trajectory prediction.

Density Maps for Crowd Representation. Utilizing density maps
is a highly effective approach for characterizing the density and
spatial distribution of objects within images, particularly in scenar-
ios with crowded spaces, such as estimating the presence of pedes-
trians. In recent years, density maps have gained widespread popu-
larity in crowd-counting tasks, which are designed to estimate the
number of individuals present in images. Numerous convolutional
neural network (CNN)-based methods have demonstrated remark-
able performance in crowd-counting tasks by harnessing the power
of density maps, as described below.

Early efforts [FXL⇤15, WZY⇤15] introduced CNN-based mod-
els for crowd counting, relying solely on the original images with-
out additional feature inputs. Zhang et al. [ZZC⇤16] pioneered
the Multi-column Convolutional Neural Network (MCNN), which
employs multi-size filters to extract pertinent features. Jiang et
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al. [JZX⇤20] designed a highly effective CNN-based method that
autonomously adjusts the density estimation for each correspond-
ing sub-region through learned scaling factors. In a noteworthy de-
parture from counting specific objects, Ranjan et al. [RSNH21] put
forth a novel CNN-based model capable of counting objects across
various categories. Additionally, Lin et al. [LMJ⇤22] introduced an
attention mechanism to enhance the performance of their model.
All of these methods leverage density maps to estimate the num-
ber of people or objects within a given image, showcasing signif-
icant advancements in this domain. These notable advancements
in leveraging density maps for crowd-related tasks have inspired
our approach, wherein we position density maps as a fundamental
component of our method.

Optical Flow for Motion Representation. Representing motion
information in images or video is a pivotal task in the domains
of image processing and computer vision. Optical flow, a widely-
used technique, serves as a valuable means to convey the motion
of objects across consecutive frames. Optical flow encompasses
both sparse and dense variants, with dense optical flow providing
pixel-level motion offsets within an image. Farnebck et al. [Far03]
were pioneers in leveraging a polynomial expansion transform to
compute dense optical flow, marking a significant milestone in this
field. Recently, CNN-based methods [DFI⇤15, IMS⇤17, ZXZ⇤19,
ZZZ⇤22] have demonstrated remarkable success in estimating op-
tical flow, yielding impressive results.

In addition to optical flow, alternative techniques have emerged
to represent motion information within images. For example, Su
et al. [SPSC19] introduced the concept of potential fields as an
interpretable and unified representation to model pedestrian mo-
tion within crowded scenes, where variations in the potential field
signify motion trends. Shi et al. [SWL⇤21] introduced a sparse
directed spatial graph to capture motion tendencies, although it
does not directly portray motion within the image. Wu and Yao
[WYWL21] proposed transient variations and motion trends to de-
pict object movements in images.

In our work, we use optical flow to generate one of the inputs for
our network. Optical flow, in conjunction with historical frames,
plays a vital role in predicting crowd motion in future frames, con-
tributing to the effectiveness of our approach.

3. Methodology

3.1. Problem Formulation

As illustrated in Figure 2, for scenes with dense crowds (a), the
traditional per-pedestrian trajectory representation struggles to de-
scribe the spatial clustering and temporal consistency of crowd mo-
tion (b). Therefore, we propose using density maps to represent the
spatial positions of crowds (c). Additionally, to better character-
ize the temporal movement directions of crowd motion, we employ
Trend Maps which help distinguish between nearby groups in the
density maps, instead of using optical flow representation. For vi-
sualization purposes, the movement directions (d) can be approxi-
mated to four (e) or eight (f) directions. In this paper, we use four
directions (NE, NW, SE, and SW) to present trend maps.

Our method consists of two modules: (1) a CNN-based encoder-
decoder (crowd density map net) to capture the static spatial crowd

Figure 2: Top: the comparison between trajectory-based (b) and
density-map-based (c) motion representation for the crowd scene
(a). Bottom: the red arrows represent the trend maps with the orig-
inal motion directions (d) as well as the directions approximated to
four (e) and eight (f).

group distribution from an image frame as a density map (Section
3.2). (2) A ConvLSTM-based predictor (Crowd Prediction Net)
that leverages optical flow images and the crowd density map net to
predict future crowd motion trends (Section 3.3). Building upon the
predicted crowd density map, we further use the relation between
group and individual pedestrians as constraints, to refine the results
of the trajectory-based motion prediction methods.

3.2. Crowd Density Map Net

The primary goal of the first module is to leverage optical flow
to generate crowd density maps (D̂t , t 2 [1,T ]) that represent the
spatial distributions of the crowd in the image sequences (It , t 2
[1,T ]).

Optical Flow: Optical flow is a well-known technique that reflects
changes in pixel values between successive images [BB95]. The
motion of the pedestrians in the continuous frames always causes
certain pixels occupied by the pedestrians to shift, while the values
of these pixels tend to remain approximately the same. This leads
to the following equation: I(x,y, t) = I(x+dx,y+dy, t +dt), where
I(x,y, t) is the pixel value of the image at position (x,y) at time t,
and dx,dy, and dt are the changes in the x-, y-, and time directions,
respectively [Far03,LK⇤81]. The changes in dx and dy are reflected
in the optical flow. The optical flow includes sparse optical flow and
dense optical flow, depending on the number of pixels used in the
calculation. Dense optical flow is more significant for crowd mo-
tion because it reflects the movement of all pixels in an image than
sparse optical flow [AWS00]. Thus, we employ the dense optical
flow method by Farneback [Far03] to obtain corresponding optical
flow images F1,F2, . . . ,FT of given I1, I2, . . . , IT .

Our crowd density map net involves a CNN-based encoder-
decoder model, illustrated in Figure 3. The model takes in a se-
quence of original images I1, I2, . . . , IT and their corresponding op-
tical flow images F1,F2, . . . ,FT , while the output is a series of
crowd density maps {D̂t}. To extract features from the input im-
ages and optical flow images, we use an encoder E img for capturing
pedestrian distribution features and an encoder Eof for capturing
spatial distribution variation features between consecutive optical
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Figure 3: Our method consists of two stages. In the first stage, we generate density maps from images using Image and Optical Flow
Encoders to extract features and decoders to generate the maps. In the second stage, we use a prediction net to update Motion Space with
Optical Flow and Motion Trend information during training. We then combine motion space features with the extracted density map features
and input them into ConvLSTMs for prediction. Finally, we use decoders to generate future density maps and motion trends.

flow images. During the training phase, we fine-tune the model us-
ing VGG-19 [SZ14] pre-trained on ImageNet [DDS⇤09] for both
encoders. However, convolutional layers may cause the loss of cer-
tain local features, such as texture features. To generate stronger
crowd density maps by fusing local features with global informa-
tion in the decoding stage, we keep the features after pooling layers
in the encoding stage, denoted as f enc

t .

f img
t = E img(It ;W img)

f of
t = Eof(Ft ;W of)

, (1)

where E img(.) and Eof(.) have identical structures but different pa-
rameters. W img and W of are both learnable parameters. f img

t is the
features with static distribution of the crowd and f of

t is the features
with motion interactions. It represents the image at t = 1,2, . . . ,T
time-step.

Considering pedestrians often have limited space to move in
crowded scenarios, we introduce the squeeze and excitation block
(SE block) [HSS18] into our model, to better capture the global
features of local crowd groups and others. The SE block is an at-
tention model that can select significant portions of feature maps.
As shown in Figure 4, the image features f img

t 2RH⇥W⇥C are first
passed through a convolution operation that aggregates the feature
maps of each channel across spatial dimensions, producing an em-
bedding feature z 2 R1⇥1⇥C. To fully capture all channel-wise de-
pendencies, the SE block employs a simple gating mechanism with
a sigmoid activation: s = s(W1d(W2z)), where W1 and W2 are fully
connected layers, and d is a ReLU layer. Finally, the re-weighted

image features f att
t , which emphasize the crowd motion region in

the images, are obtained by multiplying f img
t with s.

To decode the features f att
t and f of

t , we use their respective de-
coders. As shown in Figure 3, we maintain output and input size
consistency for the decoder by using the reverse setting on the en-
coder. To create the input for the image decoder, we concatenate
f att
t and f of

t . Furthermore, we concatenate the image features f enc
t

saved in the Image Encoder after each pooling layer before each
upsampling layer in the Image Decoder. Similarly, we also concate-
nate the image features f img

t stored in the Image Encoder following
each pooling layer before each upsampling layer in the Image De-
coder. For the optical flow decoder, we use f of

t as the input. On the
other hand, we capture the output features of the optical flow de-
coder by an activation function and use it to update the output of
the Image Decoder.

eimg
t = Dimg([ f att

t ; f of
t ]; f enc

t ;W d)

D̂t = eimg
t s(Dof( f of

t ;W d))
, (2)

where Dimg and Dof are the decoders, which share learnable param-
eters represented as W d, and s(.) denotes the sigmoid function.

In our crowd density map net, we use a pixel-wise L2 loss as
follows:

Ldm =
1
N

N

Â
i=0

kD̂t �Dtk2
2. (3)

Here, D̂t represents the generated density maps using our crowd
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t . Each feature map is first compressed to obtain
z through a convolution operation (squeeze stage). Then, z is ac-
tivated through a gate mechanism to produce s, which is used to
update the original f img

t feature maps (excitation stage).

density map net, while Dt represents the ground truth calculated by
the precise locations of pedestrian trajectories.

3.3. Crowd Prediction Net

In our crowd prediction net, we feed the generated crowd density
map sequences D̂t(t 2 [1,T ]) into a density map encoder Edm to
extract additional crowd distribution features. Crowd density maps
provide information about the static quantity and distribution of
the crowd in the scenario, unlike raw images captured from video.
As a result, we do not need to use a complex convolution-based
network (such as VGG-19 used in our crowd density map network).
Edm is a structure with a basic block unit (Conv2d + Elu). Each
density map in a sequence is fed separately into Edm to extract the
corresponding distribution features Fdm

t as follows:

Fdm
t = Edm(D̂t ;W dm), (4)

where W dm represents the learnable parameters of Edm. We obtain
a sequence of features {Fdm

1 ,Fdm
2 , . . . ,Fdm

T } that encode the spa-
tial interactions of pedestrians in the aforementioned density maps.
The crowd spatial feature sequence derived from the crowd density
maps are not sufficient to characterize the movement relationship
of the pedestrians’ time series. To extract additional crowd tem-
poral motion information, we employ a convolutional LSTM net-
work (ConvLSTM) [SCW⇤15]. The ConvLSTM retains similar cell
states Ct , hidden states Ht , and three gates it , ft , ot as the LSTM,
t 2 [1,T ]. After processed by the ConvLSTMs, HT will contain
information about both the dynamic motion and the static crowd
spatial distribution of the density map sequences.

Specifically, at the training stage (Figure 3), the optical flow fea-
ture extractor Eof processes optical flow images Ft to extract pixel-
wise motion information Fof, and the motion feature extractor Em

is used to extract motion information Fm from motion trend maps
Mt , representing motion in real-world coordinates. Both extrac-
tors share a common unit structure, consisting of a Conv3d layer
followed by an Elu activation. We also employ a Motion Space
Mms 2 RHW⇥C, which is a memory module with its internal pa-
rameters continuously updated during the training stage. During
each training iteration, specific motion data Fmotion which is cal-
culated by a Hadamard product operation to merge Fof and Fm, is
stored into Mms. This makes the motion space a dynamic reposi-

tory of generalized motion patterns used to guide accurate future
predictions.

At the runtime stage, the Motion Space, pre-populated with mo-
tion patterns from the training phase, does not require updates. The
runtime stage solely involves extracting and applying these stored
patterns to new data, focusing particularly on motion information
derived from image-based optical flows. This retrieval is opera-
tionalized through a formula emotion = s(M̂ms NFof), where the
motion patterns in Mms are matched with current optical flow in-
puts to predict movements. The extracted motion patterns, denoted
as emotion, combine with historical density data from the maps (HT )
to predict the features et via the ConvLSTM:

et =ConvLST M([HT ;emotion;Fdm
T ];W e). (5)

The features et , containing future distribution and motion infor-
mation, are separately fed into Ddm and Dm for the prediction of
future density maps and motion trends as follows:

D̂i+1
t =

⇢
Ddm(et ;W dm), i = 0
Ddm([D̂i

t ;Sigmoid(M̂i
t)];W dm), otherwise

(6)

M̂i+1
t =

⇢
Dm(et ;W m), i = 0
Dm([M̂i

t ;Sigmoid(D̂i
t)];W m), otherwise

(7)

where t = T + 1,T + 2, . . . , T̂ , and i indicates the i-th layer of the
decoder; and W dm and W m are learnable parameters. The output
of the last layer of the decoder includes the predicted density map
D̂t and the predicted motion trend M̂t . Note Ddm and Dm have the
same structural (2D DeConv) but do not share weights.

In this step, the total loss L consists of three L2 losses below:

L = Ldm +w1Lm +w2Lf, (8)

where Ldm = 1
N ÂN

i=0 kD̂i�Dik2
2 is the density map loss to constrain

the generated density maps, Lm = 1
N ÂN

i=0 kM̂i�Mik2
2 is the motion

trend loss to constrain the generated motion trends, and Lf = kD̂T �
DT k2

2 is used to make the generated last frame close to the ground
truth. w1 and w2 are hyperparameters: w1 = 0.001 and w2 = 0.1.

3.4. Individual Motion Prediction

The pedestrians in the same group always have similar motion
speeds and directions, which is caused by crowd behaviors includ-
ing attraction, repulsion, and alignment. In this way, we can further
determine the crowd motion from a pedestrian group to individual
pedestrians. For example, in Figure 5, the pedestrian groups (yel-
low circles) can be extracted from the density map, and individual
and group motions (e.g., the blue and red points in Figure 5-Top)
typically exhibit coherence within each pedestrian group. Although
our method does not directly predict the pedestrians’ motion trajec-
tories, the motion coherence between group and individual pedes-
trian allows us to extend our method to predict trajectories of indi-
vidual pedestrians. This is achieved by using our predicted crowd
motion to enhance existing pedestrian trajectory prediction mod-
els, thus ascertaining more accurate pedestrian coordinates. Specif-
ically, we utilize the density values or relation vectors to link indi-
vidual pedestrians with the group. The former represents the den-
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Figure 5: Top: Three frame examples overlaid with density maps.
We highlight the groups with yellow circles and use the blue and
red points to illustrate a pedestrian location and the associated
group center, respectively. Bottom: The 20 predicted trajectories
(left) lead to 20 candidate pedestrian coordinates in each frame
(middle). We pick one from the 20 candidates in each frame to form
a new trajectory (right).

sity value at a pedestrian’s location, and the latter is a vector from
the group center to the pedestrian’s location.

As illustrated in Figure 5-Bottom, for an individual pedestrian,
we use the trajectory-based pedestrian motion prediction method to
generate N potential pedestrian trajectories. Then, we calculate the
average constraint from the historical frames as the constraint (de-
noted as C), and predict future frames’ density maps by using our
method. In this manner, in each predicted frame, multiple pedes-
trian coordinates {pi}, i = 1, · · · ,N are obtained, and we can se-
lect pedestrian coordinate pi that is closest to C in terms of density
value or relation vector (green point in Figure 5-Bottom-Middle). A
new trajectory can be formed with such selected coordinates across
all predicted frames, as the optimized pedestrian motion prediction
outcome.

4. Experimental Results

In this section, we first present qualitative evaluations on dense
crowd motion representations and predictions, by using both the
public dataset and new scenarios. Then, we quantitatively evalu-
ate our method on individual pedestrian trajectory prediction, co-
operating with existing trajectory-based motion prediction meth-
ods [HBL⇤19, XHK22, GJFF⇤18].

4.1. Qualitative Evaluation

Figure 6 shows the prediction results on three scenes of the UCY
dataset. In terms of distributions, our predicted distribution is close
to the actual pedestrian distribution in the image. In terms of mo-
tion trends, our predicted motion trends can reflect the direction of
the pedestrians’ motion and are consistent with the changes in the
distribution of pedestrians. These qualitative results illustrate that
we can represent the pedestrian motion at the image level.

Additionally, we also collect new dense crowd videos to show

the predicted future dense crowd motion in new scenarios. Figure 7
presents the performance of our crowd density map net on new
scenarios. We first use 10% of the data (only 200 density maps per
scenario on average) to fine-tune our model. Notably, we did not
incorporate crowd motion trends into the model’s fine-tuning. The
produced results correspond well to the crowd distribution in the
raw image. This demonstrates that our method can predict crowd
motion without extra trajectory annotation and is easy to transform
into new scenarios.

In the individual pedestrian trajectory prediction, as illustrated
by the three examples in Figure 8, the top case in each exam-
ple shows 20 predicted trajectories generated using the trajectory
prediction method (SocialVAE [XHK22]) based on the blue input
trajectories. The bottom cases display the associated trajectories
refined by our method (in green and yellow) compared with the
Ground Truth. These examples demonstrate that traditional trajec-
tory prediction methods for pedestrian motion struggle to ensure
consistent results, thereby reducing the accuracy of predicted tra-
jectories. By cooperating with our method, more accurate pedes-
trian coordinates can be extracted from the candidate trajectories
generated by the prediction method, resulting in new trajectories
that are much closer to the Ground Truth.

4.2. Quantitative Evaluation

To validate our network structure, we conducted ablation experi-
ments to compare our results with those obtained by removing the
Crowd Density Map Net (i.e., directly using historical frames as
the input for the prediction network) and by removing the fusion
of density map features and motion trend features. We selected the
prediction frames in T=15 & T=19 and used missing rates to mea-
sure the network’s performance. The missing rate is the percentage
of joint prediction samples that deviate from the ground truth be-
yond certain thresholds [SHG⇤22, ECC⇤21]. As shown in Table 1,
the predictions for earlier frames (T=15) are more accurate than
those for later frames (T=19). Utilizing the Crowd Density Map
Net significantly reduces the missing rates of the predictions, and
the fusion operation also enhances prediction accuracy. This indi-
cates that the trend map contributes positively to the prediction of
the density map in our network.

The predicted crowd motion can promote the trajectory pre-
diction of individual pedestrian. We perform the state-of-the-art
trajectory-based motion prediction methods [HBL⇤19, XHK22,
GJFF⇤18] on both ETH & UCY datasets which contain real-
world pedestrian trajectories from five different scenes. Specifi-
cally, we retrained the compared models to align with the output
sequences of our approach, which predicts 24 future frames based
on 8 historical frames and chooses 12 frames via interval sampling.
During testing, we had the trajectory prediction method generate
20 different predicted trajectories for pedestrian movement. This
means each frame includes coordinates for 20 candidate pedes-
trians. Then, we selectively chose pedestrian coordinates to form
a new trajectory using the group-pedestrian vector (+Ours-R) and
density value (+Ours-D). In tables 2, we respectively compared the
optimization effects of our method on previous trajectory predic-
tion methods [HBL⇤19, XHK22, GJFF⇤18]. For the results of the
trajectory prediction methods, we used the average of 20 trajecto-
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Figure 6: Prediction results on three scenes of the UCY dataset. We show 2 from 8 input historical frames on the left and 6 from 12 predicted
density/trend maps on the right.

Figure 7: Prediction results on new data. We show 2 from 8 input historical frames on the left and 6 from 12 predicted density/trend maps
on the right.

ries’ ADE and FDE as their performance. It can be seen that, our
method is able to improve the accuracy of traditional pedestrian
trajectory prediction methods. However, the performance of our
method is also dependent on the underlying trajectory prediction
algorithm.

The results demonstrate that our method’s predicted crowd mo-
tion can cooperate with trajectory prediction methods and improve
the individual pedestrian’s motion prediction accuracy. Besides, we
can see that the density value and relation vector constraints have
comparable effects on enhancing the accuracy of predicted trajecto-
ries. However, in simple scenes with few pedestrians (e.g., Zara1),
the performance of such two constraints could be influenced by the
adopted trajectory prediction methods. This might be due to the fact
that in scenes with fewer pedestrians, groups often contain only one

pedestrian, making the relation vector so small that it is easily af-
fected by computational errors. Consequently, our method is more
suitable for crowded scenes.

Since the output of our Crowd Density Map Net represents the
spatial distribution of the crowd within a frame, we also conducted
a quantitative comparison with the crowd-counting method FAM-
NET [RSNH21]. For the five scenes in the ETH & UCY datasets,
FAMNET achieved an average MAE and MSE of 1.67 and 3.68,
respectively, whereas our method yielded results of 1.02 and 2.47,
respectively. This significant improvement can be attributed to the
fact that the FAMNET is a single-image-based method, whereas
our Crowd Density Map Net accounts for the temporal continuity
of pedestrians across frames.

© 2024 The Authors.
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Table 1: The ablation experiment results summarized by Missing Rates for T = 15 and T = 19 on both sides of the vertical bar, respectively.
’w/o CDMN’ denotes our method without the Crowd Density Map Net, while ’w/o fusion’ denotes our method without the fusion of density
map features and motion trends features. The unit of measurement for the data is percentage (%).

ETH HOTEL UNIV ZARA1 ZARA2 AVG

Ours(w/o CDMN) 35.06 | 40.25 37.22 | 45.75 24.67 | 31.59 30.14 | 38.05 31.20 | 39.85 31.66 | 39.10
Ours(w/o fusion) 16.32 | 19.40 19.02 | 22.13 9.83 | 14.14 11.25 | 17.56 12.03 | 17.96 13.69 | 18.24
Ours 15.87 | 19.32 17.88 | 21.54 9.76 | 13.80 10.15 | 16.42 11.23 | 16.59 12.98 | 17.33

Table 2: The pedestrian trajectory prediction accuracies of methods STGAT, SocialVAE, SocialGAN, and the associated results cooperated
with our method, respectively. For each cell, we present the ADE on the left and the FDE on the right.

Zara1 Zara2 Hotel Univ Eth

STGAT 1.43 | 5.59 0.63 | 2.37 0.42 | 1.53 1.10 | 4.15 1.26 | 4.98
+Ours-D 1.40 | 5.63 0.53 | 2.04 0.35 | 1.31 1.11 | 4.19 0.99 | 3.96
+Ours-R 1.16 | 4.69 0.52 | 1.98 0.35 | 1.34 1.10 | 4.16 0.66 | 2.87

SocialVAE 1.95 | 4.59 1.01 | 2.44 1.06 | 2.42 1.94 | 4.29 2.44 | 5.20
+Ours-D 1.90 | 4.40 0.88 | 2.01 0.54 | 1.31 1.80 | 3.85 2.10 | 4.20
+Ours-R 2.01 | 4.49 0.90 | 2.00 0.58 | 1.38 1.95 | 4.04 2.09 | 3.87

SocialGAN 1.56 | 3.46 1.01 | 2.22 1.49 | 3.18 1.79 | 3.65 0.62 | 1.25
+Ours-D 1.55 | 3.42 0.92 | 2.04 1.42 | 3.08 1.78 | 3.62 0.66 | 1.19
+Ours-R 1.58 | 3.54 0.91 | 1.95 1.38 | 2.99 1.78 | 3.61 0.50 | 0.99

Figure 8: Three examples of the 20 predicted trajectories (Top),
and the associated trajectories suggested by our method compared
to the ground truth (Bottom).

5. Discussion and Conclusion

In this paper, we introduce a new approach to modeling and pre-
dicting dense crowd motion in video, including density maps and
trend maps, and that captures the collective spatial-temporal char-
acteristics of a dense crowd over individual pedestrian movements.
Building upon the representation, we further design highly effec-
tive algorithms to predict the motion of dense crowds in video.
Our experimental results show that our method can not only pre-
dict the crowd motion of pedestrian groups, but also improve the
accuracy of trajectory for individual pedestrian cooperated with the
trajectory-based motion prediction methods.

Our work has some drawbacks that need to be addressed in fu-

ture work. One of them is that our method is more suitable for dense
crowds rather than scenes with sparse pedestrians. Another chal-
lenge is that our method may confuse background objects that look
like pedestrians, such as fire hydrants and postboxes, with actual
pedestrians, or miss pedestrians that are occluded by other objects.
This may result in inaccurate density maps and poor future motion
prediction. Despite these limitations, we believe that our method
is a practical and novel approach for representing and predicting
dense crowd motion from video frames.
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